1
|
Murat H, Zulkifli MAA, Said MA, Awang Kechik M, Tahir D, Abdul Karim MK. Optimizing time-of-flight of PET/CT image quality via penalty β value in Bayesian penalized likelihood reconstruction algorithm. Radiography (Lond) 2025; 31:343-349. [PMID: 39733504 DOI: 10.1016/j.radi.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
INTRODUCTION Optimizing the image quality of Positron Emission Tomography/Computed Tomography (PET/CT) systems is crucial for effective monitoring, diagnosis, and treatment planning in oncology. This study evaluates the impact of time-of-flight (TOF) on PET/CT performance, focusing on varying penalty β values within Q. Clear reconstruction algorithm. METHODS The study measured signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) using the Discovery MI PET/CT scanner and NEMA IQ phantom filled with the radiotracer fluorodeoxyglucose (18F-FDG). PET/CT scans were performed with and without TOF using β values of 100, 500, 1000, 1500, 2000, and 3000. Pixel intensity values were measured using ImageJ software, and SNR and CNR were calculated. RESULTS Results indicated that increasing β values improved SNR and CNR for both non-TOF and TOF images. At a β value of 100, SNR and CNR increased across all sphere sizes (10 mm, 13 mm, 17 mm, 22 mm, 28 mm, 37 mm) when comparing non-TOF and TOF images. However, β values of 500 or higher led to decreased SNR and CNR, particularly in larger spheres (22 mm, 28 mm, 37 mm), when TOF was utilized. CONCLUSION These findings underscore the importance of optimizing β values and employing TOF reconstruction in PET/CT scans to achieve the highest possible image quality. IMPLICATIONS FOR PRACTICE In clinical practice, practitioners should adjust β values in accordance with routine protocols, considering the size of the target region and the use of TOF reconstruction.
Collapse
Affiliation(s)
- H Murat
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Nuclear Medicine, Hospital Sultanah Aminah, 80100 Johor Bahru, Johor, Malaysia
| | - M A A Zulkifli
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M A Said
- Department of Nuclear Medicine, Institut Kanser Negara, 62250 W.P. Putrajaya, Malaysia
| | - M Awang Kechik
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - D Tahir
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - M K Abdul Karim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Calatayud-Jordán J, Carrasco-Vela N, Chimeno-Hernández J, Carles-Fariña M, Olivas-Arroyo C, Bello-Arqués P, Pérez-Enguix D, Martí-Bonmatí L, Torres-Espallardo I. Y-90 PET/MR imaging optimization with a Bayesian penalized likelihood reconstruction algorithm. Phys Eng Sci Med 2024; 47:1397-1413. [PMID: 38884672 DOI: 10.1007/s13246-024-01452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Positron Emission Tomography (PET) imaging after90 Y liver radioembolization is used for both lesion identification and dosimetry. Bayesian penalized likelihood (BPL) reconstruction algorithms are an alternative to ordered subset expectation maximization (OSEM) with improved image quality and lesion detectability. The investigation of optimal parameters for90 Y image reconstruction of Q.Clear, a commercial BPL algorithm developed by General Electric (GE), in PET/MR is a field of interest and the subject of this study. The NEMA phantom was filled at an 8:1 sphere-to-background ratio. Acquisitions were performed on a PET/MR scanner for clinically relevant activities between 0.7 and 3.3 MBq/ml. Reconstructions with Q.Clear were performed varying the β penalty parameter between 20 and 6000, the acquisition time between 5 and 20 min and pixel size between 1.56 and 4.69 mm. OSEM reconstructions of 28 subsets with 2 and 4 iterations with and without Time-of-Flight (TOF) were compared to Q.Clear with β = 4000. Recovery coefficients (RC), their coefficient of variation (COV), background variability (BV), contrast-to-noise ratio (CNR) and residual activity in the cold insert were evaluated. Increasing β parameter lowered RC, COV and BV, while CNR was maximized at β = 4000; further increase resulted in oversmoothing. For quantification purposes, β = 1000-2000 could be more appropriate. Longer acquisition times resulted in larger CNR due to reduced image noise. Q.Clear reconstructions led to higher CNR than OSEM. A β of 4000 was obtained for optimal image quality, although lower values could be considered for quantification purposes. An optimal acquisition time of 15 min was proposed considering its clinical use.
Collapse
Affiliation(s)
- José Calatayud-Jordán
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Carrasco-Vela
- Radiophysics and Radiological Protection Service, Clinical University Hospital of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - José Chimeno-Hernández
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Montserrat Carles-Fariña
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Consuelo Olivas-Arroyo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Pilar Bello-Arqués
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Daniel Pérez-Enguix
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Irene Torres-Espallardo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
3
|
Odagiri H, Watabe H, Takanami K, Akimoto K, Usui A, Kawakami H, Katsuki A, Uetake N, Dendo Y, Tanaka Y, Kodama H, Takase K, Kaneta T. Verification of the effect of data-driven brain motion correction on PET imaging. PLoS One 2024; 19:e0301919. [PMID: 38968191 PMCID: PMC11226115 DOI: 10.1371/journal.pone.0301919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/25/2024] [Indexed: 07/07/2024] Open
Abstract
INTRODUCTION Brain positron emission tomography/computed tomography (PET/CT) scans are useful for identifying the cause of dementia by evaluating glucose metabolism in the brain with F-18-fluorodeoxyglucose or Aβ deposition with F-18-florbetaben. However, since imaging time ranges from 10 to 30 minutes, movements during the examination might result in image artifacts, which interfere with diagnosis. To solve this problem, data-driven brain motion correction (DDBMC) techniques are capable of performing motion corrected reconstruction using highly accurate motion estimates with high temporal resolution. In this study, we investigated the effectiveness of DDBMC techniques on PET/CT images using a Hoffman phantom, involving continuous rotational and tilting motion, each expanded up to approximately 20 degrees. MATERIALS AND METHODS Listmode imaging was performed using a Hoffman phantom that reproduced rotational and tilting motions of the head. Brain motion correction processing was performed on the obtained data. Reconstructed images with and without brain motion correction processing were compared. Visual evaluations by a nuclear medicine specialist and quantitative parameters of images with correction and reference still images were compared. RESULTS Normalized Mean Squared Error (NMSE) results demonstrated the effectiveness of DDBMC in compensating for rotational and tilting motions during PET imaging. In Cases 1 and 2 involving rotational motion, NMSE decreased from 0.15-0.2 to approximately 0.01 with DDBMC, indicating a substantial reduction in differences from the reference image across various brain regions. In the Structural Similarity Index (SSIM), DDBMC improved it to above 0.96 Contrast assessment revealed notable improvements with DDBMC. In continuous rotational motion, % contrast increased from 42.4% to 73.5%, In tilting motion, % contrast increased from 52.3% to 64.5%, eliminating significant differences from the static reference image. These findings underscore the efficacy of DDBMC in enhancing image contrast and minimizing motion induced variations across different motion scenarios. CONCLUSIONS DDBMC processing can effectively compensate for continuous rotational and tilting motion of the head during PET, with motion angles of approximately 20 degrees. However, a significant limitation of this study is the exclusive validation of the proposed method using a Hoffman phantom; its applicability to the human brain has not been investigated. Further research involving human subjects is necessary to assess the generalizability and reliability of the presented motion correction technique in real clinical scenarios.
Collapse
Affiliation(s)
- Hayato Odagiri
- Department of Diagnostic Image Analysis, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hiroshi Watabe
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi, Japan
| | - Kentaro Takanami
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kazuma Akimoto
- Department of Diagnostic Image Analysis, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akihito Usui
- Department of Diagnostic Image Analysis, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | - Yutaka Dendo
- Department of Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yoshitaka Tanaka
- Department of Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Hiroyasu Kodama
- Department of Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Tomohiro Kaneta
- Department of Diagnostic Image Analysis, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
Di Franco M, Fortunati E, Zanoni L, Bonazzi N, Mosconi C, Malizia C, Civollani S, Campana D, Andrini E, Lamberti G, Allegri V, Fanti S, Ambrosini V. β1600 Q.Clear Digital Reconstruction of [ 68Ga]Ga-DOTANOC PET/CT Improves Image Quality in NET Patients. J Clin Med 2024; 13:3841. [PMID: 38999406 PMCID: PMC11242716 DOI: 10.3390/jcm13133841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Image reconstruction is crucial for improving overall image quality and diagnostic accuracy. Q.Clear is a novel reconstruction algorithm that reduces image noise. The aim of the present study is to assess the preferred Q.Clear β-level for digital [68Ga]Ga-DOTANOC PET/CT reconstruction vs. standard reconstruction (STD) for both overall scan and single-lesion visualization. Methods: Inclusion criteria: (1) patients with/suspected neuroendocrine tumors included in a prospective observational monocentric study between September 2019 and January 2022; (2) [68Ga]Ga-DOTANOC digital PET/CT and contrast-enhanced-CT (ceCT) performed at our center at the same time. Images were reconstructed with STD and with Q.Clear β-levels 800, 1000, and 1600. Scans were blindly reviewed by three nuclear-medicine experts: the preferred β-level reconstruction was independently chosen for the visual quality of both the overall scan and the most avid target lesion < 1 cm (t) and >1 cm (T). PET/CT results were compared to ceCT. Semiquantitative analysis was performed (STD vs. β1600) in T and t concordant at both PET/CT and ceCT. Subgroup analysis was also performed in patients presenting discordant t. Results: Overall, 52 patients were included. β1600 reconstruction was considered superior over the others for both overall scan quality and single-lesion detection in all cases. The only significantly different (p < 0.001) parameters between β1600 and STD were signal-to-noise liver ratio and standard deviation of the liver background. Lesion-dependent parameters were not significantly different in concordant T (n = 37) and t (n = 10). Among 26 discordant t, when PET was positive, all findings were confirmed as malignant. Conclusions: β1600 Q.Clear reconstruction for [68Ga]Ga-DOTANOC imaging is feasible and improves image quality for both overall and small-lesion assessment.
