1
|
Frencken AL, Richtsmeier D, Leonard RL, Williams AG, Johnson CE, Johnson JA, Blasiak B, Orlef A, Skorupa A, Sokół M, Tomanek B, Beckham W, Bazalova-Carter M, van Veggel FCJM. X-ray-Sensitive Doped CaF 2-Based MRI Contrast Agents for Local Radiation Dose Measurement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13453-13465. [PMID: 38445594 DOI: 10.1021/acsami.3c16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Ionizing radiation has become widely used in medicine, with application in diagnostic techniques, such as computed tomography (CT) and radiation therapy (RT), where X-rays are used to diagnose and treat tumors. The X-rays used in CT and, in particular, in RT can have harmful side effects; hence, an accurate determination of the delivered radiation dose is of utmost importance to minimize any damage to healthy tissues. For this, medical specialists mostly rely on theoretical predictions of the delivered dose or external measurements of the dose. To extend the practical use of ionizing radiation-based medical techniques, such as magnetic resonance imaging (MRI)-guided RT, a more precise measurement of the internal radiation dose internally is required. In this work, a novel approach is presented to measure dose in liquids for potential future in vivo applications. The strategy relies on MRI contrast agents (CAs) that provide a dose-sensitive signal. The demonstrated materials are (citrate-capped) CaF2 nanoparticles (NPs) doped with Eu3+ or Fe2+/Fe3+ ions. Free electrons generated by ionizing radiation allow the reduction of Eu3+, which produces a very small contrast in MRI, to Eu2+, which induces a strong contrast. Oxidative species generated by high-energy X-rays can be measured indirectly using Fe2+ because it oxidizes to Fe3+, increasing the contrast in MRI. Notably, in the results, a strong increase in the proton relaxation rates is observed for the Eu3+-doped NPs at 40 kV. At 6 MV, a significant increase in proton relaxation rates is observed using CaF2 NPs doped with Fe2+/Fe3+ after irradiation. The presented concept shows great promise for use in the clinic to measure in vivo local ionizing radiation dose, as these CAs can be intravenously injected in a saline solution.
Collapse
Affiliation(s)
- Adriaan L Frencken
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Devon Richtsmeier
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - R Lee Leonard
- Aerospace and Biomedical Engineering, The University of Tennessee Space Institute Tullahoma, Tullahoma, Tennessee 37388-9700, United States
| | - Aleia G Williams
- Aerospace and Biomedical Engineering, The University of Tennessee Space Institute Tullahoma, Tullahoma, Tennessee 37388-9700, United States
| | - Charles E Johnson
- Aerospace and Biomedical Engineering, The University of Tennessee Space Institute Tullahoma, Tullahoma, Tennessee 37388-9700, United States
| | - Jacqueline A Johnson
- Aerospace and Biomedical Engineering, The University of Tennessee Space Institute Tullahoma, Tullahoma, Tennessee 37388-9700, United States
| | - Barbara Blasiak
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow 31-342, Poland
| | - Andrzej Orlef
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Agnieszka Skorupa
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Boguslaw Tomanek
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow 31-342, Poland
- Oncology Department, University of Alberta, 8303-112 Street NW, Edmonton, Alberta T6G 2T4, Canada
| | - Wayne Beckham
- BC Cancer, Royal Jubilee Hospital, Victoria, British Columbia V8R 6 V5, Canada
| | - Magdalena Bazalova-Carter
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Frank C J M van Veggel
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Centre for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
2
|
Grandvillain M, Vidal M, Hérault J, Benabdesselam M, Hofverberg P, Mady F. Silica-based scintillators: basic properties of radioluminescence kinetics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:245701. [PMID: 38447159 DOI: 10.1088/1361-648x/ad3094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Radioluminescent silica-based fiber dosimeters offer great advantages for designing miniaturized realtime sensors for high dose-rate dosimetry. Rise and fall kinetics of their response must be properly understood to better assess their performances in terms of measurement speed and repeatability. A standard model of radioluminescence (RL) has already been quantitatively validated for doped silica glasses, but beyond conclusive comparisons with specific experiments, a comprehensive understanding of the processes and parameters determining transient and equilibrium kinetics of RL is still lacking. We analyze in detail the kinetics inherent in the standard RL model. Several asymptotical regimes in the RL growth are demonstrated in the case of a pristine sample (succesive quadratic, linear and power-law time dependencies before the plateau is reached). We show how this situation is modified when a pre-irradiation partly fills traps beforehand. RL growth is then greatly accelerated because of the pre-formation of recombination centers (RCs) from dopant ions, but not due to pre-filling of trapping levels. In all cases, the RL intensity eventually tends to a constant level equal to the pair generation rate, long before all carrier densities themselves reach equilibrium. This occurs late under irradiation, when deep traps get to saturation. The fraction of dopants converted into RCs is then 'frozen' at a lower level the smaller the density of deep traps. Controlling RL kinetics through the engineering of material traps is not an option. Pre-irradiation appears to be the simplest way to obtain accelerated and repeatable kinetics.
Collapse
Affiliation(s)
- Marjorie Grandvillain
- Université Côte d'Azur, Fédération de recherche Claude Lalanne, Institut de Physique de Nice, CNRS UMR7010, 17 rue Julien Lauprêtre, 06200 Nice, France
| | - Marie Vidal
- Centre Antoine Lacassagne, Fédération de recherche Claude Lalanne, 227 avenue de la Lanterne, 06200 Nice, France
| | - Joël Hérault
- Centre Antoine Lacassagne, Fédération de recherche Claude Lalanne, 227 avenue de la Lanterne, 06200 Nice, France
| | - Mourad Benabdesselam
- Université Côte d'Azur, Fédération de recherche Claude Lalanne, Institut de Physique de Nice, CNRS UMR7010, 17 rue Julien Lauprêtre, 06200 Nice, France
| | - Petter Hofverberg
- Centre Antoine Lacassagne, Fédération de recherche Claude Lalanne, 227 avenue de la Lanterne, 06200 Nice, France
| | - Franck Mady
- Université Côte d'Azur, Fédération de recherche Claude Lalanne, Institut de Physique de Nice, CNRS UMR7010, 17 rue Julien Lauprêtre, 06200 Nice, France
| |
Collapse
|
3
|
Lall R, Lee K, Chopra S, Kandala A, Evans M, Seo Y, Niknejad A, Anwar M. Low cost, high temporal resolution optical fiber-based γ-photon sensor for real-time pre-clinical evaluation of cancer-targeting radiopharmaceuticals. Biosens Bioelectron 2024; 247:115956. [PMID: 38145595 DOI: 10.1016/j.bios.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Cancer radiopharmaceutical therapies (RPTs) have demonstrated great promise in the treatment of neuroendocrine and prostate cancer, giving hope to late-stage metastatic cancer patients with currently very few treatment options. These therapies have sparked a large amount of interest in pre-clinical research due to their ability to target metastatic disease, with many research efforts focused towards developing and evaluating targeted RPTs for different cancer types in in vivo models. Here we describe a method for monitoring real-time in vivo binding kinetics for the pre-clinical evaluation of cancer RPTs. Recognizing the significant heterogeneity in biodistribution of RPTs among even genetically identical animal models, this approach offers long-term monitoring of the same in vivo organism without euthanasia in contrast to ex vivo tissue dosimetry, while providing high temporal resolution with a low-cost, easily assembled platform, that is not present in small-animal SPECT/CTs. The method utilizes the developed optical fiber-based γ-photon biosensor, characterized to have a wide linear dynamic range with Lutetium-177 (177Lu) activity (0.5-500 μCi/mL), a common radioisotope used in cancer RPT. The probe's ability to track in vivo uptake relative to SPECT/CT and ex vivo dosimetry techniques was verified by administering 177Lu-PSMA-617 to mouse models bearing human prostate cancer tumors (PC3-PIP, PC3-flu). With this method for monitoring RPT uptake, it is possible to evaluate changes in tissue uptake at temporal resolutions <1 min to determine RPT biodistribution in pre-clinical models and better understand dose relationships with tumor ablation, toxicity, and recurrence when attempting to move therapies towards clinical trial validation.
