1
|
Zhao D, Mo Y, Neganova ME, Aleksandrova Y, Tse E, Chubarev VN, Fan R, Sukocheva OA, Liu J. Dual effects of radiotherapy on tumor microenvironment and its contribution towards the development of resistance to immunotherapy in gastrointestinal and thoracic cancers. Front Cell Dev Biol 2023; 11:1266537. [PMID: 37849740 PMCID: PMC10577389 DOI: 10.3389/fcell.2023.1266537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
Successful clinical methods for tumor elimination include a combination of surgical resection, radiotherapy, and chemotherapy. Radiotherapy is one of the crucial components of the cancer treatment regimens which allow to extend patient life expectancy. Current cutting-edge radiotherapy research is focused on the identification of methods that should increase cancer cell sensitivity to radiation and activate anti-cancer immunity mechanisms. Radiation treatment activates various cells of the tumor microenvironment (TME) and impacts tumor growth, angiogenesis, and anti-cancer immunity. Radiotherapy was shown to regulate signaling and anti-cancer functions of various TME immune and vasculature cell components, including tumor-associated macrophages, dendritic cells, endothelial cells, cancer-associated fibroblasts (CAFs), natural killers, and other T cell subsets. Dual effects of radiation, including metastasis-promoting effects and activation of oxidative stress, have been detected, suggesting that radiotherapy triggers heterogeneous targets. In this review, we critically discuss the activation of TME and angiogenesis during radiotherapy which is used to strengthen the effects of novel immunotherapy. Intracellular, genetic, and epigenetic mechanisms of signaling and clinical manipulations of immune responses and oxidative stress by radiotherapy are accented. Current findings indicate that radiotherapy should be considered as a supporting instrument for immunotherapy to limit the cancer-promoting effects of TME. To increase cancer-free survival rates, it is recommended to combine personalized radiation therapy methods with TME-targeting drugs, including immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Deyao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingyi Mo
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Margarita E. Neganova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Yulia Aleksandrova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Vladimir N. Chubarev
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, CALHN, Adelaide, SA, Australia
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Stieb S, Kiser K, van Dijk L, Livingstone NR, Elhalawani H, Elgohari B, McDonald B, Ventura J, Mohamed ASR, Fuller CD. Imaging for Response Assessment in Radiation Oncology: Current and Emerging Techniques. Hematol Oncol Clin North Am 2019; 34:293-306. [PMID: 31739950 DOI: 10.1016/j.hoc.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imaging in radiation oncology is essential for the evaluation of treatment response in tumors and organs at risk. This influences further treatment decisions and could possibly be used to adapt therapy. This review article focuses on the currently used imaging modalities for response assessment in radiation oncology and gives an overview of new and promising techniques within this field.
Collapse
Affiliation(s)
- Sonja Stieb
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Kendall Kiser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lisanne van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Nadia Roxanne Livingstone
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Baher Elgohari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Brigid McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Juan Ventura
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Abdallah Sherif Radwan Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Mirus M, Tokalov SV, Abramyuk A, Heinold J, Prochnow V, Zöphel K, Kotzerke J, Abolmaali N. Noninvasive assessment and quantification of tumor vascularization using [18F]FDG-PET/CT and CE-CT in a tumor model with modifiable angiogenesis-an animal experimental prospective cohort study. EJNMMI Res 2019; 9:55. [PMID: 31227938 PMCID: PMC6588673 DOI: 10.1186/s13550-019-0502-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background This study investigated the noninvasive assessment of tumor vascularization with clinical F-18-fluorodeoxyglucose positron emission tomography/computed tomography and contrast-enhanced computed tomography ([18F]FDG-PET/CT and CE-CT) in experimental human xenograft tumors with modifiable vascularization and compared results to histology. Tumor xenografts with modifiable vascularization were established in 71 athymic nude rats by subcutaneous transplantation of human non-small-cell lung cancer (NSCLC) cells. Four different groups were transplanted with two different tumor cell lines (either A549 or H1299) alone or tumors co-transplanted with rat glomerular endothelial (RGE) cells, the latter to increase vascularization. Tumors were assessed noninvasively