Collapse
Affiliation(s)
- Martina Di Franco
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Emilia Fortunati
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Lucia Zanoni
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Norma Bonazzi
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Cristina Mosconi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Malizia
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Simona Civollani
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Davide Campana
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elisa Andrini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giuseppe Lamberti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Medical Oncology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Vincenzo Allegri
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Nuclear Medicine, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
5
|
Monsef A, Sheikhzadeh P, Steiner JR, Sadeghi F, Yazdani M, Ghafarian P. Optimizing scan time and bayesian penalized likelihood reconstruction algorithm in copper-64 PET/CT imaging: a phantom study. Biomed Phys Eng Express 2024; 10:045019. [PMID: 38608316 DOI: 10.1088/2057-1976/ad3e00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Objectives: The aim of this study was to evaluate Cu-64 PET phantom image quality using Bayesian Penalized Likelihood (BPL) and Ordered Subset Expectation Maximum with point-spread function modeling (OSEM-PSF) reconstruction algorithms. In the BPL, the regularization parameterβwas varied to identify the optimum value for image quality. In the OSEM-PSF, the effect of acquisition time was evaluated to assess the feasibility of shortened scan duration.Methods: A NEMA IEC PET body phantom was filled with known activities of water soluble Cu-64. The phantom was imaged on a PET/CT scanner and was reconstructed using BPL and OSEM-PSF algorithms. For the BPL reconstruction, variousβvalues (150, 250, 350, 450, and 550) were evaluated. For the OSEM-PSF algorithm, reconstructions were performed using list-mode data intervals ranging from 7.5 to 240 s. Image quality was assessed by evaluating the signal to noise ratio (SNR), contrast to noise ratio (CNR), and background variability (BV).Results: The SNR and CNR were higher in images reconstructed with BPL compared to OSEM-PSF. Both the SNR and CNR increased with increasingβ, peaking atβ= 550. The CNR for allβ, sphere sizes and tumor-to-background ratios (TBRs) satisfied the Rose criterion for image detectability (CNR > 5). BPL reconstructed images withβ= 550 demonstrated the highest improvement in image quality. For OSEM-PSF reconstructed images with list-mode data duration ≥ 120 s, the noise level and CNR were not significantly different from the baseline 240 s list-mode data duration.Conclusions: BPL reconstruction improved Cu-64 PET phantom image quality by increasing SNR and CNR relative to OSEM-PSF reconstruction. Additionally, this study demonstrated scan time can be reduced from 240 to 120 s when using OSEM-PSF reconstruction while maintaining similar image quality. This study provides baseline data that may guide future studies aimed to improve clinical Cu-64 imaging.
Collapse
Affiliation(s)
- Abbas Monsef
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, United States of America
- Department of Radiology, University of Minnesota Medical School, Minneapolis, United States of America
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Joseph R Steiner
- Department of Radiology, University of Minnesota Medical School, Minneapolis, United States of America
| | - Fatemeh Sadeghi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Tang CYL, Lim GKY, Chua WM, Ng CWQ, Koo SX, Goh CXY, Thang SP, Zaheer S, Lam WWC, Huang HL. Optimization of Bayesian penalized likelihood reconstruction for 68 Ga-prostate-specific membrane antigen-11 PET/computed tomography. Nucl Med Commun 2023; 44:480-487. [PMID: 36917459 DOI: 10.1097/mnm.0000000000001687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
OBJECTIVE The objective of this study is to determine the optimal β value for clinical use in digital 68 Ga-prostate-specific membrane antigen (PSMA-11) PET/computed tomography (CT) imaging. METHODS 68 Ga PSMA PET/CT of 21 patients with prostate cancer were reconstructed using block-sequential regularized expectation maximization ( β value of 400-1600) and ordered subsets expectation maximization. Nine independent blinded readers evaluated each reconstruction for overall image quality, noise level and lesion detectability. Maximum standardized uptake value (SUVmax) of the most intense lesion, liver SUVmean and liver SUV SD were recorded. Lesions were then subdivided according to uptake and size; the SUVmax of these lesions were analyzed. RESULTS There is a statistically significant correlation between improvement in image quality and β value, with the best being β 1400. This trend was also seen in image noise ( P < 0.001), with the least image noise reported with β 1400. Lesion detectability was not significantly different between the different β values ( P = 0.6452). There was no statistically significant difference in SUVmax of the most intense lesion ( P = 0.9966) and SUVmean of liver background between the different β values ( P = 0.9999); however, the SUV SD of the liver background showed a clear trend, with the lowest with β 1400 ( P = 0.0008). There was a decreasing trend observed in SUVmax when β values increased from 800 to 1400 for all four subgroups, and this decrease was greatest in small and low uptake lesions. CONCLUSION Bayesian penalized likelihood reconstruction algorithms improve image quality without affecting lesion detectability. A β value of 1400 is optimal.
Collapse
Affiliation(s)
- Charlene Yu Lin Tang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Gabriel K Y Lim
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | - Wei Ming Chua
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | - Cherie Wei Qi Ng
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | - Si Xuan Koo
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | - Charles Xian-Yang Goh
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Sue Ping Thang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Sumbul Zaheer
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Winnie Wing Chuen Lam
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Hian Liang Huang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
- Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
7
|
Naghavi-Behzad M, Vogsen M, Gerke O, Dahlsgaard-Wallenius SE, Nissen HJ, Jakobsen NM, Braad PE, Vilstrup MH, Deak P, Hildebrandt MG, Andersen TL. Comparison of Image Quality and Quantification Parameters between Q.Clear and OSEM Reconstruction Methods on FDG-PET/CT Images in Patients with Metastatic Breast Cancer. J Imaging 2023; 9:jimaging9030065. [PMID: 36976116 PMCID: PMC10058454 DOI: 10.3390/jimaging9030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
We compared the image quality and quantification parameters through bayesian penalized likelihood reconstruction algorithm (Q.Clear) and ordered subset expectation maximization (OSEM) algorithm for 2-[18F]FDG-PET/CT scans performed for response monitoring in patients with metastatic breast cancer in prospective setting. We included 37 metastatic breast cancer patients diagnosed and monitored with 2-[18F]FDG-PET/CT at Odense University Hospital (Denmark). A total of 100 scans were analyzed blinded toward Q.Clear and OSEM reconstruction algorithms regarding image quality parameters (noise, sharpness, contrast, diagnostic confidence, artefacts, and blotchy appearance) using a five-point scale. The hottest lesion was selected in scans with measurable disease, considering the same volume of interest in both reconstruction methods. SULpeak (g/mL) and SUVmax (g/mL) were compared for the same hottest lesion. There was no significant difference regarding noise, diagnostic confidence, and artefacts within reconstruction methods; Q.Clear had significantly better sharpness (p < 0.001) and contrast (p = 0.001) than the OSEM reconstruction, while the OSEM reconstruction had significantly less blotchy appearance compared with Q.Clear reconstruction (p < 0.001). Quantitative analysis on 75/100 scans indicated that Q.Clear reconstruction had significantly higher SULpeak (5.33 ± 2.8 vs. 4.85 ± 2.5, p < 0.001) and SUVmax (8.27 ± 4.8 vs. 6.90 ± 3.8, p < 0.001) compared with OSEM reconstruction. In conclusion, Q.Clear reconstruction revealed better sharpness, better contrast, higher SUVmax, and higher SULpeak, while OSEM reconstruction had less blotchy appearance.
