1
|
Wiegreffe S, Sarria GR, Layer JP, Dejonckheere E, Nour Y, Schmeel FC, Anton Giordano F, Schmeel LC, Popp I, Grosu AL, Gkika E, Stefaan Dejonckheere C. Incidence of hippocampal and perihippocampal brain metastases and impact on hippocampal-avoiding radiotherapy: A systematic review and meta-analysis. Radiother Oncol 2024; 197:110331. [PMID: 38772476 DOI: 10.1016/j.radonc.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND AND PURPOSE In patients requiring prophylactic cranial irradiation (PCI) or whole-brain radiotherapy (WBRT) for brain metastases (BMs), hippocampal avoidance (HA) has been shown to preserve neurocognitive function and quality of life. Here, we aim to estimate the incidence of hippocampal and perihippocampal BMs and the subsequent risk of local undertreatment in patients undergoing hippocampal sparing radiotherapy. MATERIALS AND METHODS MEDLINE, Embase, and Scopus were searched with the terms "Hippocampus", "Brain Neoplasms", and related terms. Trials reporting on the incidence of hippocampal and/or perihippocampal BMs or hippocampal failure rate after PCI or WBRT were included. RESULTS Forty records were included, encompassing a total of 5,374 patients with over 32,570 BMs. Most trials employed a 5 mm margin to define the HA zone. In trials reporting on BM incidence, 4.4 % (range 0 - 27 %) and 9.2 % (3 - 41 %) of patients had hippocampal and perihippocampal BMs, respectively. The most common risk factor for hippocampal BMs was the total number of BMs. The reported failure rate within the HA zone after HA-PCI or HA-WBRT was 4.5 % (0 - 13 %), salvageable with radiosurgery in most cases. SCLC histology was not associated with a higher risk of hippocampal failure (OR = 2.49; p = 0.23). In trials comparing with a conventional (non-HA) PCI or WBRT group, HA did not increase the hippocampal failure rate (OR = 1.90; p = 0.17). CONCLUSION The overall incidence of hippocampal and perihippocampal BMs is considerably low, with a subsequent low risk of local undertreatment following HA-PCI or HA-WBRT. In patients without involvement, the hippocampus should be spared to preserve neurocognitive function and quality of life.
Collapse
Affiliation(s)
- Shari Wiegreffe
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Julian Philipp Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany; Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Egon Dejonckheere
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium; Department of Medical and Clinical Psychology, Tilburg School of Social and Behavioural Sciences, 5037 Tilburg, the Netherlands
| | - Younèss Nour
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Frank Anton Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, 68167 Mannheim, Germany; DKFZ-Hector Cancer Institute, University Medical Center Mannheim, 68167 Mannheim, Germany
| | | | - Ilinca Popp
- Department of Radiation Oncology, Medical Faculty, University Freiburg, 79106 Freiburg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Faculty, University Freiburg, 79106 Freiburg, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | |
Collapse
|
2
|
Simó M, Rodríguez-Fornells A, Navarro V, Navarro-Martín A, Nadal E, Bruna J. Mitigating radiation-induced cognitive toxicity in brain metastases: More questions than answers. Neurooncol Adv 2024; 6:vdae137. [PMID: 39247496 PMCID: PMC11379916 DOI: 10.1093/noajnl/vdae137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The emergence of advanced systemic therapies added to the use of cranial radiation techniques has significantly improved outcomes for cancer patients with multiple brain metastases (BM), leading to a considerable increase in long-term survivors. In this context, the rise of radiation-induced cognitive toxicity (RICT) has become increasingly relevant. In this critical narrative review, we address the controversies arising from clinical trials aimed at mitigating RICT. We thoroughly examine interventions such as memantine, hippocampal avoidance irradiation during BM treatment or in a prophylactic setting, and the assessment of cognitive safety in stereotactic radiosurgery (SRS). Our focus extends to recent neuroscience research findings, emphasizing the importance of preserving not only the hippocampal cortex but also other cortical regions involved in neural dynamic networks and their intricate role in encoding new memories. Despite treatment advancements, effectively managing patients with multiple BM and determining the optimal timing and integration of radiation and systemic treatments remain areas requiring further elucidation. Future trials are required to delineate optimal indications and ensure SRS safety. Additionally, the impact of new systemic therapies and the potential effects of delaying irradiation on cognitive functioning also need to be addressed. Inclusive trial designs, encompassing patients with multiple BM and accounting for diverse treatment scenarios, are essential for advancing effective strategies in managing RICT and the treatment of BM patients.
