ALBERTI C. Prostate cancer immunotherapy, particularly in combination with androgen deprivation or radiation treatment. Customized pharmacogenomic approaches to overcome immunotherapy cancer resistance.
G Chir 2017;
37:225-235. [PMID:
28098061 PMCID:
PMC5256907 DOI:
10.11138/gchir/2016.37.5.225]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conventional therapeutic approaches for advanced prostate cancer - such as androgen deprivation, chemotherapy, radiation - come up often against lack of effectiveness because of possible arising of correlative cancer cell resistance and/or inadequate anti-tumor immune conditions. Whence the timeliness of resorting to immune-based treatment strategies including either therapeutic vaccination-based active immunotherapy or anti-tumor monoclonal antibody-mediated passive immunotherapy. Particularly attractive, as for research studies and clinical applications, results to be the cytotoxic T-lymphocyte check point blockade by the use of anti-CTLA-4 and PD-1 monoclonal antibodies, particularly when combined with androgen deprivation therapy or radiation. Unlike afore said immune check point inhibitors, both cell-based (by the use of prostate specific antigen carriers autologous dendritic cells or even whole cancer cells) and recombinant viral vector vaccines are able to induce immune-mediated focused killing of specific antigen-presenting prostate cancer cells. Such vaccines, either used alone or concurrently/sequentially combined with above-mentioned conventional therapies, led to generally reach, in the field of various clinical trials, reasonable results particularly as regards the patient's overall survival. Adoptive trasferred T-cells, as adoptive T-cell passive immunotherapy, and monoclonal antibodies against specific antigen-endowed prostate cancer cells can improve immune micro-environmental conditions. On the basis of a preliminary survey about various immunotherapy strategies, are here also outlined their effects when combined with androgen deprivation therapy or radiation. What's more, as regard the immune-based treatment effectiveness, it has to be pointed out that suitable personalized epigenetic/gene profile-achieved pharmacogenomic approaches to target identified gene aberrations, may lead to overcome - as well as for conventional therapies - possible prostate cancer resistance to immunotherapy.
Collapse