Collapse
Affiliation(s)
- Mohammad Naghavi-Behzad
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
- Centre for Personalized Response Monitoring in Oncology, Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-9160-9622
| | - Marianne Vogsen
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
- Centre for Personalized Response Monitoring in Oncology, Odense University Hospital, 5000 Odense, Denmark
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
| | - Oke Gerke
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
| | - Sara Elisabeth Dahlsgaard-Wallenius
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
| | - Henriette Juel Nissen
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
| | - Nick Møldrup Jakobsen
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
| | - Poul-Erik Braad
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department at Clinical Engineering, Region of Southern Denmark, 6200 Aabenraa, Denmark
| | - Mie Holm Vilstrup
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
| | - Paul Deak
- Healthcare Science Technology, GE Healthcare, Chicago, IL 06828, USA
| | - Malene Grubbe Hildebrandt
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense, Denmark
- Centre for Personalized Response Monitoring in Oncology, Odense University Hospital, 5000 Odense, Denmark
- Centre for Innovative Medical Technology, Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Lund Andersen
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark (T.L.A.)
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Young JR, Mugu VK, Johnson GB, Ehman EC, Packard AT, Homb AC, Nathan MA, Thanarajasingam G, Kemp BJ. Bayesian penalized likelihood PET reconstruction impact on quantitative metrics in diffuse large B-cell lymphoma. Medicine (Baltimore) 2023; 102:e32665. [PMID: 36820562 PMCID: PMC9907923 DOI: 10.1097/md.0000000000032665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Evaluate the quantitative, subjective (Deauville score [DS]) and reader agreement differences between standard ordered subset expectation maximization (OSEM) and Bayesian penalized likelihood (BPL) positron emission tomography (PET) reconstruction methods. A retrospective review of 104 F-18 fluorodeoxyglucose PET/computed tomography (CT) exams among 52 patients with diffuse large B-cell lymphoma. An unblinded radiologist moderator reviewed both BPL and OSEM PET/CT exams. Four blinded radiologists then reviewed the annotated cases to provide a visual DS for each annotated lesion. Significant (P < .001) differences in BPL and OSEM PET methods were identified with greater standard uptake value (SUV) maximum and SUV mean for BPL. The DS was altered in 25% of cases when BPL and OSEM were reviewed by the same radiologist. Interobserver DS agreement was higher for OSEM (>1 cm lesion = 0.89 and ≤1 cm lesion = 0.84) compared to BPL (>1 cm lesion = 0.85 and ≤1 cm lesion = 0.81). Among the 4 readers, average intraobserver visual DS agreement between OSEM and BPL was 0.67 for lesions >1cm and 0.4 for lesions ≤1 cm. F-18 Fluorodeoxyglucose PET/CT of diffuse large B-cell lymphoma reconstructed with BPL has higher SUV values, altered DSs and reader agreement when compared to OSEM. This report finds volumetric PET measurements such as metabolic tumor volume to be similar between BPL and OSEM PET reconstructions. Efforts such as adoption of European Association Research Ltd accreditation should be made to harmonize PET data with an aim at balancing the need for harmonization and sensitivity for lesion detection.
Collapse
Affiliation(s)
- Jason R. Young
- Department of Radiology, Mayo Clinic, Rochester MN
- * Correspondence: Jason R Young, Department of Radiology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224 (e-mail: )
| | | | - Geoffrey B. Johnson
- Department of Radiology, Mayo Clinic, Rochester MN
- Department of Immunology, Mayo Clinic, Rochester MN
| | | | | | | | | | | | | |
Collapse
|
9
|
Miwa K, Miyaji N, Yamao T, Kamitaka Y, Wagatsuma K, Murata T. [[PET] 5. Recent Advances in PET Image Reconstruction Using a Bayesian Penalized Likelihood Algorithm]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:477-487. [PMID: 37211404 DOI: 10.6009/jjrt.2023-2200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | - Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
- School of Allied Health Sciences, Kitasato University
| | | |
Collapse
|
10
|
Dwivedi P, Sawant V, Vajarkar V, Vatsa R, Choudhury S, Jha AK, Rangarajan V. Analysis of image quality by regulating beta function of BSREM reconstruction algorithm and comparison with conventional reconstructions in carcinoma breast studies of PET CT with BGO detector. Nucl Med Commun 2023; 44:56-64. [PMID: 36449665 DOI: 10.1097/mnm.0000000000001631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND The study aimed to evaluate the beta penalization factor of the BSREM reconstruction algorithm on a five-ring BGO-based PET CT system and compared it with conventional reconstructions. METHODS Retrospective study involves 30 breast cancer patient data of 18F-fluorodeoxyglucose ( 18 F-FDG) PET CT for reconstruction with OSEM, OSEM + PSF, and BSREM under variable β factors ranging from 200 to 600 in the steps of 50. Liver noise, lesion SUVmax, SBR, and SNR for each reconstruction were calculated. Quantitative parameters of each beta factor of BSREM were compared with OSEM and OSEM + PSF, using the Wilcoxon sign rank test with Bonferroni correction, a value of P < 0.002 was considered statistically significant. Visual scoring by two readers was also evaluated. RESULTS Thirty lesions of mean size 1.91 ± 0.58 cm range (0.7-3.6 cm) were identified. Liver noise and SBR were reduced, whereas SNR was increased with an increasing β value of BSREM. In comparison with OSEM, liver noise was not significantly different from β200 and β250. SNR of OSEM was significantly lower than any other β factors and SBR of β factor less than 500 was significantly higher than OSEM. In comparison with OSEM + PSF, liver noise was not significantly different from β400 and β350-500 do not show a significant difference in SNR and SBR compared with OSEM + PSF. β350 scored highest under visual scoring with a moderate agreement. CONCLUSION The study quantitatively indicates the optimum beta range of β250-450 and the qualitative evaluation indicates that β350 is an optimum beta factor of BSREM in breast cancer cases for 18 F-FDG WB-PET CT.
Collapse
Affiliation(s)
- Pooja Dwivedi
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute
| | - Viraj Sawant
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute
| | - Vishal Vajarkar
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute
| | - Rakhee Vatsa
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute
| | - Sayak Choudhury
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute
| | - Ashish Kumar Jha
- Homi Bhabha National Institute
- Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Venkatesh Rangarajan
- Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai
- Homi Bhabha National Institute
- Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| |
Collapse
|
11
|
Ribeiro D, Hallett W, Howes O, McCutcheon R, Nour MM, Tavares AAS. Assessing the impact of different penalty factors of the Bayesian reconstruction algorithm Q.Clear on in vivo low count kinetic analysis of [ 11C]PHNO brain PET-MR studies. EJNMMI Res 2022; 12:11. [PMID: 35184229 PMCID: PMC8859021 DOI: 10.1186/s13550-022-00883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/26/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Q.Clear is a Bayesian penalised likelihood (BPL) reconstruction algorithm available on General Electric (GE) Positron Emission Tomography (PET)-Computed Tomography (CT) and PET-Magnetic Resonance (MR) scanners. This algorithm is regulated by a β value which acts as a noise penalisation factor and yields improvements in signal to noise ratio (SNR) in clinical scans, and in contrast recovery and spatial resolution in phantom studies. However, its performance in human brain imaging studies remains to be evaluated in depth. This pilot study aims to investigate the impact of Q.Clear reconstruction methods using different β value versus ordered subset expectation maximization (OSEM) on brain kinetic modelling analysis of low count brain images acquired in the PET-MR. METHODS Six [11C]PHNO PET-MR brain datasets were reconstructed with Q.Clear with β100-1000 (in increments of 100) and OSEM. The binding potential relative to non-displaceable volume (BPND) were obtained for the Substantia Nigra (SN), Striatum (St), Globus Pallidus (GP), Thalamus (Th), Caudate (Cd) and Putamen (Pt), using the MIAKAT™ software. Intraclass correlation coefficients (ICC), repeatability coefficients (RC), coefficients of variation (CV) and bias from Bland-Altman plots were reported. Statistical analysis was conducted using a 2-way ANOVA model with correction for multiple comparisons. RESULTS When comparing a standard OSEM reconstruction of 6 iterations/16 subsets and 5 mm filter with Q.Clear with different β values under low counts, the bias and RC were lower for Q.Clear with β100 for the SN (RC = 2.17), Th (RC = 0.08) and GP (RC = 0.22) and with β200 for the St (RC = 0.14), Cd (RC = 0.18)and Pt (RC = 0.10). The p-values in the 2-way ANOVA model corroborate these findings. ICC values obtained for Th, St, GP, Pt and Cd demonstrate good reliability (0.87, 0.99, 0.96, 0.99 and 0.96, respectively). For the SN, ICC values demonstrate poor reliability (0.43). CONCLUSION BPND results obtained from quantitative low count brain PET studies using [11C]PHNO and reconstructed with Q.Clear with β < 400, which is the value used for clinical [18F]FDG whole-body studies, demonstrate the lowest bias versus the typical iterative reconstruction method OSEM.
Collapse
Affiliation(s)
- Daniela Ribeiro
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, Invicro, Imperial College London, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK.
