1
|
Virarkar MK, Mileto A, Vulasala SSR, Ananthakrishnan L, Bhosale P. Dual-Energy Computed Tomography Applications in the Genitourinary Tract. Radiol Clin North Am 2023; 61:1051-1068. [PMID: 37758356 DOI: 10.1016/j.rcl.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
By virtue of material differentiation capabilities afforded through dedicated postprocessing algorithms, dual-energy CT (DECT) has been shown to provide benefit in the evaluation of various diseases. In this article, we review the diagnostic use of DECT in the assessment of genitourinary diseases, with emphasis on its role in renal stone characterization, incidental renal and adrenal lesion characterization, retroperitoneal trauma, reduction of radiation, and contrast dose and cost-effectiveness potential. We also discuss future perspectives of the DECT scanning mode, including the use of novel contrast injection strategies and photon-counting detector computed tomography.
Collapse
Affiliation(s)
- Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine, Clinical Center, C90, 2nd Floor, 655 West 8th Street, Jacksonville, FL 32209, USA
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, Mayo Building West, 2nd Floor, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sai Swarupa R Vulasala
- Department of radiology, University of Florida College of Medicine, Clinical Center, C90, 2nd Floor, 655 West 8th Street, Jacksonville, FL, 32209, USA.
| | - Lakshmi Ananthakrishnan
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Priya Bhosale
- Department of Diagnostic Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1479, Houston, TX 77030, USA
| |
Collapse
|
2
|
Ferro M, Musi G, Marchioni M, Maggi M, Veccia A, Del Giudice F, Barone B, Crocetto F, Lasorsa F, Antonelli A, Schips L, Autorino R, Busetto GM, Terracciano D, Lucarelli G, Tataru OS. Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects. Int J Mol Sci 2023; 24:4615. [PMID: 36902045 PMCID: PMC10003020 DOI: 10.3390/ijms24054615] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Renal cancer management is challenging from diagnosis to treatment and follow-up. In cases of small renal masses and cystic lesions the differential diagnosis of benign or malignant tissues has potential pitfalls when imaging or even renal biopsy is applied. The recent artificial intelligence, imaging techniques, and genomics advancements have the ability to help clinicians set the stratification risk, treatment selection, follow-up strategy, and prognosis of the disease. The combination of radiomics features and genomics data has achieved good results but is currently limited by the retrospective design and the small number of patients included in clinical trials. The road ahead for radiogenomics is open to new, well-designed prospective studies, with large cohorts of patients required to validate previously obtained results and enter clinical practice.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Alessandro Veccia
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Antonelli
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | | | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
3
|
Ferro M, Crocetto F, Barone B, del Giudice F, Maggi M, Lucarelli G, Busetto GM, Autorino R, Marchioni M, Cantiello F, Crocerossa F, Luzzago S, Piccinelli M, Mistretta FA, Tozzi M, Schips L, Falagario UG, Veccia A, Vartolomei MD, Musi G, de Cobelli O, Montanari E, Tătaru OS. Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review. Ther Adv Urol 2023; 15:17562872231164803. [PMID: 37113657 PMCID: PMC10126666 DOI: 10.1177/17562872231164803] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/04/2023] [Indexed: 04/29/2023] Open
Abstract
Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.
Collapse
Affiliation(s)
| | - Felice Crocetto
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Francesco del Giudice
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation
Unit, Department of Emergency and Organ Transplantation, University of Bari,
Bari, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ
Transplantation, University of Foggia, Foggia, Italy
| | | | - Michele Marchioni
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti,
Italy
| | - Francesco Cantiello
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Fabio Crocerossa
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Stefano Luzzago
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Mattia Piccinelli
- Cancer Prognostics and Health Outcomes Unit,
Division of Urology, University of Montréal Health Center, Montréal, QC,
Canada
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Tozzi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Luigi Schips
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
| | | | - Alessandro Veccia
- Urology Unit, Azienda Ospedaliera
Universitaria Integrata Verona, University of Verona, Verona, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology,
George Emil Palade University of Medicine, Pharmacy, Science and Technology
of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of
Vienna, Vienna, Austria
| | - Gennaro Musi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Montanari
- Department of Urology, Foundation IRCCS Ca’
Granda – Ospedale Maggiore Policlinico, Department of Clinical Sciences and
Community Health, University of Milan, Milan, Italy
| | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral
Studies (IOSUD), George Emil Palade University of Medicine, Pharmacy,
Science and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
4
|