Collapse
Affiliation(s)
- Marta Simó
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL); Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, Barcelona, Spain
- Neuro-Oncology Unit, Bellvitge University Hospital - Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL) Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL); Department of Cognition, Development and Educational Science, Campus Bellvitge, University of Barcelona, Barcelona, Spain
| | - Valentín Navarro
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Arturo Navarro-Martín
- Department of Radiation Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Ernest Nadal
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital - Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL) Barcelona, Spain
| |
Collapse
|
3
|
Leskinen S, Shah HA, D' Amico RS, Wernicke AG. Partial hippocampal avoidance whole brain radiotherapy in a patient with metastatic infiltration of the left hippocampus. BMJ Case Rep 2023; 16:e257988. [PMID: 37996143 PMCID: PMC10668158 DOI: 10.1136/bcr-2023-257988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Affiliation(s)
- Sandra Leskinen
- SUNY Downstate Health Sciences University College of Medicine, New York, New York, USA
| | - Harshal A Shah
- Department of Neurosurgery, Lenox Hill Hospital and Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Randy S D' Amico
- Department of Neurosurgery, Lenox Hill Hospital and Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - A Gabriella Wernicke
- Department of Radiation Medicine, Lenox Hill Hospital and Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| |
Collapse
|
4
|
Xu F, Ou D, Qi W, Wang S, Han Y, Cai G, Cao L, Xu C, Chen JY. Impact of multidisciplinary team on the pattern of care for brain metastasis from breast cancer. Front Oncol 2023; 13:1160802. [PMID: 37664027 PMCID: PMC10471195 DOI: 10.3389/fonc.2023.1160802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose The aim of this study was to explore how a multidisciplinary team (MDT) affects patterns of local or systematic treatment. Methods We retrospectively reviewed the data of consecutive patients in the breast cancer with brain metastases (BCBM) database at our institution from January 2011 to April 2021. The patients were divided into an MDT group and a non-MDT group. Results A total of 208 patients were analyzed, including 104 each in the MDT and non-MDT groups. After MDT, 56 patients (53.8%) were found to have intracranial "diagnosis upgrade". In the matched population, patients in the MDT group recorded a higher proportion of meningeal metastases (14.4% vs. 4.8%, p = 0.02), symptomatic tumor progression (11.5% vs. 5.8%, p = 0.04), and an increased number of occurrences of brain metastases (BM) progression (p < 0.05). Attending MDT was an independent factor associated with ≥2 courses of intracranial radiotherapy (RT) [odds ratio (OR) 5.4, 95% confidence interval (CI): 2.7-10.9, p < 0.001], novel RT technique use (7.0, 95% CI 3.5-14.0, p < 0.001), and prospective clinical research (OR 5.7, 95% CI 2.4-13.4, p < 0.001). Conclusion Patients with complex conditions are often referred for MDT discussions. An MDT may improve the qualities of intracranial RT and systemic therapy, resulting in benefits of overall survival for BC patients after BM. This encourages the idea that treatment recommendations for patients with BMBC should be discussed within an MDT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jia-Yi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Leskinen S, Shah HA, Yaffe B, Schneider SJ, Ben-Shalom N, Boockvar JA, D'Amico RS, Wernicke AG. Hippocampal avoidance in whole brain radiotherapy and prophylactic cranial irradiation: a systematic review and meta-analysis. J Neurooncol 2023; 163:515-527. [PMID: 37395975 DOI: 10.1007/s11060-023-04384-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE We systematically reviewed the current landscape of hippocampal-avoidance radiotherapy, focusing specifically on rates of hippocampal tumor recurrence and changes in neurocognitive function. METHODS PubMed was queried for studies involving hippocampal-avoidance radiation therapy and results were screened using PRISMA guidelines. Results were analyzed for median overall survival, progression-free survival, hippocampal relapse rates, and neurocognitive function testing. RESULTS Of 3709 search results, 19 articles were included and a total of 1611 patients analyzed. Of these studies, 7 were randomized controlled trials, 4 prospective cohort studies, and 8 retrospective cohort studies. All studies evaluated hippocampal-avoidance whole brain radiation treatment (WBRT) and/or prophylactic cranial irradiation (PCI) in patients with brain metastases. Hippocampal relapse rates were low (overall effect size = 0.04; 95% confidence interval [0.03, 0.05]) and there was no significant difference in risk of relapse between the five studies that compared HA-WBRT/HA-PCI and WBRT/PCI groups (risk difference = 0.01; 95% confidence interval [- 0.02, 0.03]; p = 0.63). 11 out of 19 studies included neurocognitive function testing. Significant differences were reported in overall cognitive function and memory and verbal learning 3-24 months post-RT. Differences in executive function were reported by one study, Brown et al., at 4 months. No studies reported differences in verbal fluency, visual learning, concentration, processing speed, and psychomotor speed at any timepoint. CONCLUSION Current studies in HA-WBRT/HA-PCI showed low hippocampal relapse or metastasis rates. Significant differences in neurocognitive testing were most prominent in overall cognitive function, memory, and verbal learning. Studies were hampered by loss to follow-up.