- Edinburgh Imaging, The University of Edinburgh, Edinburgh, UK.
| | - William Hallett
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, Invicro, Imperial College London, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Institute of Medical Sciences, Medical Research Council London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Robert McCutcheon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Institute of Medical Sciences, Medical Research Council London, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Matthew M Nour
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Max Planck Centre for Computational Psychiatry and Ageing Research, Institute of Neurology, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
12
|
Tian D, Yang H, Li Y, Cui B, Lu J. The effect of Q.Clear reconstruction on quantification and spatial resolution of 18F-FDG PET in simultaneous PET/MR. EJNMMI Phys 2022; 9:1. [PMID: 35006411 PMCID: PMC8748582 DOI: 10.1186/s40658-021-00428-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Q.Clear is a block sequential regularized expectation maximization penalized-likelihood reconstruction algorithm for Positron Emission Tomography (PET). It has shown high potential in improving image reconstruction quality and quantification accuracy in PET/CT system. However, the evaluation of Q.Clear in PET/MR system, especially for clinical applications, is still rare. This study aimed to evaluate the impact of Q.Clear on the 18F-fluorodeoxyglucose (FDG) PET/MR system and to determine the optimal penalization factor β for clinical use. Methods A PET National Electrical Manufacturers Association/ International Electrotechnical Commission (NEMA/IEC) phantom was scanned on GE SIGNA PET/MR, based on NEMA NU 2-2012 standard. Metrics including contrast recovery (CR), background variability (BV), signal-to-noise ratio (SNR) and spatial resolution were evaluated for phantom data. For clinical data, lesion SNR, signal to background ratio (SBR), noise level and visual scores were evaluated. PET images reconstructed from OSEM + TOF and Q.Clear were visually compared and statistically analyzed, where OSEM + TOF adopted point spread function as default procedure, and Q.Clear used different β values of 100, 200, 300, 400, 500, 800, 1100 and 1400. Results For phantom data, as β value increased, CR and BV of all sizes of spheres decreased in general; images reconstructed from Q.Clear reached the peak SNR with β value of 400 and generally had better resolution than those from OSEM + TOF. For clinical data, compared with OSEM + TOF, Q.Clear with β value of 400 achieved 138% increment in median SNR (from 58.8 to 166.0), 59% increment in median SBR (from 4.2 to 6.8) and 38% decrement in median noise level (from 0.14 to 0.09). Based on visual assessment from two physicians, Q.Clear with β values ranging from 200 to 400 consistently achieved higher scores than OSEM + TOF, where β value of 400 was considered optimal. Conclusions The present study indicated that, on 18F-FDG PET/MR, Q.Clear reconstruction improved the image quality compared to OSEM + TOF. β value of 400 was optimal for Q.Clear reconstruction.
Collapse
Affiliation(s)
- Defeng Tian
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
| | - Yan Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China. .,Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
13
|
Can Q.Clear reconstruction be used to improve [68 Ga]Ga-DOTANOC PET/CT image quality in overweight NEN patients? Eur J Nucl Med Mol Imaging 2021; 49:1607-1612. [PMID: 34693467 DOI: 10.1007/s00259-021-05592-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
AIM/INTRODUCTION Digital PET/CT allows Q.Clear image reconstruction with different Beta (β) levels. However, no definitive standard β level for [68 Ga]Ga-DOTANOC PET/CT has been established yet. As patient's body mass index (BMI) can affect image quality, the aim of the study was to visually and semi-quantitatively assess different β levels compared to standard OSEM in overweight patients. MATERIALS AND METHODS Inclusion criteria: (1) patients with NEN included in a prospective CE-approved electronic archive; (2) [68 Ga]Ga-DOTANOC PET/CT performed on a digital tomograph between September2019/March2021; (3) BMI ≥ 25. Images were acquired following EANM guidelines and reconstructed with OSEM and Q.Clear with three β levels (800, 1000, 1600). Scans were independently reviewed by three expert readers, unaware of clinical data, who independently chose the preferred β level reconstruction for visual overall image quality. Semi-quantitative analysis was performed on each scan: SUVmax of the highest uptake lesion (SUVmax-T), liver background SUVmean (SUVmean-L), SUVmax-T/SUVmean-L, Signal-to-noise ratio for both liver (LSNR) and the highest uptake lesion (SNR-T), Contrast-to-noise ratio (CNR). RESULTS Overall, 75 patients (median age: 63 years old [23-87]) were included: pre-obesity sub-group (25 ≤ BMI < 30, n = 50) and obesity sub-group (BMI ≥ 30, n = 25). PET/CT was positive for disease in 45/75 (60.0%) cases (14 obese and 31 pre-obese patients). Agreement among readers' visual rating was high (Fleiss κ = 0.88) and the β1600 was preferred in most cases (in 96% of obese patients and in 53.3% of pre-obese cases). OSEM was considered visually equal to β1600 in 44.7% of pre-obese cases and in 4% of obese patients. In a minority of pre-obese cases, OSEM was preferred (2%). In the whole population, CNR, SNR-T and LSNR were significantly different (p < 0.001) between OSEM and β1600, conversely to SUVmean-L (not significant). These results were also confirmed when calculated separately for the pre-obesity and obesity sub-groups β800 and β1000 were always rated inferior. CONCLUSIONS Q.Clear is a new technology for PET/CT image reconstruction that can be used to increase CNR and SNR-T, to subsequently optimise overall image quality as compared to standard OSEM. Our preliminary data on [68 Ga]Ga-DOTANOC PET/CT demonstrate that in overweight NEN patients, β1600 is preferable over β800 and β1000. Further studies are warranted to validate these results in lesions of different anatomical region and size; moreover, currently employed interpretative PET positivity criteria should be adjusted to the new reconstruction method.
Collapse
|
14
|
Aide N, Lasnon C, Kesner A, Levin CS, Buvat I, Iagaru A, Hermann K, Badawi RD, Cherry SR, Bradley KM, McGowan DR. New PET technologies - embracing progress and pushing the limits. Eur J Nucl Med Mol Imaging 2021; 48:2711-2726. [PMID: 34081153 PMCID: PMC8263417 DOI: 10.1007/s00259-021-05390-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Aide
- Nuclear medicine Department, University Hospital, Caen, France.
- INSERM ANTICIPE, Normandie University, Caen, France.
| | - Charline Lasnon
- INSERM ANTICIPE, Normandie University, Caen, France
- François Baclesse Cancer Centre, Caen, France
| | - Adam Kesner
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Craig S Levin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
| | - Irene Buvat
- Institut Curie, Université PLS, Inserm, U1288 LITO, Orsay, France
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Stanford University, Stanford, CA, 94305, USA
| | - Ken Hermann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Ramsey D Badawi
- Departments of Radiology and Biomedical Engineering, University of California, Davis, CA, USA
| | - Simon R Cherry
- Departments of Radiology and Biomedical Engineering, University of California, Davis, CA, USA
| | - Kevin M Bradley
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, Cardiff, UK
| | - Daniel R McGowan
- Radiation Physics and Protection, Churchill Hospital, Oxford University Hospitals NHS FT, Oxford, UK.
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Krokos G, Pike LC, Cook GJR, Marsden PK. Standardisation of conventional and advanced iterative reconstruction methods for Gallium-68 multi-centre PET-CT trials. EJNMMI Phys 2021; 8:52. [PMID: 34273020 PMCID: PMC8286213 DOI: 10.1186/s40658-021-00400-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To assess the applicability of the Fluorine-18 performance specifications defined by EANM Research Ltd (EARL), in Gallium-68 multi-centre PET-CT trials using conventional (ordered subset expectation maximisation, OSEM) and advanced iterative reconstructions which include the systems' point spread function (PSF) and a Bayesian penalised likelihood algorithm (BPL) commercially known as Q.CLEAR. The possibility of standardising the two advanced reconstruction methods was examined. METHODS The NEMA image quality phantom was filled with Gallium-68 and scanned on a GE PET-CT system. PSF and BPL with varying post-reconstruction Gaussian filter width (2-6.4 mm) and penalisation factor (200-1200), respectively, were applied. The average peak-to-valley ratio from six profiles across each sphere was estimated to inspect any edge artefacts. Image noise was assessed using background variability and image roughness. Six GE and Siemens PET-CT scanners provided Gallium-68 images of the NEMA phantom using both conventional and advanced reconstructions from which the maximum, mean and peak recoveries were drawn. Fourteen patients underwent 68Ga-PSMA PET-CT imaging. BPL (200-1200) reconstructions of the data were compared against PSF smoothed with a 6.4-mm Gaussian filter. RESULTS A Gaussian filter width of approximately 6 mm for PSF and a penalisation factor of 800 for BPL were needed to suppress the edge artefacts. In addition, those reconstructions provided the closest agreement between the two advanced iterative reconstructions and low noise levels with the background variability and the image roughness being lower than 7.5% and 11.5%, respectively. The recoveries for all methods generally performed at the lower limits of the EARL specifications, especially for the 13- and 10-mm spheres for which up to 27% (conventional) and 41% (advanced reconstructions) lower limits are suggested. The lesion standardised uptake values from the clinical data were significantly different between BPL and PSF smoothed with a Gaussian filter of 6.4 mm wide for all penalisation factors except for 800 and 1000. CONCLUSION It is possible to standardise the advanced reconstruction methods with the reconstruction parameters being also sufficient for minimising the edge artefacts and noise in the images. For both conventional and advanced reconstructions, Gallium-68 specific recovery coefficient limits were required, especially for the smallest phantom spheres.