Drljevic-Nielsen A, Mains JR, Thorup K, Andersen MB, Rasmussen F, Donskov F. Early reduction in spectral dual-layer detector CT parameters as favorable imaging biomarkers in patients with metastatic renal cell carcinoma. Eur Radiol 2022; 32:7323-7334. [PMID: 35511260 DOI: 10.1007/s00330-022-08793-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To associate the early change in DL-CT parameters and HU with survival outcomes and treatment response in patients with metastatic renal cell carcinoma (mRCC). METHODS DL-CT scans were performed at baseline and after 1 month of checkpoint immunotherapy or tyrosine kinase inhibitor therapy. Scans were reconstructed to conventional CT and DL-CT series, and used for assessment of HU, iodine concentration (IC), and the effective atomic number (Zeffective) in the combined RECISTv.1.1 target lesions. The relative changes, defined as ΔIC(combined), ΔZeffective(combined), and ΔHU(combined), were associated with progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). The reduction in the sum of diameters of target lesions ≥ 30% after 1 month was associated with OS, PFS, and ORR. RESULTS Overall, 115 and 104 mRCC patients were included at baseline and 1 month, respectively. Median IC(combined) decreased from 2.3 to 1.2 mg/ml (p < 0.001), Zeffective(combined) from 8.5 to 8.0 (p < 0.001), and HU(combined) from 86.0 to 64.00 HU (p < 0.001). After multivariate adjustments, the largest reductions in ΔIC(combined) (HR 0.47, 95% CI: 0.24-0.94, p = 0.033) and ΔZeffective(combined) (HR = 0.43, 95% CI: 0.21-0.87, p = 0.019) were associated with favorable OS; the largest reduction in ΔZeffective(combined) was associated with higher response (OR = 2.79, 95% CI: 1.12-6.94, p = 0.027). The largest reduction in ΔHU(combined) was solely associated with OS in univariate analysis (HR 0.45, 95% CI: 0.23-0.91). Reduction in SOD ≥ 30% at 1 month was not associated with outcomes (p > 0.075). CONCLUSIONS Early reductions at 1 month in ΔIC(combined) and ΔZeffective(combined) are associated with favorable outcomes in patients with mRCC. This information may reassure physicians and patients about treatment strategy. KEY POINTS • Early reductions following 1 month of therapy in spectral dual-layer detector CT-derived iodine concentration and the effective atomic number (Zeffective) are independent biomarkers for better overall survival in patients with metastatic renal cell carcinoma. • Early reduction after 1 month of therapy in the effective atomic number (Zeffective) is an independent imaging biomarker for better treatment response metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Aska Drljevic-Nielsen
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark.
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark.
| | - Jill R Mains
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Kennet Thorup
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Michael Brun Andersen
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
- Department of Radiology, Herlev/Gentofte, Denmark
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Frede Donskov
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
- Department of Oncology, University Hospital of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
5
|
Prognostic Utility of Parameters Derived From Pretreatment Dual-Layer Spectral-Detector CT in Patients With Metastatic Renal Cell Carcinoma. AJR Am J Roentgenol 2021; 218:867-876. [PMID: 34910540 DOI: 10.2214/ajr.21.26911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: New therapies have emerged for metastatic renal cell carcinoma (mRCC), though corresponding imaging markers are lacking. Dual-layer spectral-detector CT (DLCT) can quantify iodine concentration (IC) and effective atomic number (Zeffective), providing information beyond attenuation that may indicate mRCC prognosis. Objective: To assess the utility of the DLCT-derived parameters IC and Zeffective for predicting mRCC treatment response and survival. Methods: This prospective study (ClinicalTrials.gov identifier: NCT03616951) enrolled 120 participants with mRCC from January 2018 to January 2020 who underwent DLCT before treatment initiation, with reconstruction of IC and Zeffective maps. Final analysis included 115 participants (86 men, 29 women; median age, 65.1 years), incorporating 313 target lesions that were clinically selected using RECIST version 1.1 on arterial-phase acquisitions of the chest and abdomen. Semiautomatic volumetric segmentation was performed of the target lesions. Pixels from all lesions were combined to a single histogram per patient. Median IC and Zeffective of the combined histograms were recorded. Measurements above and below the cohort median values were considered high and low, respectively. Univariable associations were explored between IC and Zeffective, with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). Multivariable associations were explored between IC and ORR, PFS, and OS, adjusting for treatment (tyrosine kinase inhibitor versus checkpoint immunotherapy) and significant univariable predictors [including tumor histology and International mRCC Database Consortium (IMDC) risk factors]. Results: At baseline, median IC was 2.26 mg/ml, and median Zeffective was 8.49. In univariable analysis, high IC and high Zeffective were associated with better ORR (both OR=4.35, p=.001), better PFS (both HR=0.51, p=.004), and better OS (both HR=0.38, p<.001). In multivariable models, high IC independently predicted better ORR (OR=4.35, p=.001), better PFS (HR=0.51, p=.004), and better OS (HR=0.37, p<.001); neutrophilia independently predicted worse PFS (HR=2.10, p=.004) and worse OS (HR=2.28, p=.003). The estimated c-index for predicting OS using IMDC risk factors was 0.650, versus 0.687 when incorporating high attention and 0.692 when incorporating high IC or high Zeffective. Conclusions: High IC and high Zeffective are significant predictors of better treatment response and survival in mRCC. Clinical impact: Baseline DLCT parameters may improve current mRCC prognostic models.