Collapse
Affiliation(s)
- Rahul Lall
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA.
| | - Kyoungtae Lee
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, 94107, USA
| | - Shalini Chopra
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94107, USA
| | - Averal Kandala
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Michael Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94107, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94107, USA
| | - Ali Niknejad
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mekhail Anwar
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA; Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, 94107, USA
| |
Collapse
|
4
|
Caccia M, Giaz A, Galoppo M, Santoro R, Martyn M, Bianchi C, Novario R, Woulfe P, O’Keeffe S. Characterisation of a Silicon Photomultiplier Based Oncological Brachytherapy Fibre Dosimeter. SENSORS (BASEL, SWITZERLAND) 2024; 24:910. [PMID: 38339627 PMCID: PMC10856931 DOI: 10.3390/s24030910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024]
Abstract
Source localisation and real-time dose verification are at the forefront of medical research in brachytherapy, an oncological radiotherapy procedure based on radioactive sources implanted in the patient body. The ORIGIN project aims to respond to this medical community's need by targeting the development of a multi-point dose mapping system based on fibre sensors integrating a small volume of scintillating material into the tip and interfaced with silicon photomultipliers operated in counting mode. In this paper, a novel method for the selection of the optimal silicon photomultipliers to be used is presented, as well as a laboratory characterisation based on dosimetric figures of merit. More specifically, a technique exploiting the optical cross-talk to maintain the detector linearity in high-rate conditions is demonstrated. Lastly, it is shown that the ORIGIN system complies with the TG43-U1 protocol in high and low dose rate pre-clinical trials with actual brachytherapy sources, an essential requirement for assessing the proposed system as a dosimeter and comparing the performance of the system prototype against the ORIGIN project specifications.
Collapse
Affiliation(s)
- Massimo Caccia
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; (A.G.); (M.G.); (R.S.)
| | - Agnese Giaz
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; (A.G.); (M.G.); (R.S.)
| | - Marco Galoppo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; (A.G.); (M.G.); (R.S.)
| | - Romualdo Santoro
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; (A.G.); (M.G.); (R.S.)
| | - Micheal Martyn
- Radiotherapy Department, Galway Clinic, Doughiska Road, H91 HHT0 Galway, Ireland;
| | - Carla Bianchi
- Ospedale di Circolo di Varese, Università degli Studi dell’Insubria, Viale Borri, 57, 21100 Varese, Italy; (C.B.); (R.N.); (P.W.)
| | - Raffaele Novario
- Ospedale di Circolo di Varese, Università degli Studi dell’Insubria, Viale Borri, 57, 21100 Varese, Italy; (C.B.); (R.N.); (P.W.)
| | - Peter Woulfe
- Ospedale di Circolo di Varese, Università degli Studi dell’Insubria, Viale Borri, 57, 21100 Varese, Italy; (C.B.); (R.N.); (P.W.)
| | - Sinead O’Keeffe
- Optical Fibre Sensors Research Centre, University of Limerick, V94 T9PX Limerick, Ireland;
| |
Collapse
|
5
|
Hou B, Yi L, Hu D, Luo Z, Gao D, Li C, Xing B, Wang JW, Lee CN, Zhang R, Sheng Z, Zhou B, Liu X. A swallowable X-ray dosimeter for the real-time monitoring of radiotherapy. Nat Biomed Eng 2023; 7:1242-1251. [PMID: 37055542 DOI: 10.1038/s41551-023-01024-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/15/2023] [Indexed: 04/15/2023]
Abstract
Monitoring X-ray radiation in the gastrointestinal tract can enhance the precision of radiotherapy in patients with gastrointestinal cancer. Here we report the design and performance, in the gastrointestinal tract of rabbits, of a swallowable X-ray dosimeter for the simultaneous real-time monitoring of absolute absorbed radiation dose and of changes in pH and temperature. The dosimeter consists of a biocompatible optoelectronic capsule containing an optical fibre, lanthanide-doped persistent nanoscintillators, a pH-sensitive polyaniline film and a miniaturized system for the wireless readout of luminescence. The persistent luminescence of the nanoscintillators after irradiation can be used to continuously monitor pH without the need for external excitation. By using a neural-network-based regression model, we estimated the radiation dose from radioluminescence and afterglow intensity and temperature, and show that the dosimeter was approximately five times more accurate than standard methods for dose determination. Swallowable dosimeters may help to improve radiotherapy and to understand how radiotherapy affects tumour pH and temperature.
Collapse
Affiliation(s)
- Bo Hou
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Luying Yi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Dehong Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Duyang Gao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Li
- Department of Spaceborne Microwave Remote Sensing System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Bowen Xing
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rong Zhang
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Zonghai Sheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Bin Zhou
- Department of Precision Instruments, Tsinghua University, Beijing, China.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Materials Research and Engineering, Agency for Science,Technology and Research, Singapore, Singapore.
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, China.
| |
Collapse
|
6
|
Breglio G, Bernini R, Berruti GM, Bruno FA, Buontempo S, Campopiano S, Catalano E, Consales M, Coscetta A, Cutolo A, Cutolo MA, Di Palma P, Esposito F, Fienga F, Giordano M, Iele A, Iadicicco A, Irace A, Janneh M, Laudati A, Leone M, Maresca L, Marrazzo VR, Minardo A, Pisco M, Quero G, Riccio M, Srivastava A, Vaiano P, Zeni L, Cusano A. Innovative Photonic Sensors for Safety and Security, Part III: Environment, Agriculture and Soil Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:3187. [PMID: 36991894 PMCID: PMC10053851 DOI: 10.3390/s23063187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In order to complete this set of three companion papers, in this last, we focus our attention on environmental monitoring by taking advantage of photonic technologies. After reporting on some configurations useful for high precision agriculture, we explore the problems connected with soil water content measurement and landslide early warning. Then, we concentrate on a new generation of seismic sensors useful in both terrestrial and under water contests. Finally, we discuss a number of optical fiber sensors for use in radiation environments.