by [18F]FDG PET/CT and contrast-enhanced CT (CE-CT) using clinical scanners. This was followed by histological examinations evaluating tumor vasculature (CD-31 and intravascular fluorescent beads). Results In both tumor lines (A549 and H1299), co-transplantation of RGE cells resulted in faster growth rates [maximal tumor diameter of 20 mm after 22 (± 1.2) as compared to 45 (± 1.8) days, p < 0.001], higher microvessel density (MVD) determined histologically after CD-31 staining [171.4 (± 18.9) as compared to 110.8 (± 11) vessels per mm2, p = 0.002], and higher perfusion as indicated by the number of beads [1.3 (± 0.1) as compared to 1.1 (± 0.04) beads per field of view, p = 0.001]. In [18F]FDG-PET/CT, co-transplanted tumors revealed significantly higher standardized uptake values [SUVmax, 2.8 (± 0.2) as compared to 1.1 (± 0.1), p < 0.001] and larger metabolic active volumes [2.4 (± 0.2) as compared to 0.4 (± 0.2) cm3, p < 0.001] than non-co-transplanted tumors. There were significant correlations for vascularization parameters derived from histology and [18F]FDG PET/CT [beads and SUVmax, r = 0.353, p = 0.005; CD-31 and SUVmax, r = 0.294, p = 0.036] as well as between CE-CT and [18F]FDG PET/CT [contrast enhancement and SUVmax, r = 0.63, p < 0.001; vital CT tumor volume and metabolic PET tumor volume, r = 0.919, p < 0.001]. Conclusions In this study, a human xenograft tumor model with modifiable vascularization implementable for imaging, pharmacological, and radiation therapy studies was successfully established. Both [18F]FDG-PET/CT and CE-CT are capable to detect parameters closely connected to the degree of tumor vascularization, thus they can help to evaluate vascularization in tumors noninvasively. [18F]FDG-PET may be considered for characterization of tumors beyond pure glucose metabolism and have much greater contribution to diagnostics in oncology.
Collapse
Affiliation(s)
- Martin Mirus
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Department of Anaesthesiology and Critical Care Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Institution under Public Law of the Free State of Saxony, Fetscherstraße 74, 01307, Dresden, Germany
| | - Sergey V Tokalov
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Andrij Abramyuk
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Department of Neuroradiology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jessica Heinold
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Municipal Hospital Dresden-Neustadt, Department of Neurology, Industriestraße 40, 01129, Dresden, Germany
| | - Vincent Prochnow
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,Clinic for Obstetrics and Gynaecology, Klinikum Chemnitz, Flemmingstraße 4, 09116, Chemnitz, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nasreddin Abolmaali
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany. .,Department of Radiology, Municipal Hospital and Academic Teaching Hospital of the Technical University Dresden, Dresden-Friedrichstadt, Friedrichstraße 41, 01067, Dresden, Germany.
| |
Collapse
|
4
|
Martens RM, Noij DP, Ali M, Koopman T, Marcus JT, Vergeer MR, de Vet H, de Jong MC, Leemans CR, Hoekstra OS, de Bree R, de Graaf P, Boellaard R, Castelijns JA. Functional imaging early during (chemo)radiotherapy for response prediction in head and neck squamous cell carcinoma; a systematic review. Oral Oncol 2018; 88:75-83. [PMID: 30616800 DOI: 10.1016/j.oraloncology.2018.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
This systematic review gives an extensive overview of the current state of functional imaging during (chemo)radiotherapy to predict locoregional control (LRC) and overall survival (OS) for head and neck squamous cell carcinoma. MEDLINE and EMBASE were searched for literature until April 2018 assessing the predictive performance of functional imaging (computed tomography perfusion (CTp), MRI and positron-emission tomography (PET)) within 4 weeks after (chemo)radiotherapy initiation. Fifty-two studies (CTp: n = 4, MRI: n = 19, PET: n = 26, MRI/PET: n = 3) were included involving 1623 patients. Prognostic information was extracted according the PRISMA protocol. Pooled estimation and subgroup analyses were performed for comparable parameters and outcome. However, the heterogeneity of included studies limited the possibility for comparison. Early tumoral changes from (chemo)radiotherapy can be captured by functional MRI and 18F-FDG-PET and could allow for personalized treatment adaptation. Lesions showed potentially prognostic intratreatment changes in perfusion, diffusion and metabolic activity. Intratreatment ADCmean increase (decrease of diffusion restriction) and low SUVmax (persistent low or decrease of 18F-FDG uptake) were most predictive of LRC. Intratreatment persistent high or increase of perfusion on CT/MRI (i.e. blood flow, volume, permeability) also predicted LRC. Low SUVmax and total lesion glycolysis (TLG) predicted favorable OS. The optimal timing to perform functional imaging to predict LRC or OS was 2-3 weeks after treatment initiation.