Collapse
|
6
|
Drljevic-Nielsen A, Rasmussen F, Mains JR, Thorup K, Donskov F. Blood Volume as a new functional image-based biomarker of progression in metastatic renal cell carcinoma. Sci Rep 2021; 11:19659. [PMID: 34608226 PMCID: PMC8490379 DOI: 10.1038/s41598-021-99122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
RECIST v1.1 has limitations in evaluating progression. We assessed Dynamic Constrast Enhanced Computed Tomography (DCE-CT) identified Blood Volume (BV) for the evaluation of progressive disease (PD) in patients with metastatic renal cell carcinoma (mRCC). BV was quantified prospectively at baseline, after one month, then every three months until PD. Relative changes (ΔBV) were assessed at each timepoint compared with baseline values. The primary endpoint was Time to PD (TTP), the secondary endpoint was Time to the scan prior to PD (PDminus1). Cox proportional hazard models adjusted ΔBV for treatments and International mRCC Database Consortium factors. A total of 62 patients had analyzable scans at the PD timepoint. Median BV was 23.92 mL × 100 g-1 (range 4.40-399.04) at PD and 26.39 mL × 100 g-1 (range 8.70-77.44) at PDminus1. In the final multivariate analysis higher ΔBV was statistically significantly associated with shorter Time to PD, HR 1.11 (95% CI 1.07-1.15, P < 0.001). Also assessed at PDminus1, higher ΔBV was significantly associated with shorter time to PD, HR 1.14 (95% CI 1.01-1.28, P = 0.031). In conclusion, DCE-CT identified BV is a new image-based biomarker of therapy progression in patients with mRCC.
Collapse
Affiliation(s)
- Aska Drljevic-Nielsen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Jill Rachel Mains
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Kennet Thorup
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Frede Donskov
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.
| |
Collapse
|
7
|
Drljevic-Nielsen A, Rasmussen F, Nielsen PS, Stilling C, Thorup K, Mains JR, Madsen HHT, Donskov F. Prognostic value of DCE-CT-derived blood volume and flow compared to core biopsy microvessel density in patients with metastatic renal cell carcinoma. Eur Radiol Exp 2021; 5:32. [PMID: 34327591 PMCID: PMC8322257 DOI: 10.1186/s41747-021-00232-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Angiogenesis is prominent in metastatic renal cell carcinoma (mRCC). We compared two angiogenesis assessment methods: dynamic contrast-enhanced computed tomography (DCE-CT)-derived blood volume (BV) and blood flow (BF) and core biopsy microvessel density (MVD). METHODS As planned in DaRenCa Study-1 study, DCE-CT and core biopsy were performed from the same tumour/metastasis at baseline. MVD was assessed by CD34 immunostaining in tumour (CD34-indexT) or tumour including necrosis (CD34-indexTN). BV and BF were assessed using the DCE-CT software. Overall survival (OS) and progression-free survival (PFS) were assessed by Kaplan-Meier analysis. Spearman coefficient (rho) tested the correlation between MVD and BV, BF, or CT density (HU). RESULTS At baseline, 25 patients had analysable scans and tissue. BVdeconv, BVPatlak, and BFdeconv > median were associated with favourable OS (43.2 versus 14.6 months, p = 0.002; 31.6 versus 20.2 months, p = 0.015; and 31.6 versus 24.5 months, p = 0.019). CD34-indexT and CD34-indexTN did not correlate with age (p = 0.543), sex (p = 0.225), treatment (p = 0.848), International mRCC Database Consortium category (p = 0.152), synchronous versus metachronous metastatic disease (p = 0.378), or tumour volume (p = 0.848). CD34-indexT or CD34-indexTN > median was not associated with PFS (p = 0.441 and p = 0.854, respectively) or OS (p = 0.987 and p =0.528, respectively). CD34-indexT or CD34-indexTN was not correlated with BV, BF, or HU (rho 0.20-0.26). CONCLUSIONS Differently from MVD, DCE-CT-derived BV and BF had prognostic impact and may better reflect angiogenesis in mRCC. TRIAL REGISTRATION NCT01274273.
Collapse
Affiliation(s)
- Aska Drljevic-Nielsen
- Department of Oncology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark. .,Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark.