Collapse
Affiliation(s)
- Giovanni Breglio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Romeo Bernini
- Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, Via Diocleziano 328, 81024 Napoli, Italy
| | - Gaia Maria Berruti
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Francesco Antonio Bruno
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Salvatore Buontempo
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
- National Institute for Nuclear Physics (INFN), 80125 Napoli, Italy
| | - Stefania Campopiano
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Ester Catalano
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Marco Consales
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Agnese Coscetta
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Antonello Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Maria Alessandra Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Pasquale Di Palma
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Flavio Esposito
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Francesco Fienga
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Michele Giordano
- Istituto per i Polimeri, Compositi e Biomateriali Consiglio Nazionale delle Ricerche, Via Enrico Fermi 1, 80055 Portici, Italy
| | - Antonio Iele
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | - Agostino Iadicicco
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Andrea Irace
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Mohammed Janneh
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | | | - Marco Leone
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Luca Maresca
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Vincenzo Romano Marrazzo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
| | - Aldo Minardo
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Marco Pisco
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Giuseppe Quero
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Michele Riccio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Anubhav Srivastava
- Dipartimento di Ingegneria, Università Degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Patrizio Vaiano
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| | - Luigi Zeni
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Andrea Cusano
- Gruppo di Optoelettronica e Fotonica, Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, 82100 Benevento, Italy
| |
Collapse
|
7
|
Nakauchi D, Kato T, Kawaguchi N, Yanagida T. Scintillation Response of Nd-Doped LaMgAl 11O 19 Single Crystals Emitting NIR Photons for High-Dose Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:9818. [PMID: 36560184 PMCID: PMC9785056 DOI: 10.3390/s22249818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The Nd-doped LaMgAl11O19 single crystals were synthesized by the floating zone method, and the photoluminescence and scintillation properties were evaluated. Under X-ray irradiation, several sharp emission peaks due to the 4f-4f transitions of Nd3+ were observed at 900, 1060, and 1340 nm in the near-infrared range, and the decay curves show the typical decay time for Nd3+. The samples show good afterglow properties comparable with practical X-ray scintillators. The 1% and 3% Nd-doped LaMgAl11O19 samples show a good linearity in the dynamic range from 6-60,000 mGy/h.
Collapse
|
8
|
Investigation of the light output of 3D-printed plastic scintillators for dosimetry applications. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Houlihan OA, Workman G, Hounsell AR, Prise KM, Jain S. In vivo dosimetry in pelvic brachytherapy. Br J Radiol 2022; 95:20220046. [PMID: 35635803 PMCID: PMC10996950 DOI: 10.1259/bjr.20220046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/05/2022] Open
Abstract
ADVANCES IN KNOWLEDGE This paper describes the potential role for in vivo dosimetry in the reduction of uncertainties in pelvic brachytherapy, the pertinent factors for consideration in clinical practice, and the future potential for in vivo dosimetry in the personalisation of brachytherapy.
Collapse
Affiliation(s)
- Orla Anne Houlihan
- Department of Clinical Oncology, Northern Ireland Cancer
Centre, Belfast Health and Social Care Trust,
Belfast, UK
- Patrick G. Johnston Centre for Cancer Research, Queen's
University Belfast, Belfast,
UK
| | - Geraldine Workman
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast
Health and Social Care Trust,
Belfast, UK
| | - Alan R Hounsell
- Patrick G. Johnston Centre for Cancer Research, Queen's
University Belfast, Belfast,
UK
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast
Health and Social Care Trust,
Belfast, UK
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's
University Belfast, Belfast,
UK
| | - Suneil Jain
- Department of Clinical Oncology, Northern Ireland Cancer
Centre, Belfast Health and Social Care Trust,
Belfast, UK
- Patrick G. Johnston Centre for Cancer Research, Queen's
University Belfast, Belfast,
UK
| |
Collapse
|
10
|
Asgari S, Jafari H, Taheri Ghahrizjani R, Feghhi S, Bataee M. Evaluation of gamma response ability of single-mode and multi-mode optical fibers with different dopants as dosimeter sensors. Appl Radiat Isot 2022; 184:110206. [DOI: 10.1016/j.apradiso.2022.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
|
11
|
A competitive radioluminescence material - LiF:Mg,Cu,P for real-time dosimetry. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Xie T, He B, Shi Q, Qian J, Hao W, Li S, Lewis E, Sun W. Measurement of scattered rays from different materials using an inorganic scintillator based optical fiber sensor and its application in radiotherapy. Biomed Phys Eng Express 2022; 8. [PMID: 34991079 DOI: 10.1088/2057-1976/ac48e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/06/2022] [Indexed: 11/12/2022]
Abstract
Measurements using an Optical Fiber OFS including an inorganic scintillator placed on the surface of a phantom show that the particle energy distribution inside the phantom remains unchanged. The backscattered intensity measured using an Optical Fiber Sensor (OFS) exhibits a linear relationship with the total radiation dose delivered to the phantom, and this relationship shows that the OFS can be used for indirect dose measurement when located on the surface of the phantom i.e. that arising from the energetic backscattered electrons and photons. Such a device can therefore be used as a clinicalin-vivodosimeter, being located on the patient's body surface. In addition, the measurement results for the same OFS located inside and outside the radiation field of a compound water based phantom are analyzed. The differences in measurement of the fluorescence signal in response to various tissue materials representing bone or tumor tissue in the irradiation field are strongly related to the material's ability to block the scattered rays from the water phantom, as well as the scattered x-rays generated by the material located within the phantom.
Collapse
Affiliation(s)
- Tianci Xie
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Bo He
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Qieming Shi
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Jinqian Qian
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Wenjing Hao
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Song Li
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Elfed Lewis
- Optical Fiber Sensors Research Centre, University of Limerick, Castletroy, Limerick, Ireland
| | - Weimin Sun
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
13
|
Thermoluminescence glow curve study of beta irradiated germanium doped core fibre with different dopant concentrations. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Lebel-Cormier MA, Boilard T, Bernier M, Beaulieu L. Medical Range Radiation Dosimeter Based on Polymer-Embedded Fiber Bragg Gratings. SENSORS 2021; 21:s21238139. [PMID: 34884143 PMCID: PMC8662397 DOI: 10.3390/s21238139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022]
Abstract
Fiber Bragg gratings (FBGs) are valuable dosimeters for doses up to 100 kilograys (kGy), but have hardly been used for the low-dose range of a few grays (Gy) required in medical radiation dosimetry. We report that embedding a doped silica fiber FBG in a polymer material allows a minimum detectable dose of 0.3 Gy for γ-radiation. Comparing the detector response for different doped silica fibers with various core doping, we obtain an independent response, in opposition to what is reported for high-dose range. We hypothesized that the sensor detection is based on the radio-induced thermal expansion of the surrounding polymer. Hence, we used a simple physical model based on the thermal and mechanical properties of the surrounding polymer and obtained good accordance between measured and calculated values for different compositions and thicknesses. We report that over the 4 embedding polymers tested, polyether ether ketone and polypropylene have respectively the lowest (0.056 pm/Gy) and largest sensitivity (0.087 pm/Gy). Such FBG-based dosimeters have the potential to be distributed along the fiber to allow multipoint detection while having a sub-millimeter size that could prove very useful for low-dose applications, in particular for radiotherapy dosimetry.
Collapse
Affiliation(s)
- Marie-Anne Lebel-Cormier
- Département de Physique, de Génie Physique et D’optique, Université Laval, Québec, QC G1V 0A6, Canada; (M.-A.L.-C.); (T.B.); (M.B.)
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada
- CHU de Québec, Université Laval et CRCHU de Québec, Québec, QC G1R 2J6, Canada
| | - Tommy Boilard
- Département de Physique, de Génie Physique et D’optique, Université Laval, Québec, QC G1V 0A6, Canada; (M.-A.L.-C.); (T.B.); (M.B.)