Collapse
Affiliation(s)
- Roland M Martens
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands.
| | - Daniel P Noij
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Meedie Ali
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Thomas Koopman
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - J Tim Marcus
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Marije R Vergeer
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Henrica de Vet
- Department of Epidemiology and Biostatistics and the EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Marcus C de Jong
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - C René Leemans
- Department of Otolaryngology - Head and Neck Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Jonas A Castelijns
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Mirus M, Tokalov SV, Wolf G, Heinold J, Prochnow V, Abolmaali N. Noninvasive assessment and quantification of tumour vascularisation using MRI and CT in a tumour model with modifiable angiogenesis - An animal experimental prospective cohort study. Eur Radiol Exp 2017; 1:15. [PMID: 29708186 PMCID: PMC5909347 DOI: 10.1186/s41747-017-0014-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022] Open
Abstract
Background To investigate vascular-related pathophysiological characteristics of two human lung cancers with modifiable vascularisation using MRI and CT. Methods Tumour xenografts with modifiable vascularisation were established in 71 rats (approval by the Animal Care Committee was obtained) by subcutaneous transplantation of two human non-small-cell lung cancer (NSCLC) cells (A549, H1299) either alone or co-transplanted with vascular growth promoters. The vascularity of the tumours was assessed noninvasively by MRI diffusion-weighted-imaging (DWI), T2-weighted, and time-of-flight (TOF) sequences) as well as contrast-enhanced CT (CE-CT), using clinical scanners. As a reference standard, histological examinations (CD-31, fluorescent beads) were done after explantation. Results Microvessel density (MVD) was higher in co-transplanted tumours (171 ± 19 number/mm2) than in non-co-transplanted tumours (111 ± 11 number/mm2; p = 0.002). Co-transplanted tumours showed higher growth rates and larger tumour vessels at TOF-MRI as well as larger necrotic areas at CE-CT. In co-transplanted tumours, DWI revealed higher cellularity (lower minimal ADCdiff 166 ± 15 versus 346 ± 27 mm2/s × 10−6; p < 0.001), highly necrotic areas (higher maximal ADCdiff 1695 ± 65 versus 1320 ± 59 mm2/s × 10−6; p < 0.001), and better-perfused tumour stroma (higher ADCperf 723 ± 36 versus 636 ± 51 mm2/s × 10−6; p = 0.005). Significant correlations were found using qualitative and quantitative parameters: maximal ADCperf and MVD (r = 0.326); maximal ADCdiff and relative necrotic volume on CE-CT (r = 0.551); minimal ADCdiff and MVD (r = −0.395). Conclusions Pathophysiological differences related to vascular supply in two human lung cancer cell lines with modifiable vascularity are quantifiable with clinical imaging techniques. Imaging parameters of vascularisation correlated with the results of histology. DWI was able to characterise both the extent of necrosis and the level of perfusion.