Collapse
Affiliation(s)
- Sandra Leskinen
- State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Harshal A Shah
- Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Beril Yaffe
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Shonna J Schneider
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Netanel Ben-Shalom
- Department of Neurological Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - John A Boockvar
- Department of Neurological Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - A Gabriella Wernicke
- Department of Radiation Oncology, Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA.
| |
Collapse
|
6
|
Jusino S, Fadul CE, Dillon P. Systematic review of the management of brain metastases from hormone receptor positive breast cancer. J Neurooncol 2023; 162:45-57. [PMID: 36884200 PMCID: PMC10049940 DOI: 10.1007/s11060-023-04276-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
INTRODUCTION Brain metastases are a common cause of morbidity and mortality in patients with breast cancer. Local central nervous system (CNS) directed therapies are usually the first line treatment for breast cancer brain metastases (BCBM), but those must be followed by systemic therapies to achieve long-term benefit. Systemic therapy for hormone receptor (HR+) breast cancer has evolved in the last 10 years, but their role when brain metastases occur is uncertain. METHODS We performed a systematic review of the literature focused on management of HR+ BCBM by searching Medline/PubMed, EBSCO, and Cochrane databases. The PRISMA guidelines were used for systematic review. RESULTS Out of 807 articles identified, 98 fulfilled the inclusion criteria in their relevance to the management of HR+ BCBM. CONCLUSIONS Similar to brain metastases from other neoplasms, local CNS directed therapies are the first line treatment for HR+ BCBM. Although the quality of evidence is low, after local therapies, our review supports the combination of targeted and endocrine therapies for both CNS and systemic management. Upon exhaustion of targeted/endocrine therapies, case series and retrospective reports suggest that certain chemotherapy agents are active against HR+ BCBM. Early phase clinical trials for HR+ BCBM are ongoing, but there is a need for prospective randomized trials to guide management and improve patients' outcome.
Collapse
Affiliation(s)
| | - Camilo E Fadul
- Division of Neuro-Oncology, Department of Neurology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Patrick Dillon
- Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
7
|
Shi W, Wang Y, Xia W, Liu B, Ni M, Shen J, Bai Y, Weng G, Liu W, Yuan S, Gao X. Brain metastases from small cell lung cancer and non-small cell lung cancer: comparison of spatial distribution and identification of metastatic risk regions. J Neurooncol 2023; 161:97-105. [PMID: 36520380 DOI: 10.1007/s11060-022-04211-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE This study aims to investigate the spatial distribution difference of brain metastases (BM) between small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) and to identify the metastatic risk in brain regions. METHODS T1-enhanced MR images of 2997 BM from 728 eligible patients with SCLC and NSCLC were retrospectively reviewed by three independent medical institutions in China. All images were spatially normalised according to the Montreal Neurological Institute space, following BM delineation confirmed by three senior radiologists. The brain regions in the normalised images were identified based on the merged Anatomical Automatic Labeling atlas, and all BM locations were mapped onto these brain regions. Two-tailed proportional hypothesis testing was used to compare the BM observed rate with the expected rate based on the region's volume, and metastatic risk regions were finally identified. RESULTS In SCLC and NSCLC, BM was mainly present in the deep white matter (22.51% and 17.96%, respectively), cerebellar hemisphere (9.84% and 7.46%, respectively) and middle frontal gyrus (6.72% and 7.97%, respectively). The cerebellar hemisphere was a high-risk brain region in the SCLC. The precentral gyrus, middle frontal gyrus, paracentral lobule and cerebellar hemisphere were high-risk BM in the NSCLC. The inferior frontal gyrus and the temporal pole were a low-risk brain region in the SCLC and NSCLC, respectively. CONCLUSION The spatial BM distribution between SCLC and NSCLC is similar. Several critical brain regions had relatively low BM frequency in both SCLC and NSCLC, where a low-dose radiation distribution can be delivered due to adequate preoperative evaluations.