- Centre D’optique, Photonique et Laser (COPL), Université Laval, Québec, QC G1V 0A6, Canada
| | - Martin Bernier
- Département de Physique, de Génie Physique et D’optique, Université Laval, Québec, QC G1V 0A6, Canada; (M.-A.L.-C.); (T.B.); (M.B.)
- Centre D’optique, Photonique et Laser (COPL), Université Laval, Québec, QC G1V 0A6, Canada
| | - Luc Beaulieu
- Département de Physique, de Génie Physique et D’optique, Université Laval, Québec, QC G1V 0A6, Canada; (M.-A.L.-C.); (T.B.); (M.B.)
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada
- CHU de Québec, Université Laval et CRCHU de Québec, Québec, QC G1R 2J6, Canada
- Correspondence:
| |
Collapse
|
15
|
Radioluminescence Response of Ce-, Cu-, and Gd-Doped Silica Glasses for Dosimetry of Pulsed Electron Beams. SENSORS 2021; 21:s21227523. [PMID: 34833599 PMCID: PMC8621039 DOI: 10.3390/s21227523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Radiation-induced emission of doped sol-gel silica glass samples was investigated under a pulsed 20-MeV electron beam. The studied samples were drawn rods doped with cerium, copper, or gadolinium ions, which were connected to multimode pure-silica core fibers to transport the induced luminescence from the irradiation area to a signal readout system. The luminescence pulses in the samples induced by the electron bunches were studied as a function of deposited dose per electron bunch. All the investigated samples were found to have a linear response in terms of luminescence as a function of electron bunch sizes between 10−5 Gy/bunch and 1.5×10−2 Gy/bunch. The presented results show that these types of doped silica rods can be used for monitoring a pulsed electron beam, as well as to evaluate the dose deposited by the individual electron bunches. The electron accelerator used in the experiment was a medical type used for radiation therapy treatments, and these silica rod samples show high potential for dosimetry in radiotherapy contexts.
Collapse
|
16
|
Investigation of the Incorporation of Cerium Ions in MCVD-Silica Glass Preforms for Remote Optical Fiber Radiation Dosimetry. SENSORS 2021; 21:s21103362. [PMID: 34066035 PMCID: PMC8150916 DOI: 10.3390/s21103362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
The incorporation of Ce3+ ions in silicate glasses is a crucial issue for luminescence-based sensing applications. In this article, we report on silica glass preforms doped with cerium ions fabricated by modified chemical vapor deposition (MCVD) under different atmospheres in order to favor the Ce3+ oxidation state. Structural analysis and photophysical investigations are performed on the obtained glass rods. The preform fabricated under reducing atmosphere presents the highest photoluminescence (PL) quantum yield (QY). This preform drawn into a 125 µm-optical fiber, with a Ce-doped core diameter of about 40 µm, is characterized to confirm the presence of Ce3+ ions inside this optical fiber core. The fiber is then tested in an all-fibered X-ray dosimeter configuration. We demonstrate that this fiber allows the remote monitoring of the X-ray dose rate (flux) through a radioluminescence (RL) signal generated around 460 nm. The response dependence of RL versus dose rate exhibits a linear behavior over five decades, at least from 330 µGy(SiO2)/s up to 22.6 Gy(SiO2)/s. These results attest the potentialities of the MCVD-made Ce-doped material, obtained under reducing atmosphere, for real-time remote ionizing radiation dosimetry.
Collapse
|
17
|
Souza L, Nolasco A, Barrera G, Campos W, Souza D, Nogueira M. Evaluation of MgB4O7:Ce, Li and Ce-doped 80MgB2O4–20MgB4O7 as alternative OSL materials for use in quality assurance of 6 MV photon beams. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Design and analysis of a fiber-optic sensing system for shape reconstruction of a minimally invasive surgical needle. Sci Rep 2021; 11:8609. [PMID: 33883650 PMCID: PMC8060330 DOI: 10.1038/s41598-021-88117-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
This paper presents the performance analysis of the system for real-time reconstruction of the shape of the rigid medical needle used for minimally invasive surgeries. The system is based on four optical fibers glued along the needle at 90 degrees from each other to measure distributed strain along the needle from four different sides. The distributed measurement is achieved by the interrogator which detects the light scattered from each section of the fiber connected to it and calculates the strain exposed to the fiber from the spectral shift of that backscattered light. This working principle has a limitation of discriminating only a single fiber because of the overlap of backscattering light from several fibers. In order to use four sensing fibers, the Scattering-Level Multiplexing (SLMux) methodology is applied. SLMux is based on fibers with different scattering levels: standard single-mode fibers (SMF) and MgO-nanoparticles doped fibers with a 35–40 dB higher scattering power. Doped fibers are used as sensing fibers and SMFs are used to spatially separate one sensing fiber from another by selecting appropriate lengths of SMFs. The system with four fibers allows obtaining two pairs of opposite fibers used to reconstruct the needle shape along two perpendicular axes. The performance analysis is conducted by moving the needle tip from 0 to 1 cm by 0.1 cm to four main directions (corresponding to the locations of fibers) and to four intermediate directions (between neighboring fibers). The system accuracy for small bending (0.1–0.5 cm) is 90\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}% and for large bending (0.6–1 cm) is approximately 92\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document}%.
Collapse
|
19
|
Guo Q, Li M, Yue K, Yan Y, Xie F, Zhang C, Mou C, Peng GD. Characterization of YAG:Ce phosphor dosimeter by the co-precipitation method for radiotherapy. APPLIED OPTICS 2021; 60:3044-3048. [PMID: 33983198 DOI: 10.1364/ao.419800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Yttrium aluminum garnet (YAG) doped with Ce was synthesized via the co-precipitation method with NH4HCO3 as the precipitant. The spectroscopic properties and the effects of the Ce doping concentration and sintering atmosphere on the crystal phase were investigated. The dosimeter of YAG:Ce phosphor material was prepared to study the radioluminescence (RL) characteristics of a clinical linear accelerator. A satisfying linear relationship between the radiation dose and RL signal was obtained, which provided a reference for the YAG:Ce phosphor material used in radiotherapy and real-time remote radiation detection.
Collapse
|
20
|
Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH. Development and characterization of an LED-based detector for dosimetry in diagnostic radiology. Phys Med Biol 2021; 66. [PMID: 33725685 DOI: 10.1088/1361-6560/abef44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/16/2021] [Indexed: 11/12/2022]
Abstract
Light-emitting diodes (LEDs) could be a potential dosimetry candidate because they are radiation hard, spectrally selective, direct band gap, and low-cost devices. Thus, an LED-based detector prototype was designed and characterized for dosimetry. A 20 × 20 cm2 array of surface mount device LED chips was sandwiched in photovoltaic mode between two intensifying screens to form a dosimetric system. The system was enclosed in a light-tight air cavity using black vinyl tape. The screens converted diagnostic X-ray beams into fluorescent blue light. LEDs, applied in detector mode, converted the fluorescent light into radiation-induced currents. A digital multimeter converted the analog currents into digital voltage signals. Prototype characterization was executed using (a) IEC 61267's RQR 7 (90 kVp) and RQR 8 (100 kVp) beam qualities, and (b) low (25 mAs) and high (80 mAs) beam quantities. A standard dosimeter probe was simultaneously exposed with the prototype to measure the prototype's absorbed dose. In all exposures, the X-ray beams were perpendicularly incident on both the dosimeter and prototype, at a fixed source to detector distance-60 cm. The LED array prototype's minimum detectable dose was 0.139 mGy, and the maximum dose implemented herein was ~ 13 mGy. The prototype was 99.18 % and 98.64 % linearly sensitive to absorbed dose and tube current-time product (mAs), respectively. The system was ± 4.69 % energy, ± 6.8 % dose, and ± 7.7 % dose rate dependent. Two prototype data sets were 89.93 % repeatable. We fabricated an ultrathin (5 mm), lightweight (130 g), and a relatively low-cost LED-based dosimetric prototype. The prototype executed a simple, efficient, and accurate real-time dosimetric mechanism. It could thus be an alternative to the current passive dosimetric systems.