Collapse
Affiliation(s)
- Georgios Krokos
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Lucy C Pike
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gary J R Cook
- Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Paul K Marsden
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
16
|
Boughdad S, Meyer M, Prior JO, Fernandes V, Allenbach G, Kamani C, Jreige M, Albano D, Bertagna F, Nicod-Lalonde M, Schaefer N, Treglia G. Prevalence of physiological uptake in the pancreas on somatostatin receptor-based PET/CT: a systematic review and a meta-analysis. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00432-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Background
Physiological focal radiopharmaceutical uptake in the head and uncinate process of the pancreas may be seen on somatostatin receptor-based PET/CT and might lead to false-positive results for neuroendocrine tumours (NETs). We aimed to perform a systematic review and a meta-analysis about the prevalence of this finding.
Methods
We performed a comprehensive computer literature search across several databases until July 2020. Pooled prevalence of physiological focal uptake on somatostatin receptor-based PET/CT in the pancreas was calculated on a per-examination-based analysis and 95% confidence interval values (95% CI) were reported.
Results
Six studies (684 patients and 829 PET/CT scans) were included. The pooled prevalence of physiological uptake in the head and uncinate process of the pancreas on somatostatin receptor-based PET/CT imaging was 34% (95% CI 19.5–48.7%) with average SUVmax values ranging from 5 to 12.6. Heterogeneity was seen across the selected studies.
Conclusions
High radiopharmaceutical uptake in the head and uncinate process of the pancreas is frequent at somatostatin receptor-based PET/CT and it should be recognized by nuclear medicine physicians to prevent unnecessary additional investigations. In addition, next generation PET/CT tomographs might increase the prevalence of this finding.
Collapse
|
17
|
Rijnsdorp S, Roef MJ, Arends AJ. Impact of the Noise Penalty Factor on Quantification in Bayesian Penalized Likelihood (Q.Clear) Reconstructions of 68Ga-PSMA PET/CT Scans. Diagnostics (Basel) 2021; 11:diagnostics11050847. [PMID: 34066854 PMCID: PMC8150604 DOI: 10.3390/diagnostics11050847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/04/2023] Open
Abstract
Functional imaging with 68Ga prostate-specific membrane antigen (PSMA) and positron emission tomography (PET) can fulfill an important role in treatment selection and adjustment in prostate cancer. This article focusses on quantitative assessment of 68Ga-PSMA-PET. The effect of various parameters on standardized uptake values (SUVs) is explored, and an optimal Bayesian penalized likelihood (BPL) reconstruction is suggested. PET acquisitions of two phantoms consisting of a background compartment and spheres with diameter 4 mm to 37 mm, both filled with solutions of 68Ga in water, were performed with a GE Discovery 710 PET/CT scanner. Recovery coefficients (RCs) in multiple reconstructions with varying noise penalty factors and acquisition times were determined and analyzed. Apparent recovery coefficients of spheres with a diameter smaller than 17 mm were significantly lower than those of spheres with a diameter of 17 mm and bigger (p < 0.001) for a tumor-to-background (T/B) ratio of 10:1 and a scan time of 10 min per bed position. With a T/B ratio of 10:1, the four largest spheres exhibit significantly higher RCs than those with a T/B ratio of 20:1 (p < 0.0001). For spheres with a diameter of 8 mm and less, alignment with the voxel grid potentially affects the RC. Evaluation of PET/CT scans using (semi-)quantitative measures such as SUVs should be performed with great caution, as SUVs are influenced by scanning and reconstruction parameters. Based on the evaluation of multiple reconstructions with different β of phantom scans, an intermediate β (600) is suggested as the optimal value for the reconstruction of clinical 68Ga-PSMA PET/CT scans, considering that both detectability and reproducibility are relevant.
Collapse
Affiliation(s)
- Sjoerd Rijnsdorp
- Department of Medical Physics, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands;
- Correspondence:
| | - Mark J. Roef
- Department of Nuclear Medicine, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands;
| | - Albert J. Arends
- Department of Medical Physics, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands;
| |
Collapse
|
18
|
Ribeiro D, Hallett W, Tavares AAS. Performance evaluation of the Q.Clear reconstruction framework versus conventional reconstruction algorithms for quantitative brain PET-MR studies. EJNMMI Phys 2021; 8:41. [PMID: 33961164 PMCID: PMC8105485 DOI: 10.1186/s40658-021-00386-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
Background Q.Clear is a Bayesian penalized likelihood (BPL) reconstruction algorithm that presents improvements in signal-to-noise ratio (SNR) in clinical positron emission tomography (PET) scans. Brain studies in research require a reconstruction that provides a good spatial resolution and accentuates contrast features however, filtered back-projection (FBP) reconstruction is not available on GE SIGNA PET-Magnetic Resonance (PET-MR) and studies have been reconstructed with an ordered subset expectation maximization (OSEM) algorithm. This study aims to propose a strategy to approximate brain PET quantitative outcomes obtained from images reconstructed with Q.Clear versus traditional FBP and OSEM. Methods Contrast recovery and background variability were investigated with the National Electrical Manufacturers Association (NEMA) Image Quality (IQ) phantom. Resolution, axial uniformity and SNR were investigated using the Hoffman phantom. Both phantoms were scanned on a Siemens Biograph 6 TruePoint PET-Computed Tomography (CT) and a General Electric SIGNA PET-MR, for FBP, OSEM and Q.Clear. Differences between the metrics obtained with Q.Clear with different β values and FBP obtained on the PET-CT were determined. Results For in plane and axial resolution, Q.Clear with low β values presented the best results, whereas for SNR Q.Clear with higher β gave the best results. The uniformity results are greatly impacted by the β value, where β < 600 can yield worse uniformity results compared with the FBP reconstruction. Conclusion This study shows that Q.Clear improves contrast recovery and provides better resolution and SNR, in comparison to OSEM, on the PET-MR. When using low β values, Q.Clear can provide similar results to the ones obtained with traditional FBP reconstruction, suggesting it can be used for quantitative brain PET kinetic modelling studies. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00386-3.
Collapse
Affiliation(s)
- Daniela Ribeiro
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, London, United Kingdom. .,Edinburgh Imaging, University of Edinburgh, Edinburgh, UK.
| | - William Hallett
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, London, United Kingdom
| | - Adriana A S Tavares
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK.,University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Yang FJ, Ai SY, Wu R, Lv Y, Xie HF, Dong Y, Meng QL, Wang F. Impact of total variation regularized expectation maximization reconstruction on the image quality of 68Ga-PSMA PET: a phantom and patient study. Br J Radiol 2021; 94:20201356. [PMID: 33571001 PMCID: PMC8010539 DOI: 10.1259/bjr.20201356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To investigate the impact of total variation regularized expectation maximization (TVREM) reconstruction on the image quality of 68Ga-PSMA-11 PET/CT using phantom and patient data. METHODS Images of a phantom with small hot sphere inserts and 20 prostate cancer patients were acquired with a digital PET/CT using list-mode and reconstructed with ordered subset expectation maximization (OSEM) and TVREM with seven penalisation factors between 0.01 and 0.42 for 2 and 3 minutes-per-bed (m/b) acquisition. The contrast recovery (CR) and background variability (BV) of the phantom, image noise of the liver, and SUVmax of the lesions were measured. Qualitative image quality was scored by two radiologists using a 5-point scale (1-poor, 5-excellent). RESULTS The performance of CR, BV, and image noise, and the gain of SUVmax was higher for TVREM 2 m/b groups with the penalization of 0.07 to 0.28 compared to OSEM 3 m/b group (all p < 0.05). The image noise of OSEM 3 m/b group was equivalent to TVREM 2 and 3 m/b groups with a penalization of 0.14 and 0.07, while lesions' SUVmax increased 15 and 20%. The highest qualitative score was attained at the penalization of 0.21 (3.30 ± 0.66) for TVREM 2 m/b groups and the penalization 0.14 (3.80 ± 0.41) for 3 m/b group that equal to or greater than OSEM 3 m/b group (2.90 ± 0.45, p = 0.2 and p < 0.001). CONCLUSIONS TVREM improves lesion contrast and reduces image noise, which allows shorter acquisition with preserved image quality for PSMA PET/CT. ADVANCES IN KNOWLEDGE TVREM reconstruction with optimized penalization factors can generate higher quality PSMA-PET images for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Feng-Jiao Yang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Shu-Yue Ai
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Runze Wu
- United Imaging Healthcare, Shanghai 201870, China
| | - Yang Lv
- United Imaging Healthcare, Shanghai 201870, China
| | - Hui-Fang Xie
- United Imaging Healthcare, Shanghai 201870, China
| | - Yun Dong
- United Imaging Healthcare, Shanghai 201870, China
| | - Qing-Le Meng
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
20
|
Wu Z, Guo B, Huang B, Zhao B, Qin Z, Hao X, Liang M, Xie J, Li S. Does the beta regularization parameter of bayesian penalized likelihood reconstruction always affect the quantification accuracy and image quality of positron emission tomography computed tomography? J Appl Clin Med Phys 2021; 22:224-233. [PMID: 33683004 PMCID: PMC7984479 DOI: 10.1002/acm2.13129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/13/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose This study aims to provide a detailed investigation on the noise penalization factor in Bayesian penalized likelihood (BPL)‐based algorithm, with the utilization of partial volume effect correction (PVC), so as to offer the suitable beta value and optimum standardized uptake value (SUV) parameters in clinical practice for small pulmonary nodules. Methods A National Electrical Manufacturers Association (NEMA) image‐quality phantom was scanned and images were reconstructed using BPL with beta values ranged from 100 to 1000. The recovery coefficient (RC), contrast recovery (CR), and background variability (BV) were measured to assess the quantification accuracy and image quality. In the clinical assessment, lesions were categorized into sub‐centimeter (<10 mm, n = 7) group and medium size (10–30 mm, n = 16) group. Signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio (CNR) were measured to evaluate the image quality and lesion detectability. With PVC was performed, the impact of beta values on SUVs (SUVmax, SUVmean, SUVpeak) of small pulmonary nodules was evaluated. Subjective image analysis was performed by two experienced readers. Results With the increasing of beta values, RC, CR, and BV decreased gradually in the phantom work. In the clinical study, SNR and CNR of both groups increased with the beta values (P < 0.001), although the sub‐centimeter group showed increases after the beta value reached over 700. In addition, highly significant negative correlations were observed between SUVs and beta values for both lesion‐size groups before the PVC (P < 0.001 for all). After the PVC, SUVpeak measured from the sub‐centimeter group was no significantly different among different beta values (P = 0.830). Conclusion Our study suggests using SUVpeak as the quantification parameter with PVC performed to mitigate the effects of beta regularization. Beta values between 300 and 400 were preferred for pulmonary nodules smaller than 30 mm.