Collapse
Affiliation(s)
- Wei Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, Jiangsu, China.,Jinan Guoke Medical Engineering and Technology Development Co., Ltd., Pharmaceutical Valley New Drug Creation Platform, No. 3 Building, Jinan New District, Jinan, 250101, Shandong, China
| | - Yong Wang
- Shandong Cancer Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Xia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, Jiangsu, China.,Jinan Guoke Medical Engineering and Technology Development Co., Ltd., Pharmaceutical Valley New Drug Creation Platform, No. 3 Building, Jinan New District, Jinan, 250101, Shandong, China
| | - Baoyan Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Ni
- Shandong Cancer Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingyi Shen
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yujun Bai
- Shandong Cancer Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | | | - Wenju Liu
- Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Shuanghu Yuan
- Shandong Cancer Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. .,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xin Gao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, Jiangsu, China. .,Jinan Guoke Medical Engineering and Technology Development Co., Ltd., Pharmaceutical Valley New Drug Creation Platform, No. 3 Building, Jinan New District, Jinan, 250101, Shandong, China.
| |
Collapse
|
8
|
Konopka-Filippow M, Hempel D, Sierko E. Actual, Personalized Approaches to Preserve Cognitive Functions in Brain Metastases Breast Cancer Patients. Cancers (Basel) 2022; 14:3119. [PMID: 35804894 PMCID: PMC9265102 DOI: 10.3390/cancers14133119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer (BC) is the most often diagnosed cancer among women worldwide and second most common cause of brain metastases (BMs) among solid malignancies being responsible for 10-16% of all BMs in oncological patients. Moreover, BMs are associated with worse prognosis than systemic metastases. The quality of life (QoL) among brain metastases breast cancer (BMBC) patients is significantly influenced by cognitive functions. Cancer-related cognitive deficits and the underlying neural deficits in BMBC patients can be caused via BMs per se, chemotherapy administration, brain irradiation, postmenopausal status, or comorbidities. Brain RT often leads to cognitive function impairment by damage of neural progenitor cells of the hippocampus and hence decreased QoL. Sparing the hippocampal region of the brain during RT provides protective covering of the centrally located hippocampi according to the patient's clinical requirements. This article discusses the personalized strategies for treatment options to protect cognitive functions in BMBC patients, with special emphasis on the innovative techniques of radiation therapy.
Collapse
Affiliation(s)
- Monika Konopka-Filippow
- Department of Oncology, Medical University of Bialystok, 15-274 Bialystok, Poland; (M.K.-F.); (D.H.)
- Department of Radiotherapy I, Maria Sklodowska-Curie Bialystok Oncology Centre, 15-027 Bialystok, Poland
| | - Dominika Hempel
- Department of Oncology, Medical University of Bialystok, 15-274 Bialystok, Poland; (M.K.-F.); (D.H.)
- Department of Radiotherapy I, Maria Sklodowska-Curie Bialystok Oncology Centre, 15-027 Bialystok, Poland
| | - Ewa Sierko
- Department of Oncology, Medical University of Bialystok, 15-274 Bialystok, Poland; (M.K.-F.); (D.H.)