Collapse
Affiliation(s)
- Edrine Damulira
- Medical Radiation, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Kota Bharu, 16150, MALAYSIA
| | | | - Ahmad Fairuz Omar
- School of Physics, Universiti Sains Malaysia, Minden, Pulau Pinang, MALAYSIA
| | - Nur Hartini Mohd Taib
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Kelantan, MALAYSIA
| |
Collapse
|
21
|
Xu P, Geng C, Shu D, Tang X, Liu H, Tian F, Ye H. Two-dimensional dose distribution measurement based on rotational optical fiber array: A Monte Carlo simulation study. RADIAT MEAS 2021. [DOI: 10.1016/j.radmeas.2021.106556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Iramina H, Nakamura M, Mizowaki T. Actual delivered dose calculation on intra-irradiation cone-beam computed tomography images: a phantom study. Phys Med Biol 2021; 66:015007. [PMID: 33238248 DOI: 10.1088/1361-6560/abcdeb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cone-beam computed tomography (CBCT) images acquired during volumetric modulated arc therapy (VMAT; ii-CBCT) can be used to calculate actual delivered doses (ADDs). However, such ii-CBCT images are degraded by scattered megavoltage x-rays (MV-scatters). We aimed to evaluate the dose calculation accuracy of the MV-scatter uncorrected or corrected ii-CBCT images acquired during VMAT deliveries. For MV-scatter correction on concurrent kilovoltage projections (P MVkV), projections consisting only of MV-scatters (P MVS) were acquired under the same MV beam parameters and gantry angles and subtracted from P MVkV (P MVScorr). In addition, the projections by kilovoltage beams were acquired for reference (P kV). The corresponding CBCT images were reconstructed using the Feldkamp-Davis-Kress algorithm (CBCTMVkV, CBCTMVScorr, and CBCTkV as reference). A multi-energy phantom with rods of various relative electron densities (REDs) was used to generate a CBCT-number-to-RED conversion table. First, CBCTkV was reconstructed. Then, the mean CBCT-numbers within each rod were extracted, and a reference table was generated. Concurrent kilovoltage imaging with various field sizes was also demonstrated, and CBCTMVkV and CBCTMVScorr were reconstructed. The extracted CBCT-numbers of each ii-CBCT image were converted into REDs using the reference table. Next, the absolute differences of RED between the ii-CBCT image and CBCTkV were calculated. Ten VMAT plans using a 10 MV flattening-filter-free beam were used for concurrent imaging of an anthropomorphic torso phantom. Moreover, an iterative reconstruction algorithm (IRA) was used for CBCTMVScorr. The plans were recalculated for the corresponding CBCTMVkV, CBCTMVScorr, CBCTMVScorr+IRA, and CBCTkV with the reference table. Finally, the doses were evaluated using 3D gamma analysis (1%/1 mm). The median difference ranges between CBCTMVkV/CBCTMVScorr and the reference values were -0.58 to -0.10/-0.03 to 0.00. The median gamma pass rates of the doses on CBCTMVkV, CBCTMVScorr, and CBCTMVScorr+IRA to the rate on CBCTkV were 70.4, 99.5, and 98.2%, respectively. CBCTMVScorr were comparable with CBCTkV for calculating the ADD from VMAT.
Collapse
Affiliation(s)
- Hiraku Iramina
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
23
|
Kandan V, Hassan M, Omar N, Shahar H, Mohamad F, Abdul Karim M, Abdul Sani S, Bradley D, Mohd Noor N. Advanced glow curve analysis of fabricated fibres for various sources of ionizing radiation. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Ding L, Wu Q, Wang Q, Li Y, Perks RM, Zhao L. Advances on inorganic scintillator-based optic fiber dosimeters. EJNMMI Phys 2020; 7:60. [PMID: 33025267 PMCID: PMC7538482 DOI: 10.1186/s40658-020-00327-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
This article presents a new perspective on the development of inorganic scintillator-based fiber dosimeters (IOSFDs) for medical radiotherapy dosimetry (RTD) focusing on real-time in vivo dosimetry. The scintillator-based optical fiber dosimeters (SFD) are compact, free of electromagnetic interference, radiation-resistant, and robust. They have shown great potential for real-time in vivo RTD. Compared with organic scintillators (OSs), inorganic scintillators (IOSs) have larger X-ray absorption and higher light output. Variable IOSs with maximum emission peaks in the red part of the spectrum offer convenient stem effect removal. This article outlines the main advantages and disadvantages of utilizing IOSs for SFD fabrication. IOSFDs with different configurations are presented, and their use for dosimetry in X-ray RT, brachytherapy (BT), proton therapy (PT), and boron neutron capture therapy (BNCT) is reviewed. Challenges including the percentage depth dose (PDD) deviation from the standard ion chamber (IC) measurement, the angular dependence, and the Cherenkov effect are discussed in detail; methods to overcome these problems are also presented.
Collapse
Affiliation(s)
- Liang Ding
- School of Engineering, Cardiff University, Cardiff, UK
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Qun Wang
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yamei Li
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | | | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
- Institute for Translational Medicine Research, Shanghai University, Shanghai, China
| |
Collapse
|
25
|
F. Nascimento L, Verellen D, Goossens J, Struelens L, Vanhavere F, Leblans P, Akselrod M. Two-dimensional real-time quality assurance dosimetry system using μ-Al 2O 3:C,Mg radioluminescence films. Phys Imaging Radiat Oncol 2020; 16:26-32. [PMID: 33458340 PMCID: PMC7807545 DOI: 10.1016/j.phro.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE There is a continual need for more accurate and effective dosimetric systems for quality assurance (QA) as radiotherapy evolves in complexity. The purpose of this project was to introduce a new system that minimally perturbs the main beam, while assessing its real time 2D dose-rate and field shapes. The system combined reusability, linear dose-rate response, and high spatial and time resolution in a single radiation detection technology that can be applied to surface dose estimation and QA. MATERIALS AND METHODS We developed a 2D prototype system consisting of a camera, focusing lenses and short pass filter, placed on the head of a linear accelerator, facing an Al2O3:C,Mg radioluminescent film. To check the appropriateness of multi-leaf collimator, stability/reproducibility QA tests were prepared using the treatment planning system: including the routinely used alternating leaves, chair and pyramid checks. RESULTS The Al2O3:C,Mg film did not perturb the dose vs. depth dose curves determined with a point detector (-0.5% difference). Our results showed a dose-rate linear film response (R2 = 0.999), from 5 to 600 MU/min. Measured output factors agreed with reference data within ~1%, indicating a potential for small field dosimetry. Both chair and pyramid measured profiles were comparable with those obtained with the treatment planning system within 1%. The alternating leaves test showed an average discrepancy in the valleys of 14%. CONCLUSIONS The prototype demonstrated promising results. It obviated the need for corrections regarding the relative position of the camera, confirming accurate dose-rate delivery and detection of radiation fields.