Collapse
Affiliation(s)
- Zhifang Wu
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
- Molecular Imaging Precision Medical Collaborative Innovation CenterShanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Binwei Guo
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Bin Huang
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Bin Zhao
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Zhixing Qin
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Xinzhong Hao
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Meng Liang
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Sijin Li
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
- Molecular Imaging Precision Medical Collaborative Innovation CenterShanxi Medical UniversityTaiyuanShanxiP.R. China
| |
Collapse
|
21
|
Yoshii T, Miwa K, Yamaguchi M, Shimada K, Wagatsuma K, Yamao T, Kamitaka Y, Hiratsuka S, Kobayashi R, Ichikawa H, Miyaji N, Miyazaki T, Ishii K. Optimization of a Bayesian penalized likelihood algorithm (Q.Clear) for 18F-NaF bone PET/CT images acquired over shorter durations using a custom-designed phantom. EJNMMI Phys 2020; 7:56. [PMID: 32915344 PMCID: PMC7486353 DOI: 10.1186/s40658-020-00325-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background The Bayesian penalized likelihood (BPL) algorithm Q.Clear (GE Healthcare) allows fully convergent iterative reconstruction that results in better image quality and quantitative accuracy, while limiting image noise. The present study aimed to optimize BPL reconstruction parameters for 18F-NaF PET/CT images and to determine the feasibility of 18F-NaF PET/CT image acquisition over shorter durations in clinical practice. Methods A custom-designed thoracic spine phantom consisting of several inserts, soft tissue, normal spine, and metastatic bone tumor, was scanned using a Discovery MI PET/CT scanner (GE Healthcare). The phantom allows optional adjustment of activity distribution, tumor size, and attenuation. We reconstructed PET images using OSEM + PSF + TOF (2 iterations, 17 subsets, and a 4-mm Gaussian filter), BPL + TOF (β = 200 to 700), and scan durations of 30–120 s. Signal-to-noise ratios (SNR), contrast, and coefficients of variance (CV) as image quality indicators were calculated, whereas the quantitative measures were recovery coefficients (RC) and RC linearity over a range of activity. We retrospectively analyzed images from five persons without bone metastases (male, n = 1; female, n = 4), then standardized uptake values (SUV), CV, and SNR at the 4th, 5th, and 6th thoracic vertebra were calculated in BPL + TOF (β = 400) images. Results The optimal reconstruction parameter of the BPL was β = 400 when images were acquired at 120 s/bed. At 90 s/bed, the BPL with a β value of 400 yielded 24% and 18% higher SNR and contrast, respectively, than OSEM (2 iterations; 120 s acquisitions). The BPL was superior to OSEM in terms of RC and the RC linearity over a range of activity, regardless of scan duration. The SUVmax were lower in BPL, than in OSEM. The CV and vertebral SNR in BPL were superior to those in OSEM. Conclusions The optimal reconstruction parameters of 18F-NaF PET/CT images acquired over different durations were determined. The BPL can reduce PET acquisition to 90 s/bed in 18F-NaF PET/CT imaging. Our results suggest that BPL (β = 400) on SiPM-based TOF PET/CT scanner maintained high image quality and quantitative accuracy even for shorter acquisition durations.
Collapse
Affiliation(s)
- Tokiya Yoshii
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.,Department of Radiology, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima, Fukushima, 960-1247, Japan
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Masashi Yamaguchi
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kai Shimada
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Yuto Kamitaka
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Seiya Hiratsuka
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Rinya Kobayashi
- Department of Radiological Sciences, School of Health Science, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Hajime Ichikawa
- Department of Radiology, Toyohashi Municipal Hospital, 50, Aza Hachiken Nishi, Aotake-Cho, Toyohashi, Aichi, 441-8570, Japan
| | - Noriaki Miyaji
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Tsuyoshi Miyazaki
- Department of Orthopaedic Surgery, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
22
|
Texte E, Gouel P, Thureau S, Lequesne J, Barres B, Edet-Sanson A, Decazes P, Vera P, Hapdey S. Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images. EJNMMI Phys 2020; 7:28. [PMID: 32399752 PMCID: PMC7218037 DOI: 10.1186/s40658-020-00300-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
Purpose To determine the impact of the Bayesian penalized likelihood (BPL) reconstruction algorithm in comparison to OSEM on hypoxia PET/CT images of NSCLC using 18F-MIZO and 18F-FAZA. Materials and methods Images of low-contrasted (SBR = 3) micro-spheres of Jaszczak phantom were acquired. Twenty patients with lung neoplasia were included. Each patient benefitted from 18F-MISO and/or 18F-FAZA PET/CT exams, reconstructed with OSEM and BPL. Lesion was considered as hypoxic if the lesion SUVmax > 1.4. A blind evaluation of lesion detectability and image quality was performed on a set of 78 randomized BPL and OSEM images by 10 nuclear physicians. SUVmax, SUVmean, and hypoxic volumes using 3 thresholding approaches were measured and compared for each reconstruction. Results The phantom and patient datasets showed a significant increase of quantitative parameters using BPL compared to OSEM but had no impact on detectability. The optimal beta parameter determined by the phantom analysis was β350. Regarding patient data, there was no clear trend of image quality improvement using BPL. There was no correlation between SUVmax increase with BPL and either SUV or hypoxic volume from the initial OSEM reconstruction. Hypoxic volume obtained by a SUV > 1.4 thresholding was not impacted by the BPL reconstruction parameter. Conclusion BPL allows a significant increase in quantitative parameters and contrast without significantly improving the lesion detectability or image quality. The variation in hypoxic volume by BPL depends on the method used but SUV > 1.4 thresholding seems to be the more robust method, not impacted by the reconstruction method (BPL or OSEM). Trial registration ClinicalTrials.gov, NCT02490696. Registered 1 June 2015
Collapse
Affiliation(s)
- Edgar Texte
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France
| | - Pierrick Gouel
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France.,QuantIF-LITIS EA4108, Rouen University Hospital, Rouen, France
| | - Sébastien Thureau
- QuantIF-LITIS EA4108, Rouen University Hospital, Rouen, France.,Radiotherapy Department, Henri Becquerel Cancer Center, Rouen, France
| | - Justine Lequesne
- Clinical Research Department, Henri Becquerel Cancer Center, Rouen, France
| | - Bertrand Barres
- Nuclear Medicine Department, Jean Perrin Cancer Center, Clermont-Ferrand, France
| | - Agathe Edet-Sanson
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France.,QuantIF-LITIS EA4108, Rouen University Hospital, Rouen, France
| | - Pierre Decazes
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France.,QuantIF-LITIS EA4108, Rouen University Hospital, Rouen, France
| | - Pierre Vera
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France.,QuantIF-LITIS EA4108, Rouen University Hospital, Rouen, France
| | - Sébastien Hapdey
- Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France. .,QuantIF-LITIS EA4108, Rouen University Hospital, Rouen, France.