- Department of Radiotherapy I, Maria Sklodowska-Curie Bialystok Oncology Centre, 15-027 Bialystok, Poland
| |
Collapse
|
9
|
Seneviratne D, Advani P, Trifiletti DM, Chumsri S, Beltran CJ, Bush AF, Vallow LA. Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer. Cancers (Basel) 2022; 14:cancers14123009. [PMID: 35740674 PMCID: PMC9221373 DOI: 10.3390/cancers14123009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary BNCT is a biologically targeted, densely ionizing form of radiation therapy that allows for increased tumor cell kill, while reducing toxicity to surrounding normal tissues. Although BNCT has been investigated in the treatment of head and neck cancers and recurrent brain tumors, its applicability to breast cancer has not been previoulsy investigated. In this review we discuss the physical and biological properties of various boronated compounds, and advantages and challenges associated with the potential use of BNCT in the treatment of breast cancer. Abstract BNCT is a high LET radiation therapy modality that allows for biologically targeted radiation delivery to tumors while reducing normal tissue impacts. Although the clinical use of BNCT has largely been limited to phase I/II trials and has primarily focused on difficult-to-treat malignancies such as recurrent head and neck cancer and recurrent gliomas, recently there has been a renewed interest in expanding the use of BNCT to other disease sites, including breast cancer. Given its high LET characteristics, its biologically targeted and tumor specific nature, as well as its potential for use in complex treatment settings including reirradiation and widespread metastatic disease, BNCT offers several unique advantages over traditional external beam radiation therapy. The two main boron compounds investigated to date in BNCT clinical trials are BSH and BPA. Of these, BPA in particular shows promise in breast cancer given that is taken up by the LAT-1 amino acid transporter that is highly overexpressed in breast cancer cells. As the efficacy of BNCT is directly dependent on the extent of boron accumulation in tumors, extensive preclinical efforts to develop novel boron delivery agents have been undertaken in recent years. Preclinical studies have shown promise in antibody linked boron compounds targeting ER/HER2 receptors, boron encapsulating liposomes, and nanoparticle-based boron delivery systems. This review aims to summarize the physical and biological basis of BNCT, the preclinical and limited clinical data available to date, and discuss its potential to be utilized for the successful treatment of various breast cancer disease states.
Collapse
Affiliation(s)
- Danushka Seneviratne
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Pooja Advani
- Department of Hematology Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
- Correspondence:
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Saranya Chumsri
- Department of Hematology Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Aaron F. Bush
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| | - Laura A. Vallow
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA; (D.S.); (D.M.T.); (C.J.B.); (A.F.B.); (L.A.V.)
| |
Collapse
|
10
|
Xie P, Qiao H, Hu H, Xin W, Zhang H, Lan N, Chen X, Ma Y. The Risk of Hippocampal Metastasis and the Associated High-Risk Factors in 411 Patients With Brain Metastases. Front Oncol 2022; 12:808443. [PMID: 35237516 PMCID: PMC8882759 DOI: 10.3389/fonc.2022.808443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background and AimsTo retrospectively analyze the incidence of hippocampal metastasis and the associated high-risk factors in patients with brain metastases and evaluate the safety of hippocampal avoidance whole-brain radiation therapy (HA-WBRT).MethodsWe retrospectively analyzed the data of patients with brain metastases diagnosed by contrast-enhanced cranial Magnetic resonance imaging (MRI) at the First Hospital of Lanzhou University from 2017 to 2020. The boundaries of the hippocampus, hippocampus + 5 mm area, hippocampus + 10 mm area, and hippocampus + 20 mm area were delineated, and the distances from the brain metastases to the hippocampus were measured. Univariate and multivariate logistic regressions were adopted to analyze the high-risk factors of hippocampal metastasis.ResultsA total of 3,375 brain metastases in 411 patients were included in the analysis. The metastasis rates in the hippocampus and surrounding areas of the entire group were as follows: 7.3% (30/411) in the hippocampus, 16.5% (68/411) in the hippocampus + 5 mm area, 23.8% (98/411) in the hippocampus + 10 mm area, and 36.5% (150/411) in the hippocampus + 20 mm area. Univariate logistic regression showed that the pathological type, the number of metastases, the maximum diameter of metastases, and the volume of brain metastases were all correlated with hippocampal metastasis. Multivariate logistic regression showed that the pathological type, the number of metastases, and the total volume of metastases were correlated with hippocampal metastasis.ConclusionThe pathological type, the number of metastases, and the total volume of metastases are the high-risk factors associated with hippocampal metastasis. Small cell lung cancer (SCLC) has a significantly higher rate of hippocampal metastasis than other tumor types. The greater the number and total volume of metastases, the more likely the hippocampal metastasis. For patients with SCLC or a greater number and total volume of brain metastases, the implementation of HA-WBRT may bring a higher risk of tumor recurrence.