Collapse
Affiliation(s)
| | - Dirk Verellen
- Iridium Kankernetwerk, University of Antwerp, Antwerp, Belgium
| | - Jo Goossens
- Iridium Kankernetwerk, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Mark Akselrod
- Landauer, Stillwater Crystal Growth Division, Stillwater, USA
| |
Collapse
|
26
|
Cusumano D, Placidi L, D'Agostino E, Boldrini L, Menna S, Valentini V, De Spirito M, Azario L. Characterization of an inorganic scintillator for small-field dosimetry in MR-guided radiotherapy. J Appl Clin Med Phys 2020; 21:244-251. [PMID: 32841500 PMCID: PMC7497936 DOI: 10.1002/acm2.13012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Aim of this study is to dosimetrically characterize a new inorganic scintillator designed for magnetic resonance-guided radiotherapy (MRgRT) in the presence of 0.35 tesla magnetic field (B). METHODS The detector was characterized in terms of signal to noise ratio (SNR), reproducibility, dose linearity, angular response, and dependence by energy, field size, and B orientation using a 6 MV magnetic resonance (MR)-Linac and a water tank. Field size dependence was investigated by measuring the output factor (OF) at 1.5 cm. The results were compared with those measured using other detectors (ion chamber and synthetic diamond) and those calculated using a Monte Carlo (MC) algorithm. Energy dependence was investigated by acquiring a percentage depth dose (PDD) curve at two field sizes (3.32 × 3.32 and 9.96 × 9.96 cm2 ) and repeating the OF measurements at 5 and 10 cm depths. RESULTS The mean SNR was 116.3 ± 0.6. Detector repeatability was within 1%, angular dependence was <2% and its response variation based on the orientation with respect to the B lines was <1%. The detector has a temporal resolution of 10 Hz and it showed a linear response (R2 = 1) in the dose range investigated. All the OF values measured at 1.5 cm depth using the scintillator are in accordance within 1% with those measured with other detectors and are calculated using the MC algorithm. PDD values are in accordance with MC algorithm only for 3.32 × 3.32 cm2 field. Numerical models can be applied to compensate for energy dependence in case of larger fields. CONCLUSION The inorganic scintillator in the present form can represent a valuable detector for small-field dosimetry and periodic quality controls at MR-Linacs such as dose stability, OFs, and dose linearity. In particular, the detector can be effectively used for small-field dosimetry at 1.5 cm depth and for PDD measurements if the field dimension of 3.32 × 3.32 cm2 is not exceeded.
Collapse
Affiliation(s)
- Davide Cusumano
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | | | - Luca Boldrini
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | | | | | | | - Luigi Azario
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| |
Collapse
|
27
|
Woulfe P, Sullivan FJ, Kam W, O’Keeffe S. Optical fiber dosimeter for real-time in-vivo dose monitoring during LDR brachytherapy. BIOMEDICAL OPTICS EXPRESS 2020; 11:4027-4036. [PMID: 33014583 PMCID: PMC7510901 DOI: 10.1364/boe.385610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 05/28/2023]
Abstract
An optical fiber sensor for monitoring low dose radiation is presented. The sensor, based on radiation sensitive scintillation material, terbium doped gadolinium oxysulphide (Gd2O2S:Tb), is embedded in a cavity of 700µm diameter within a 1mm plastic optical fiber. The sensor is compared with the treatment planning system for repeatability, angular dependency, distance and accumulated radiation activity. The sensor demonstrates a high sensitivity of 152 photon counts/Gy with a temporal resolution of 0.1 seconds, with the largest repeatability error of 4.1%, to 0.361mCi of Iodine-125 the radioactive source most commonly used in LDR brachytherapy for treating prostate cancer.
Collapse
Affiliation(s)
- P. Woulfe
- Optical Fiber Sensors Research Centre, University of Limerick, Ireland
- Dept. of Radiotherapy Physics, Galway Clinic, Ireland
| | - F. J. Sullivan
- Prostate Cancer Institute, National University of Ireland Galway, Ireland
- Department of Radiotherapy, Galway Clinic, Ireland
| | - W. Kam
- Optical Fiber Sensors Research Centre, University of Limerick, Ireland
| | - S. O’Keeffe
- Optical Fiber Sensors Research Centre, University of Limerick, Ireland
| |
Collapse
|
28
|
Esposito F, Srivastava A, Campopiano S, Iadicicco A. Radiation Effects on Long Period Fiber Gratings: A Review. SENSORS 2020; 20:s20092729. [PMID: 32403275 PMCID: PMC7248895 DOI: 10.3390/s20092729] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 11/16/2022]
Abstract
Over the last years, fiber optic sensors have been increasingly applied for applications in environments with a high level of radiation as an alternative to electrical sensors, due to their: high immunity, high multiplexing and long-distance monitoring capability. In order to assess the feasibility of their use, investigations on optical materials and fiber optic sensors have been focusing on their response depending on radiation type, absorbed dose, dose rate, temperature and so on. In this context, this paper presents a comprehensive review of the results achieved over the last twenty years concerning the irradiation of in-fiber Long Period Gratings (LPGs). The topic is approached from the point of view of the optical engineers engaged in the design, development and testing of these devices, by focusing the attention on the fiber type, grating fabrication technique and properties, irradiation parameters and performed analysis. The aim is to provide a detailed review concerning the state of the art and to outline the future research trends.
Collapse
|
29
|
Alharbi M, Martyn M, O'Keeffe S, Therriault-Proulx F, Beaulieu L, Foley M. Benchmarking a novel inorganic scintillation detector for applications in radiation therapy. Phys Med 2019; 68:124-131. [DOI: 10.1016/j.ejmp.2019.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
|
30
|
Abstract
Many brachytherapy (BT) errors could be detected with real-time in vivo dosimetry technology. Inorganic scintillation detectors (ISDs) have demonstrated promising capabilities for BT, because some ISD materials can generate scintillation signals large enough that (a) the background signal emitted in the fiber-optic cable (stem signal) is insignificant, and (b) small detector volumes can be used to avoid volume averaging effects in steep dose gradients near BT sources. We investigated the characteristics of five ISD materials to identify one that is appropriate for BT. ISDs consisting of a 0.26 to 1.0 mm3 volume of ruby (Al2O3:Cr), a mixture of Y2O3:Eu and YVO4:Eu, ZnSe:O, or CsI:Tl coupled to a fiber-optic cable were irradiated in a water-equivalent phantom using a high-dose-rate 192Ir BT source. Detectors based on plastic scintillators BCF-12 and BCF-60 (0.8 mm3 volume) were used as a reference. Measurements demonstrated that the ruby, Y2O3:Eu+YVO4:Eu, ZnSe:O, and CsI:Tl ISDs emitted scintillation signals that were up to 19, 19, 250, and 880 times greater, respectively, than that of the BCF-12 detector. While the total signals of the plastic scintillation detectors were dominated by the stem signal for source positions 0.5 cm from the fiber-optic cable and >3.5 cm from the scintillator volume, the stem signal for the ruby and Y2O3:Eu+YVO4:Eu ISDs were <1% of the total signal for source positions <3.4 and <4.4 cm from the scintillator, respectively, and <0.7% and <0.5% for the ZnSe:O and CsI:Tl ISDs, respectively, for positions ⩽8.0 cm. In contrast to the other ISDs, the Y2O3:Eu+YVO4:Eu ISD exhibited unstable scintillation and significant afterglow. All ISDs exhibited significant energy dependence, i.e. their dose response to distance-dependent 192Ir energy spectra differed significantly from the absorbed dose in water. Provided that energy dependence is accounted for, ZnSe:O ISDs are promising for use in error detection and patient safety monitoring during BT.