| |
Collapse
|
23
|
Trägårdh E, Minarik D, Brolin G, Bitzén U, Olsson B, Oddstig J. Optimization of [ 18F]PSMA-1007 PET-CT using regularized reconstruction in patients with prostate cancer. EJNMMI Phys 2020; 7:31. [PMID: 32399664 PMCID: PMC7218038 DOI: 10.1186/s40658-020-00298-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) radiotracers such as [18F]PSMA-1007 used with positron emission tomography-computed tomography (PET-CT) is promising for initial staging and detection of recurrent disease in prostate cancer patients. The block-sequential regularization expectation maximization algorithm (BSREM) is a new PET reconstruction algorithm, which provides higher image contrast while also reducing noise. The aim of the present study was to evaluate the influence of different acquisition times and different noise-suppressing factors in BSREM (β values) in [18F]PSMA-1007 PET-CT regarding quantitative data as well as a visual image quality assessment. We included 35 patients referred for clinical [18F]PSMA-1007 PET-CT. Four megabecquerels per kilogramme were administered and imaging was performed after 120 min. Eighty-four image series per patient were created with combinations of acquisition times of 1-4 min/bed position and β values of 300-1400. The noise level in normal tissue and the contrast-to-noise ratio (CNR) of pathological uptakes versus the local background were calculated. Image quality was assessed by experienced nuclear medicine physicians. RESULTS The noise level in the liver, spleen, and muscle was higher for low β values and low acquisition times (written as activity time products (ATs = administered activity × acquisition time)) and was minimized at maximum AT (16 MBq/kg min) and maximum β (1400). There was only a small decrease above AT 10. The median CNR increased slowly with AT from approximately 6 to 12 and was substantially lower at AT 4 and higher at AT 14-16. At AT 4-6, many images were regarded as being of unacceptable quality. For AT 8, β values of 700-900 were considered of acceptable quality. CONCLUSIONS An AT of 8 (for example as in our study, 4 MB/kg with an acquisition time of 2 min) with a β value of 700 performs well regarding noise level, CNR, and visual image quality assessment.
Collapse
Affiliation(s)
- Elin Trägårdh
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital and Lund University, Carl Bertil Laurells gata 9, 205 02, Malmö, Sweden. .,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - David Minarik
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Medical Radiation Physics, Skåne University and Lund University, Malmö, Sweden
| | - Gustav Brolin
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Medical Radiation Physics, Skåne University Hospital and Lund University, Lund, Sweden
| | - Ulrika Bitzén
- Clinical Physiology and Nuclear Medicine, Skåne University and Lund University, Lund, Sweden
| | - Berit Olsson
- Clinical Physiology and Nuclear Medicine, Skåne University and Lund University, Lund, Sweden
| | - Jenny Oddstig
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.,Medical Radiation Physics, Skåne University Hospital and Lund University, Lund, Sweden
| |
Collapse
|
24
|
68Ga-PSMA-11 dose reduction for dedicated pelvic imaging with simultaneous PET/MR using TOF BSREM reconstructions. Eur Radiol 2020; 30:3188-3197. [PMID: 32060711 DOI: 10.1007/s00330-020-06667-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/03/2019] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES When increasing the PET acquisition time to match the longer MRI protocol in simultaneous PET/MR, the injected PET tracer dose can possibly be lowered to reduce radiation exposure. Moreover, applying new commercially available time-of-flight (TOF) block sequential regularized expectation maximization (BSREM)-based reconstruction algorithms could allow for further dose reductions. The purpose of this study was to find the minimal dose of the tracer targeting the prostate specific membrane antigen (68Ga-PSMA-11) for a dedicated 15-min pelvic PET/MR scan that still matches the image quality of a reference 3-min scan at 100% (150 MBq) dose. METHODS In this retrospective analysis, 25 patients were included. PET emission datasets were edited to simulate stepwise reductions of injected tracer dose. Reference TOF ordered subset expectation maximum (OSEM) and new TOF BSREM reconstructions were performed and differences in the resulting PET images were visually and quantitatively assessed. RESULTS Visually, TOF BSREM reconstructions with relatively high regularization parameter (β) values are preferred. Quantitatively, however, high β-values result in lower lesion maximum standardized uptake values (SUVmax) compared to the reference. A β-value of 550 was considered the optimal compromise for the lowest possible 10% dose reconstructions, resulting in comparable visual assessment and lesion SUVmax. CONCLUSIONS This study indicates that the injected 68Ga-PSMA-11 tracer dose for a standard 3-min PET scan can be reduced to approximately 10% (15 MBq) when the PET acquisition time is matched to the 15-min pelvic MRI protocol, and when reconstructed with TOF BSREM using β = 550. This decreases the effective dose from 3.54 to 0.35 mSv. KEY POINTS • Low-dose dedicated pelvic68Ga-PSMA-11 PET/MR reduces radiation exposure for patients. • Retrospective study investigating the minimal dose needed for adequate image quality for 15-min PET frames over the pelvis showed using quantitative and qualitative analysis that a substantial dose reduction is possible without significant loss of image quality when using the TOF BSREM reconstruction algorithm. • With the introduction of low-dose pelvic68Ga-PSMA-11 PET/MR, new potential applications of68Ga-PSMA-11 PET for local staging or investigation of equivocal MRI findings could become applicable, even for patients without confirmed prostate cancer.
Collapse
|
25
|
Witkowska-Patena E, Budzyńska A, Giżewska A, Dziuk M, Walęcka-Mazur A. Ordered subset expectation maximisation vs Bayesian penalised likelihood reconstruction algorithm in 18F-PSMA-1007 PET/CT. Ann Nucl Med 2020; 34:192-199. [PMID: 31902120 PMCID: PMC7033087 DOI: 10.1007/s12149-019-01433-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023]
Abstract
Background The aim of the study was to compare widely used ordered subset expectation maximisation (OSEM) algorithm with a new Bayesian penalised likelihood (BPL) Q.Clear algorithm in 18F-PSMA-1007 PET/CT. Methods We retrospectively assessed 25 18F-PSMA-1007 PET/CT scans with both OSEM and Q.Clear reconstructions available. Each scan was independently reported by two physicians both in OSEM and Q.Clear. SUVmax, SUVmean and tumour-to-background ratio (TBR) of each lesion were measured. Reports were also compared for their final conclusions and the number and localisation of lesions. Results In both reconstructions the same 87 lesions were reported. Mean SUVmax, SUVmean and TBR were higher for Q.Clear than OSEM (7.01 vs 6.53 [p = 0.052], 4.16 vs 3.84 [p = 0.036] and 20.2 vs 16.8 [p < 0.00001], respectively). Small lesions (< 10 mm) had statistically significant higher SUVmax, SUVmean and TBR in Q.Clear than OSEM (5.37 vs 4.79 [p = 0.032], 3.08 vs 2.70 [p = 0.04] and 15.5 vs 12.5 [p = 0.00214], respectively). For lesions ≥ 10 mm, no significant differences were observed. Findings with higher tracer avidity (SUVmax ≥ 5) tended to have higher SUVmax, SUVmean and TBR values in Q.Clear (11.6 vs 10.3 [p = 0.00278], 7.0 vs 6.7 [p = 0.077] and 33.9 vs 26.7 [p < 0.00001, respectively). Mean background uptake did not differ significantly between Q.Clear and OSEM (0.42 vs 0.39, p = 0.07). Conclusions In 18F-PSMA-1007 PET/CT, Q.Clear SUVs and TBR tend to be higher (regardless of lesion localisation), especially for small and highly avid lesions. Increase in SUVs is also higher for lesions with high tracer uptake. Still, Q.Clear does not affect 18F-PSMA-1007 PET/CT specificity and sensitivity.
