1
|
Cao Q, Mao Y, Qin L, Quan G, Yan F, Yang W. Improving image quality and lung nodule detection for low-dose chest CT by using generative adversarial network reconstruction. Br J Radiol 2022; 95:20210125. [PMID: 35994298 PMCID: PMC9815729 DOI: 10.1259/bjr.20210125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2022] [Accepted: 07/21/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To investigate the improvement of two denoising models with different learning targets (Dir and Res) of generative adversarial network (GAN) on image quality and lung nodule detectability in chest low-dose CT (LDCT). METHODS In training phase, by using LDCT images simulated from standard dose CT (SDCT) of 200 participants, Dir model was trained targeting SDCT images, while Res model targeting the residual between SDCT and LDCT images. In testing phase, a phantom and 95 chest LDCT, exclusively with training data, were included for evaluation of imaging quality and pulmonary nodules detectability. RESULTS For phantom images, structural similarity, peak signal-to-noise ratio of both Res and Dir models were higher than that of LDCT. Standard deviation of Res model was the lowest. For patient images, image noise and quality of both two models, were better than that of LDCT. Artifacts of Res model was less than that of LDCT. The diagnostic sensitivity of lung nodule by two readers for LDCT, Res and Dir model, were 72/77%, 79/83% and 72/79% respectively. CONCLUSION Two GAN denoising models, including Res and Dir trained with different targets, could effectively reduce image noise of chest LDCT. The image quality evaluation scoring and nodule detectability of Res denoising model was better than that of Dir denoising model and that of hybrid IR images. ADVANCES IN KNOWLEDGE The GAN-trained model, which learned the residual between SDCT and LDCT images, reduced image noise and increased the lung nodule detectability by radiologists on chest LDCT. This demonstrates the potential for clinical benefit.
Collapse
Affiliation(s)
- Qiqi Cao
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai Jiao Tong, China
| | - Yifu Mao
- Department of CT reconstruction physics algorithm, Shanghai United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Le Qin
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai Jiao Tong, China
| | - Guotao Quan
- Department of CT reconstruction physics algorithm, Shanghai United Imaging Healthcare Co., Ltd, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai Jiao Tong, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai Jiao Tong, China
| |
Collapse
|
2
|
Takao S, Nishie A, Asayama Y, Ishigami K, Ushijima Y, Kakihara D, Nakayama T, Fujita N, Morita K, Ishimatsu K, Yoshizumi T, Ikegami T, Kondo M, Honda H. Improved visualization of a fine intrahepatic biliary duct on drip infusion cholangiography-computed tomography: Impact of knowledge-based iterative model reconstruction. Hepatol Res 2020; 50:629-634. [PMID: 31863713 DOI: 10.1111/hepr.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/07/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
Abstract
AIM The purpose of this study was to investigate the visualization of fine biliary ducts with knowledge-based iterative model reconstruction (IMR) in low-dose drip infusion computed tomography (CT) cholangiography (DIC-CT) as compared with filtered back projection (FBP) and hybrid iterative reconstruction (iDose4 ). METHODS A total of 38 patients underwent DIC-CT for living donor liver transplantation. CT was performed approximately 20 min after the end of the infusion of meglumine iotroxate (100 mL). Images were reconstructed using FBP, iDose4 , and IMR, and 1-mm slice images at fixed window level and width were prepared for assessment. Two reviewers independently evaluated the quality of visualization of the fine biliary ducts of the caudate lobe (B1) using a 5-point scale. The visualization scores of three reconstructed images were compared using the Kruskal-Wallis test and Mann-Whitney U-test. RESULTS For reviewer 1, the visualization score of IMR was significantly higher than that of FBP (P = 0.012), and tended to be higher than that of iDose4 (P = 0.078). For reviewer 2, the visualization score of IMR was significantly higher than those of both FBP and iDose4 (P < 0.01). CONCLUSIONS IMR showed better visualization of B1 on DIC-CT than FBP or iDose4 . DIC-CT reconstructed with IMR may be useful to the anatomical grasp of biliary tracts in cases of hepatectomy.
Collapse
Affiliation(s)
- Seiichiro Takao
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Nishie
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiki Asayama
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kousei Ishigami
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Ushijima
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kakihara
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakayama
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Fujita
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichiro Morita
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Ishimatsu
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Ikegami
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Kondo
- Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hiroshi Honda
- Departments of Clinical Radiology, Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Yan C, Xu J, Liang C, Wei Q, Wu Y, Xiong W, Zheng H, Xu Y. Radiation Dose Reduction by Using CT with Iterative Model Reconstruction in Patients with Pulmonary Invasive Fungal Infection. Radiology 2018; 288:285-292. [DOI: 10.1148/radiol.2018172107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenggong Yan
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Jun Xu
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Chunyi Liang
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Qi Wei
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Yuankui Wu
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Wei Xiong
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Huan Zheng
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| | - Yikai Xu
- From the Department of Medical Imaging Center (C.Y., C.L., Y.W., W.X., H.Z., Y.X.) and Department of Hematology (J.X., Q.W.), Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou 510515, Guangdong, People’s Republic of China
| |
Collapse
|