Collapse
Affiliation(s)
- Gustavo Kertzscher
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | |
Collapse
|
31
|
Novel Gd 3+-doped silica-based optical fiber material for dosimetry in proton therapy. Sci Rep 2019; 9:16376. [PMID: 31704964 PMCID: PMC6841944 DOI: 10.1038/s41598-019-52608-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022] Open
Abstract
Optical fibers hold promise for accurate dosimetry in small field proton therapy due to their superior spatial resolution and the lack of significant Cerenkov contamination in proton beams. One known drawback for most scintillation detectors is signal quenching in areas of high linear energy transfer, as is the case in the Bragg peak region of a proton beam. In this study, we investigated the potential of innovative optical fiber bulk materials using the sol-gel technique for dosimetry in proton therapy. This type of glass is made of amorphous silica (SiO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{2}$$\end{document}2) and is doped with Gd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{3+}$$\end{document}3+ ions and possesses very interesting light emission properties with a luminescence band around 314 nm when exposed to protons. The fibers were manufactured at the University of Lille and tested at the TRIUMF Proton Therapy facility with 8.2–62.9 MeV protons and 2–6 nA of extracted beam current. Dose-rate dependence and quenching were measured and compared to other silica-based fibers also made by sol-gel techniques and doped with Ce\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{3+}$$\end{document}3+ and Cu\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{+}$$\end{document}+. The three fibers present strong luminescence in the UV (Gd) or visible (Cu,Ce) under irradiation, with the emission intensities related directly to the proton flux. In addition, the 0.5 mm diameter Gd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{3+}$$\end{document}3+-doped fiber shows superior resolution of the Bragg peak, indicating significantly reduced quenching in comparison to the Ce\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{3+}$$\end{document}3+ and Cu\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{+}$$\end{document}+ fibers with a Birks’ constant, k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{B}$$\end{document}B, of (0.0162 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm $$\end{document}± 0.0003) cm/MeV in comparison to (0.0333 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm $$\end{document}± 0.0006) cm/MeV and (0.0352 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm $$\end{document}± 0.0003) cm/MeV, respectively. To our knowledge, this is the first report of such an interesting k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}_{B}$$\end{document}B for a silica-based optical fiber material, showing clearly that this fiber presents lower quenching than common plastic scintillators. This result demonstrates the high potential of this inorganic fiber material for proton therapy dosimetry.
Collapse
|
32
|
Quero G, Vaiano P, Fienga F, Giaquinto M, Di Meo V, Gorine G, Casolaro P, Campajola L, Breglio G, Crescitelli A, Esposito E, Ricciardi A, Cutolo A, Ravotti F, Buontempo S, Consales M, Cusano A. A novel Lab-on-Fiber Radiation Dosimeter for Ultra-high Dose Monitoring. Sci Rep 2018; 8:17841. [PMID: 30552352 PMCID: PMC6294823 DOI: 10.1038/s41598-018-35581-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
In this work, we report on the first demonstration of Lab on Fiber (LOF) dosimeter for ionizing radiation monitoring at ultra-high doses. The new dosimeter consists in a metallo-dielectric resonator at sub-wavelength scale supporting localized surface plasmon resonances realized on the optical fiber (OF) tip. The resonating structure involves two gold gratings separated by a templated dielectric layer of poly(methyl methacrylate) (PMMA). Two LOF prototypes have been manufactured and exposed at the IRRAD Proton Facility at CERN in Geneva to 23 GeV protons for a total fluence of 0.67 × 1016 protons/cm2, corresponding to an absorbed dose of 1.8 MGy. Experimental data demonstrated the "radiation resistance" feature of the LOF devices and a clear dependence of the reflected spectrum versus the total dose, expressed by a cumulative blue-shift of ~1.4 nm of the resonance combined with a slight increase of 0.16 dBm in the reflected spectrum. The numerical analysis carried out to correlate the experimental results with the dimensional and physical properties of the resonator, expected to be tightly connected to the absorbed dose, suggests that the main phenomenon induced by exposure to proton beam and able to explain the measured spectral behavior is the reduction of the PMMA thickness, which is also consistent with past literature in the field. Preliminary results demonstrated the potentiality of the proposed platform as dosimeter at MGy dose levels for high energy physics experiments.
Collapse
Affiliation(s)
- Giuseppe Quero
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Patrizio Vaiano
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Francesco Fienga
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy.,European Organization for Nuclear Research (CERN), 1211, Genève, Switzerland
| | - Martino Giaquinto
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Valentina Di Meo
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, I-80131, Napoli, Italy
| | - Georgi Gorine
- European Organization for Nuclear Research (CERN), 1211, Genève, Switzerland.,Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Vaud, Switzerland
| | - Pierluigi Casolaro
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy
| | - Luigi Campajola
- University of Napoli Federico II, Department of Physics, I-80126, Napoli, Italy
| | - Giovanni Breglio
- University of Napoli Federico II, Department of Electronical Engineering, I-80125, Napoli, Italy
| | - Alessio Crescitelli
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, I-80131, Napoli, Italy
| | - Emanuela Esposito
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, I-80131, Napoli, Italy
| | - Armando Ricciardi
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Antonello Cutolo
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Federico Ravotti
- European Organization for Nuclear Research (CERN), 1211, Genève, Switzerland
| | - Salvatore Buontempo
- Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Napoli, I-80126, Napoli, Italy.,European Organization for Nuclear Research (CERN), 1211, Genève, Switzerland
| | - Marco Consales
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy.
| | - Andrea Cusano
- Optoelectronics Group - Department of Engineering, University of Sannio, I-82100, Benevento, Italy.
| |
Collapse
|
33
|
Abedini M, Tekieh T, Sasanpour P. Recording Neural Activity Based on Surface Plasmon Resonance by Optical Fibers-A Computational Analysis. Front Comput Neurosci 2018; 12:61. [PMID: 30123119 PMCID: PMC6085840 DOI: 10.3389/fncom.2018.00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023] Open
Abstract
An all optical, non-destructive method for monitoring neural activity has been proposed and its performance in detection has been analyzed computationally. The proposed method is based on excitation of Surface Plasmon Resonance (SPR) through the structure of optical fibers. The sensor structure consists of a multimode optical fiber where, the cladding of fiber has been removed and thin film of gold structure has been deposited on the surface. Impinging the laser light with appropriate wavelength inside the fiber and based on the total internal reflection, the evanescent wave will excite surface plasmons in the gold thin film. The absorption of light by surface plasmons in the gold structure is severely dependent on the dielectric properties at its vicinity. The electrical activity of neural cells (action potential) can modulate the dielectric properties at its vicinity and hence can modify the absorption of light inside the optical fiber. We have computationally analyzed the performance of the proposed sensor with different available geometries using Finite Element Method (FEM). In this regard, we have shown that the optical response of proposed sensor will track the action potential of the neuron at its vicinity. Based on different geometrical structure, the sensor has absorption in different regions of visible spectrum.