Collapse
Affiliation(s)
- Peng Xie
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hui Qiao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Hui Qiao,
| | - Huiling Hu
- Department of Radiology, The First People’s Hospital of Lanzhou City, Lanzhou, China
| | - Wenlong Xin
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Huanyu Zhang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ning Lan
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohua Chen
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yan Ma
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Belderbos JSA, De Ruysscher DKM, De Jaeger K, Koppe F, Lambrecht MLF, Lievens YN, Dieleman EMT, Jaspers JPM, Van Meerbeeck JP, Ubbels F, Kwint MH, Kuenen MA, Deprez S, De Ruiter MB, Boogerd W, Sikorska K, Van Tinteren H, Schagen SB. Phase 3 Randomized Trial of Prophylactic Cranial Irradiation With or Without Hippocampus Avoidance in SCLC (NCT01780675). J Thorac Oncol 2021; 16:840-849. [PMID: 33545387 DOI: 10.1016/j.jtho.2020.12.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION To compare neurocognitive functioning in patients with SCLC who received prophylactic cranial irradiation (PCI) with or without hippocampus avoidance (HA). METHODS In a multicenter, randomized phase 3 trial (NCT01780675), patients with SCLC were randomized to standard PCI or HA-PCI of 25 Gy in 10 fractions. Neuropsychological tests were performed at baseline and 4, 8, 12, 18, and 24 months after PCI. The primary end point was total recall on the Hopkins Verbal Learning Test-Revised at 4 months; a decline of at least five points from baseline was considered a failure. Secondary end points included other cognitive outcomes, evaluation of the incidence, location of brain metastases, and overall survival. RESULTS From April 2013 to March 2018, a total of 168 patients were randomized. The median follow-up time was 26.6 months. In both treatment arms, 70% of the patients had limited disease and baseline characteristics were well balanced. Decline on the Hopkins Verbal Learning Test-Revised total recall score at 4 months was not significantly different between the arms: 29% of patients on PCI and 28% of patients on HA-PCI dropped greater than or equal to five points (p = 1.000). Performance on other cognitive tests measuring memory, executive function, attention, motor function, and processing speed did not change significantly different over time between the groups. The overall survival was not significantly different (p = 0.43). The cumulative incidence of brain metastases at 2 years was 20% (95% confidence interval: 12%-29%) for the PCI arm and 16% (95% confidence interval: 7%-24%) for the HA-PCI arm. CONCLUSIONS This randomized phase 3 trial did not find a lower probability of cognitive decline in patients with SCLC receiving HA-PCI compared with conventional PCI. No increase in brain metastases at 2 years was observed in the HA-PCI arm.