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Patricia Switten Nielsen
- Department of Pathology, Aarhus University Hospital (AUH), Palle Juul-Jensen Blvd. 99, 8200, Aarhus N, Denmark
| | - Christina Stilling
- Department of Pathology, Aarhus University Hospital (AUH), Palle Juul-Jensen Blvd. 99, 8200, Aarhus N, Denmark
| | - Kennet Thorup
- Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Jill Rachel Mains
- Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Hans Henrik Torp Madsen
- Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Frede Donskov
- Department of Oncology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| |
Collapse
|
8
|
Drljevic-Nielsen A, Rasmussen F, Mains JR, Thorup K, Donskov F. Baseline blood volume identified by dynamic contrast-enhanced computed tomography as a new independent prognostic factor in metastatic renal cell carcinoma. Transl Oncol 2020; 13:100829. [PMID: 32653813 PMCID: PMC7350156 DOI: 10.1016/j.tranon.2020.100829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022] Open
Abstract
Background Preliminary data showed prognostic impact of contrast-enhanced computed tomography (DCE-CT) identified Blood Volume (BV) in patients with metastatic renal cell carcinoma (mRCC). BV as an independent prognostic factor remains to be assessed. Materials and Methods DCE-CT identified BV was prospectively quantified in patients with mRCC receiving first line therapies, adjusted for International mRCC Database Consortium (IMDC) individual features and treatments, and associated with overall survival (OS), progression-free survival (PFS) and objective response (ORR), using Cox and logistic regression, respectively. Results 105 patients with mRCC were included. Median baseline BV was 32.87 mL × 100 g−1 (range 9.52 to 92.87 mL × 100 g−1). BV above median was associated with IMDC favorable risk category (P = 0.004), metastasis free interval ≥ 1 year (P = 0.007), male gender (P = 0.032), normal hemoglobin (P = 0.040) and normal neutrophils (P = 0.007), whereas low BV was associated with poor risk IMDC features (P < 0.05). Patients with high vs. low baseline BV had longer PFS (12.5 vs. 5.6 months, P = 0.015) and longer OS (42.2 vs. 22.4 months, P = 0.001), respectively. In multivariate analysis high baseline BV remained independent favorable for OS (HR 0.49, 95% CI 0.30–0.78, P = 0.003) and PFS (HR 0.64; 95% CI 0.42–0.97, P = 0.036). BV as a continuous variable was also associated with OS in the multivariate analysis (HR 0.98, 95% CI 0.96–1.00, P = 0.017). The estimated concordance index (c-index) was 0.688 using IMDC score and 0.701 when BV was added. Conclusions DCE-CT identified Blood Volume is a new, independent prognostic factor in mRCC, which may improve the prognostic accuracy of IMDC.
Collapse
Affiliation(s)
- Aska Drljevic-Nielsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jill R Mains
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kennet Thorup
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Frede Donskov
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
9
|
Fan AC, Sundaram V, Kino A, Schmiedeskamp H, Metzner TJ, Kamaya A. Early Changes in CT Perfusion Parameters: Primary Renal Carcinoma Versus Metastases After Treatment with Targeted Therapy. Cancers (Basel) 2019; 11:cancers11050608. [PMID: 31052289 PMCID: PMC6562747 DOI: 10.3390/cancers11050608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022] Open
Abstract
Computed tomography (CT) perfusion is a novel imaging method to determine tumor perfusion using a low-dose CT technique to measure iodine concentration at multiple time points. We determined if early changes in perfusion differ between primary renal tumors and metastatic tumor sites in patients with renal cell carcinoma (RCC) receiving targeted anti-angiogenic therapy. A total of 10 patients with advanced RCC underwent a CT perfusion scan at treatment baseline and at one week after initiating treatment. Perfusion measurements included blood volume (BV), blood flow (BF), and flow extraction product (FEP) in a total of 13 lesions (six primary RCC tumors, seven RCC metastases). Changes between baseline and week 1 were compared between tumor locations: primary kidney tumors vs metastases. Metastatic lesions had a greater decrease in BF (average BF difference ± standard deviation (SD): −75.0 mL/100 mL/min ± 81) compared to primary kidney masses (−25.5 mL/100 mL/min ± 35). Metastatic tumors had a wider variation of change in BF, BV and FEP measures compared to primary renal tumors. Tumor diameters showed little change after one week, but early perfusion changes are evident, especially in metastatic lesions compared to primary lesions. Future studies are needed to determine if these changes can predict which patients are benefiting from targeted therapy.
Collapse
Affiliation(s)
- Alice C Fan
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vandana Sundaram
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Aya Kino
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Thomas J Metzner
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aya Kamaya
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|