Collapse
Affiliation(s)
- M Mirus
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, University of Technology, Dresden, Germany
| | - S V Tokalov
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,3Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - G Wolf
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,4Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus Medical Faculty, University of Technology, Dresden, Germany
| | - J Heinold
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Neurology, Municipal Hospital Dresden-Neustadt, Dresden, Germany
| | - V Prochnow
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,6Clinic for Obstetrics and Gynecology, Klinikum Chemnitz, Chemnitz, Germany
| | - N Abolmaali
- Biological and Molecular Imaging, OncoRay - National Center for Radiation Research in Oncology, Dresden, Germany.,Department of Radiology, Municipal Hospital and Academic Hospital of the Technical University Dresden, Dresden-Friedrichstadt, Friedrichstrasse 41, 01067 Dresden, Germany
| |
Collapse
|
6
|
Lai YL, Wu CY, Chao KSC. Biological imaging in clinical oncology: radiation therapy based on functional imaging. Int J Clin Oncol 2016; 21:626-632. [PMID: 27384183 DOI: 10.1007/s10147-016-1000-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/29/2016] [Indexed: 12/25/2022]
Abstract
Radiation therapy is one of the most effective tools for cancer treatment. In recent years, intensity-modulated radiation therapy has become increasingly popular in that target dose-escalation can be done while sparing adjacent normal tissues. For this reason, the development of measures to pave the way for accurate target delineation is of great interest. With the integration of functional information obtained by biological imaging with radiotherapy, strategies using advanced biological imaging to visualize metabolic pathways and to improve therapeutic index and predict treatment response are discussed in this article.
Collapse
Affiliation(s)
- Yo-Liang Lai
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - K S Clifford Chao
- China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
7
|
Captur G, Karperien AL, Li C, Zemrak F, Tobon-Gomez C, Gao X, Bluemke DA, Elliott PM, Petersen SE, Moon JC. Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation. J Cardiovasc Magn Reson 2015; 17:80. [PMID: 26346700 PMCID: PMC4562373 DOI: 10.1186/s12968-015-0179-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 08/05/2015] [Indexed: 11/26/2022] Open
Abstract
Many of the structures and parameters that are detected, measured and reported in cardiovascular magnetic resonance (CMR) have at least some properties that are fractal, meaning complex and self-similar at different scales. To date however, there has been little use of fractal geometry in CMR; by comparison, many more applications of fractal analysis have been published in MR imaging of the brain.This review explains the fundamental principles of fractal geometry, places the fractal dimension into a meaningful context within the realms of Euclidean and topological space, and defines its role in digital image processing. It summarises the basic mathematics, highlights strengths and potential limitations of its application to biomedical imaging, shows key current examples and suggests a simple route for its successful clinical implementation by the CMR community.By simplifying some of the more abstract concepts of deterministic fractals, this review invites CMR scientists (clinicians, technologists, physicists) to experiment with fractal analysis as a means of developing the next generation of intelligent quantitative cardiac imaging tools.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK.
- Division of Cardiovascular Imaging, The Heart Hospital, part of University College London NHS Foundation Trust, 16-18 Westmoreland Street, London, W1G 8PH, UK.
| | - Audrey L Karperien
- Centre for Research in Complex Systems, School of Community Health, Charles Sturt University, Albury, NSW 2640, Australia.
| | - Chunming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Filip Zemrak
- Division of Cardiovascular Imaging, The Heart Hospital, part of University College London NHS Foundation Trust, 16-18 Westmoreland Street, London, W1G 8PH, UK.
- Cardiovascular Biomedical Research Unit, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Catalina Tobon-Gomez
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK.
| | - Xuexin Gao
- Circle Cardiovascular Imaging Inc., Panarctic Plaza, Suite 250, 815 8th Avenue SW, Calgary, AB T2P 3P2, Canada.
| | - David A Bluemke
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Center Drive, Bethesda, MA, USA.
| | - Perry M Elliott
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK.
- Division of Cardiovascular Imaging, The Heart Hospital, part of University College London NHS Foundation Trust, 16-18 Westmoreland Street, London, W1G 8PH, UK.
| | - Steffen E Petersen
- Division of Cardiovascular Imaging, The Heart Hospital, part of University College London NHS Foundation Trust, 16-18 Westmoreland Street, London, W1G 8PH, UK.
- Cardiovascular Biomedical Research Unit, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - James C Moon
- UCL Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK.
- Division of Cardiovascular Imaging, The Heart Hospital, part of University College London NHS Foundation Trust, 16-18 Westmoreland Street, London, W1G 8PH, UK.
| |
Collapse
|