Collapse
Affiliation(s)
- José S A Belderbos
- Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Dirk K M De Ruysscher
- Radiation Oncology (MAASTRO), School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Friederike Koppe
- Radiation Oncology, Institute Verbeeten, Tilburg, The Netherlands
| | | | - Yolande N Lievens
- Radiation Oncology, Ghent University Hospital and Ghent University, Gent, Belgium
| | - Edith M T Dieleman
- Radiation Oncology, Amsterdam UMC-Location AMC, Amsterdam, The Netherlands
| | - Jaap P M Jaspers
- Radiation Oncology, Erasmus MC Cancer Institute, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jan P Van Meerbeeck
- Pulmonology & Thoracic Oncology, Antwerp University and Antwerp University Hospital, Edegem, Belgium
| | - Fred Ubbels
- Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Margriet H Kwint
- Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marianne A Kuenen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sabine Deprez
- Department of Imaging & Pathology, KU Leuven, Leuven, Belgium; Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Michiel B De Ruiter
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Willem Boogerd
- Neurology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karolina Sikorska
- Department of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harm Van Tinteren
- Department of Biometrics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sanne B Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Jaspers J, Mèndez Romero A, Hoogeman MS, van den Bent M, Wiggenraad RGJ, Taphoorn MJB, Eekers DBP, Lagerwaard FJ, Lucas Calduch AM, Baumert BG, Klein M. Evaluation of the Hippocampal Normal Tissue Complication Model in a Prospective Cohort of Low Grade Glioma Patients-An Analysis Within the EORTC 22033 Clinical Trial. Front Oncol 2019; 9:991. [PMID: 31681562 PMCID: PMC6797857 DOI: 10.3389/fonc.2019.00991] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: To evaluate the performance of the hippocampal normal tissue complication model that relates dose to the bilateral hippocampus to memory impairment at 18 months post-treatment in a population of low-grade glioma (LGG) patients. Methods: LGG patients treated within the radiotherapy-only arm of the EORTC 22033-26033 trial were analyzed. Hippocampal dose parameters were calculated from the original radiotherapy plans. Difference in Rey Verbal Auditory Learning test delayed recall (AVLT-DR) performance pre-and 18 (±4) months post-treatment was compared to reference data from the Maastricht Aging study. The NTCP model published by Gondi et al. was applied to the dosimetric data and model predictions were compared to actual neurocognitive outcome. Results: A total of 29 patients met inclusion criteria. Mean dose in EQD2 Gy to the bilateral hippocampus was 39.8 Gy (95% CI 34.3–44.4 Gy), the median dose to 40% of the bilateral hippocampus was 47.2 EQD2 Gy. The model predicted a risk of memory impairment exceeding 99% in 22 patients. However, only seven patients were found to have a significant decline in AVLT-dr score. Conclusions: In this dataset of only LGG patients treated with radiotherapy the hippocampus NTCP model did not perform as expected to predict cognitive decline based on dose to 40% of the bilateral hippocampus. Caution should be taken when extrapolating this model outside of the range of dose-volume parameters in which it was developed.
Collapse
Affiliation(s)
- Jaap Jaspers
- Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Alejandra Mèndez Romero
- Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Mischa S Hoogeman
- Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | | | - Ruud G J Wiggenraad
- Department of Radiation Oncology, Haaglanden Medical Center, Leidschendam, Netherlands
| | | | - Danielle B P Eekers
- Department of Radiotherapy, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Frank J Lagerwaard
- Department of Radiation Oncology, Medical Center, VU University Amsterdam, Amsterdam, Netherlands
| | | | - Brigitta G Baumert
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany
| | - Martin Klein
- Department of Medical Psychology, University Medical Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Nielsen M, Kristiansen C, Schytte T, Hansen O. Initial experiences with hippocampus-sparing whole-brain radiotherapy for lung cancer patients. Acta Oncol 2019; 58:1540-1542. [PMID: 31303085 DOI: 10.1080/0284186x.2019.1632479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- M. Nielsen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - C. Kristiansen
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - T. Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - O. Hansen
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Berghoff AS, Preusser M. New developments in brain metastases. Ther Adv Neurol Disord 2018; 11:1756286418785502. [PMID: 30034538 PMCID: PMC6048670 DOI: 10.1177/1756286418785502] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022] Open
Abstract
Patients with brain metastases (BM) are a population of high clinical need for new therapeutic approaches due to, as yet, very impaired survival prognosis. However, only few clinical trials have specifically addressed this prognostically highly heterogeneous patient population. New developments in the treatment of BM patients aim to reduce the side effects of local therapies, for example, by redefining the indications for stereotactic radiosurgery and whole-brain radiotherapy (WBRT) or introducing new applications like hippocampal sparing WBRT. Furthermore, systemic therapies become a more important treatment approach in patients harboring targetable mutations, as recent BM-specific endpoints in several phase III trials have shown promising intracranial efficacy. In addition, immune-checkpoint inhibitors show promising intracranial efficacy, particularly in patients with melanoma and non-small lung cancer BM. Here, we provide a review on the recent new developments in the local and systemic therapy approaches in BM patients.
Collapse
Affiliation(s)
- Anna S. Berghoff
- Department of Medicine I, Medical University of
Vienna, Vienna, Austria Comprehensive Cancer Center, Medical University of
Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I and Comprehensive
Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Waehringer
Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|