Collapse
Affiliation(s)
- Mitra Abedini
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran
| | - Tahereh Tekieh
- Complex System Group, Department of Physics, Sydney University, Sydney, NSW, Australia
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran.,School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
34
|
Pittet P, Jalade P, Gindraux L, Guiral P, Wang R, Galvan JM, Lu GN. DoRGaN: Development of Quality Assurance and Quality Control Systems for High Dose Rate Brachytherapy Based on GaN Dosimetry Probes. Ing Rech Biomed 2018. [DOI: 10.1016/j.irbm.2018.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Feasibility study on remote gamma spectroscopy system with fiber-optic radiation sensor. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5754-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Stancălie A, Esposito F, Ranjan R, Bleotu P, Campopiano S, Iadicicco A, Sporea D. Arc-induced Long Period Gratings in standard and speciality optical fibers under mixed neutron-gamma irradiation. Sci Rep 2017; 7:15845. [PMID: 29158568 PMCID: PMC5696517 DOI: 10.1038/s41598-017-16225-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/09/2017] [Indexed: 11/19/2022] Open
Abstract
In this paper, for the first time, the effects of mixed neutron and gamma flux on the spectral and sensing responses of Long Period Gratings (LPGs) are thoroughly analyzed. Six LPGs written by means of Electric Arc Discharge (EAD) technique in standard and speciality fibers, including radiation-hardened ones, were tested. The EAD technique was chosen because it enables the writing of gratings both in standard and not photosensitive fibers. The experiments have been carried out in a "TRIGA" pulsed nuclear reactor and the LPGs were irradiated by a gamma-ray dose-rate of 9 Gy/s and a mean 1.2∙1012 n/(cm2s) neutron flux. Real time monitoring was performed for a comparative investigation of LPGs' response, in terms of radiation sensitivity and wavelength shift. Experiments show that LPG in a radiation-resistant fiber exhibits resonant wavelength shift higher than LPG in standard fiber. The changes of temperature sensitivity due to radiation were experimentally established by comparison of pre- and post-radiation characterization, indicating that radiation effects induce a slight increase of the temperature sensitivity, except for the LPG in pure-silica fiber. Theoretical and numerical analysis was combined with experimental data for evaluation LPGs' parameters changes, such as refractive index and thermo-optic coefficient, after exposure to radiation.
Collapse
Affiliation(s)
- Andrei Stancălie
- National Institute for Laser, Plasma and Radiation Physics, Center for Advanced Laser Technologies, 409 Atomiştilor St., Măgurele, RO-077125, Romania
| | - Flavio Esposito
- Department of Engineering, University of Naples "Parthenope", Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Rajeev Ranjan
- Department of Engineering, University of Naples "Parthenope", Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Petrişor Bleotu
- "Politehnica" University, Bucharest, Splaiul Independenţei 303, 060042, Romania
| | - Stefania Campopiano
- Department of Engineering, University of Naples "Parthenope", Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Agostino Iadicicco
- Department of Engineering, University of Naples "Parthenope", Centro Direzionale Isola C4, 80143, Naples, Italy.
| | - Dan Sporea
- National Institute for Laser, Plasma and Radiation Physics, Center for Advanced Laser Technologies, 409 Atomiştilor St., Măgurele, RO-077125, Romania.
| |
Collapse
|
37
|
Stajanca P, Krebber K. Radiation-Induced Attenuation of Perfluorinated Polymer Optical Fibers for Radiation Monitoring. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1959. [PMID: 28841144 PMCID: PMC5621020 DOI: 10.3390/s17091959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 11/28/2022]
Abstract
Due to some of their unique properties, optical fiber dosimeters are attractive and extensively researched devices in several radiation-related areas. This work evaluates the performance and potential of commercial perfluorinated polymer optical fibers (PF-POFs) for radiation monitoring applications. Gamma radiation-induced attenuation (RIA) of two commercial PF-POFs is evaluated in the VIS spectral region. Influence of a dose rate and temperature on RIA measurement is investigated, along with defect stability and measurement repeatability. Co-extruded PF-POFs are identified as more suitable for radiation monitoring applications due to lower dose-rate dependence. With co-extruded PF-POF, RIA measurement holds potential for highly-sensitive radiation monitoring with good reproducibility. The results show that operation in the blue part of the spectrum provides most favorable performance in terms of the largest nominal radiation sensitivity, lower temperature, and dose-rate dependence as well as higher defect stability. We demonstrate for the first time to our knowledge, that PF-POFs can be used for distributed detection of radiation with doses down to tens of Grays. The off-the-shelf, user-friendly PF-POF could be of interest as a cheap, disposable sensor for various applications, especially of a more qualitative nature.
Collapse
Affiliation(s)
- Pavol Stajanca
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Katerina Krebber
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
38
|
Veronese I, Chiodini N, Cialdi S, d’Ippolito E, Fasoli M, Gallo S, La Torre S, Mones E, Vedda A, Loi G. Real-time dosimetry with Yb-doped silica optical fibres. Phys Med Biol 2017; 62:4218-4236. [DOI: 10.1088/1361-6560/aa642f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
39
|
Jackson SA, Prise KM. Nothing endures but change. Br J Radiol 2016; 90:20160904. [PMID: 27998186 DOI: 10.1259/bjr.20160904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Kevin M Prise
- 2 Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
40
|
Qin Z, Hu Y, Ma Y, Lin W, Luo X, Zhao W, Sun W, Zhang D, Chen Z, Wang B, Lewis E. Water-equivalent fiber radiation dosimeter with two scintillating materials. BIOMEDICAL OPTICS EXPRESS 2016; 7:4919-4927. [PMID: 28018715 PMCID: PMC5175541 DOI: 10.1364/boe.7.004919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/15/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties.
Collapse
Affiliation(s)
- Zhuang Qin
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Yaosheng Hu
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Yu Ma
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Wei Lin
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Xianping Luo
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Wenhui Zhao
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Weimin Sun
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
| | - Daxin Zhang
- Comprehensive Cancer Center, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ziyin Chen
- Comprehensive Cancer Center, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Boran Wang
- Harbin YIAOMI Technology Development Co., Ltd, Harbin 150001, China
| | - Elfed Lewis
- Optical Fibre Sensors Research Centre, University of Limerick, Castletroy, Limerick, Ireland
| |
Collapse
|
41
|
Kertzscher G, Beddar S. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy. Phys Med Biol 2016; 61:7744-7764. [PMID: 27740947 DOI: 10.1088/0031-9155/61/21/7744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from >5% to <1% of the total signal as long as the ISD incorporated the long-pass filter. The stem signal was suppressed with a band-pass filter and was <3% as long as the source distance from the scintillator was <7 cm. Some ruby crystals exhibited time-dependent luminescence properties that altered the ruby signal by >5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.
Collapse
Affiliation(s)
- Gustavo Kertzscher
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
42
|
Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015). Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1863-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
|