Collapse
Affiliation(s)
- Ewa Witkowska-Patena
- Department of Nuclear Medicine, Military Institute of Medicine, 128 Szaserów St, 04-141, Warsaw, Poland. .,Affidea Mazovian PET/CT Medical Centre, 128 Szaserów St, 04-349, Warsaw, Poland.
| | - Anna Budzyńska
- Department of Nuclear Medicine, Military Institute of Medicine, 128 Szaserów St, 04-141, Warsaw, Poland.,Affidea Mazovian PET/CT Medical Centre, 128 Szaserów St, 04-349, Warsaw, Poland
| | - Agnieszka Giżewska
- Department of Nuclear Medicine, Military Institute of Medicine, 128 Szaserów St, 04-141, Warsaw, Poland.,Affidea Mazovian PET/CT Medical Centre, 128 Szaserów St, 04-349, Warsaw, Poland
| | - Mirosław Dziuk
- Department of Nuclear Medicine, Military Institute of Medicine, 128 Szaserów St, 04-141, Warsaw, Poland.,Affidea Mazovian PET/CT Medical Centre, 128 Szaserów St, 04-349, Warsaw, Poland
| | | |
Collapse
|
26
|
Evaluation of a Bayesian penalized likelihood reconstruction algorithm for low-count clinical 18F-FDG PET/CT. EJNMMI Phys 2019; 6:32. [PMID: 31889228 PMCID: PMC6937357 DOI: 10.1186/s40658-019-0262-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Background Recently, a Bayesian penalized likelihood (BPL) reconstruction algorithm was introduced for a commercial PET/CT with the potential to improve image quality. We compared the performance of this BPL algorithm with conventional reconstruction algorithms under realistic clinical conditions such as daily practiced at many European sites, i.e. low 18F-FDG dose and short acquisition times. Results To study the performance of the BPL algorithm, regular clinical 18F-FDG whole body PET scans were made. In addition, two types of phantoms were scanned with 4-37 mm sized spheres filled with 18F-FDG at sphere-to-background ratios of 10-to-1, 4-to-1, and 2-to-1. Images were reconstructed using standard ordered-subset expectation maximization (OSEM), OSEM with point spread function (PSF), and the BPL algorithm using β-values of 450, 550 and 700. To quantify the image quality, the lesion detectability, activity recovery, and the coefficient of variation (COV) within a single bed position (BP) were determined. We found that when applying the BPL algorithm both smaller lesions in clinical studies as well as spheres in phantom studies can be detected more easily due to a higher SUV recovery, especially for higher contrast ratios. Under standard clinical scanning conditions, i.e. low number of counts, the COV is higher for the BPL (β=450) than the OSEM+PSF algorithm. Increase of the β-value to 550 or 700 results in a COV comparable to OSEM+PSF, however, at the cost of contrast, though still better than OSEM+PSF. At the edges of the axial field of view (FOV) where BPs overlap, COV can increase to levels at which bands become visible in clinical images, related to the lower local axial sensitivity of the PET/CT, which is due to the limited bed overlap of 23% such as advised by the manufacturer. Conclusions The BPL algorithm performs better than the standard OSEM+PSF algorithm on small lesion detectability, SUV recovery, and noise suppression. Increase of the percentage of bed overlap, time per BP, administered activity, or the β-value, all have a direct positive impact on image quality, though the latter with some loss of small lesion detectability. Thus, BPL algorithms are very interesting for improving image quality, especially in small lesion detectability.
Collapse
|
27
|
Economou Lundeberg J, Oddstig J, Bitzén U, Trägårdh E. Comparison between silicon photomultiplier-based and conventional PET/CT in patients with suspected lung cancer-a pilot study. EJNMMI Res 2019; 9:35. [PMID: 31511997 PMCID: PMC6738366 DOI: 10.1186/s13550-019-0504-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/12/2019] [Indexed: 01/22/2023] Open
Abstract
Background Lung cancer is one of the most common cancers in the world. Early detection and correct staging are fundamental for treatment and prognosis. Positron emission tomography with computed tomography (PET/CT) is recommended clinically. Silicon (Si) photomultiplier (PM)-based PET technology and new reconstruction algorithms are hoped to increase the detection of small lesions and enable earlier detection of pathologies including metastatic spread. The aim of this study was to compare the diagnostic performance of a SiPM-based PET/CT (including a new block-sequential regularization expectation maximization (BSREM) reconstruction algorithm) with a conventional PM-based PET/CT including a conventional ordered subset expectation maximization (OSEM) reconstruction algorithm. The focus was patients admitted for 18F-fluorodeoxyglucose (FDG) PET/CT for initial diagnosis and staging of suspected lung cancer. Patients were scanned on both a SiPM-based PET/CT (Discovery MI; GE Healthcare, Milwaukee, MI, USA) and a PM-based PET/CT (Discovery 690; GE Healthcare, Milwaukee, MI, USA). Standardized uptake values (SUV) and image interpretation were compared between the two systems. Image interpretations were further compared with histopathology when available. Results Seventeen patients referred for suspected lung cancer were included in our single injection, dual imaging study. No statically significant differences in SUVmax of suspected malignant primary tumours were found between the two PET/CT systems. SUVmax in suspected malignant intrathoracic lymph nodes was 10% higher on the SiPM-based system (p = 0.026). Good consistency (14/17 cases) between the PET/CT systems were found when comparing simplified TNM staging. The available histology results did not find any obvious differences between the systems. Conclusion In a clinical setting, the new SiPM-based PET/CT system with a new BSREM reconstruction algorithm provided a higher SUVmax for suspected lymph node metastases compared to the PM-based system. However, no improvement in lung cancer detection was seen.
Collapse
Affiliation(s)
- Johan Economou Lundeberg
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, 221 85, Lund, Sweden.
| | - Jenny Oddstig
- Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Ulrika Bitzén
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, 221 85, Lund, Sweden
| | - Elin Trägårdh
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, 221 85, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Trägårdh E, Minarik D, Almquist H, Bitzén U, Garpered S, Hvittfelt E, Olsson B, Oddstig J. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for 18F-FDG. EJNMMI Res 2019; 9:64. [PMID: 31342214 PMCID: PMC6656834 DOI: 10.1186/s13550-019-0535-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/16/2019] [Indexed: 12/03/2022] Open
Abstract
Background Block-sequential regularized expectation maximization (BSREM), commercially Q. Clear (GE Healthcare, Milwaukee, WI, USA), is a reconstruction algorithm that allows for a fully convergent iterative reconstruction leading to higher image contrast compared to conventional reconstruction algorithms, while also limiting noise. The noise penalization factor β controls the trade-off between noise level and resolution and can be adjusted by the user. The aim was to evaluate the influence of different β values for different activity time products (ATs = administered activity × acquisition time) in whole-body 18F-fluorodeoxyglucose (FDG) positron emission tomography with computed tomography (PET-CT) regarding quantitative data, interpretation, and quality assessment of the images. Twenty-five patients with known or suspected malignancies, referred for clinical 18F-FDG PET-CT examinations acquired on a silicon photomultiplier PET-CT scanner, were included. The data were reconstructed using BSREM with β values of 100–700 and ATs of 4–16 MBq/kg × min/bed (acquisition times of 1, 1.5, 2, 3, and 4 min/bed). Noise level, lesion SUVmax, and lesion SUVpeak were calculated. Image quality and lesion detectability were assessed by four nuclear medicine physicians for acquisition times of 1.0 and 1.5 min/bed position. Results The noise level decreased with increasing β values and ATs. Lesion SUVmax varied considerably between different β values and ATs, whereas SUVpeak was more stable. For an AT of 6 (in our case 1.5 min/bed), the best image quality was obtained with a β of 600 and the best lesion detectability with a β of 500. AT of 4 generated poor-quality images and false positive uptakes due to noise. Conclusions For oncologic whole-body 18F-FDG examinations on a SiPM-based PET-CT, we propose using an AT of 6 (i.e., 4 MBq/kg and 1.5 min/bed) reconstructed with BSREM using a β value of 500–600 in order to ensure image quality and lesion detection rate as well as a high patient throughput. We do not recommend using AT < 6 since the risk of false positive uptakes due to noise increases.
Collapse
Affiliation(s)
- Elin Trägårdh
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Inga Marie Nilssons gata 49, 205 02, Malmö, Sweden. .,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. .,Nuclear Medicine, Lund University, Malmö, Sweden.
| | - David Minarik
- Radiation Physics, Skåne University Hospital, Malmö and Lund, Sweden.,Nuclear Medicine, Lund University, Malmö, Sweden
| | - Helén Almquist
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Inga Marie Nilssons gata 49, 205 02, Malmö, Sweden
| | - Ulrika Bitzén
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Inga Marie Nilssons gata 49, 205 02, Malmö, Sweden
| | - Sabine Garpered
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Inga Marie Nilssons gata 49, 205 02, Malmö, Sweden.,Nuclear Medicine, Lund University, Malmö, Sweden
| | - Erland Hvittfelt
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Inga Marie Nilssons gata 49, 205 02, Malmö, Sweden
| | - Berit Olsson
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Inga Marie Nilssons gata 49, 205 02, Malmö, Sweden
| | - Jenny Oddstig
- Radiation Physics, Skåne University Hospital, Malmö and Lund, Sweden.,Nuclear Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
29
|
How Do the More Recent Reconstruction Algorithms Affect the Interpretation Criteria of PET/CT Images? Nucl Med Mol Imaging 2019; 53:216-222. [PMID: 31231442 DOI: 10.1007/s13139-019-00594-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/31/2019] [Accepted: 04/21/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose Recently, a new Bayesian Penalized Likelihood (BPL) Reconstruction Algorithm was introduced by GE Healthcare, Q.Clear; it promises to provide better PET image resolution compared to the widely used Ordered Subset Expectation Maximization (OSEM). The aim of this study is to compare the performance of these two algorithms on several types of findings, in terms of image quality, lesion detectability, sensitivity, and specificity. Methods Between September 6th 2017 and July 31st 2018, 663 whole body 18F-FDG PET/CT scans were performed at the Nuclear Medicine Department of S. Martino Hospital (Belluno, Italy). Based on the availability of clinical/radiological follow-up data, 240 scans were retrospectively reviewed. For each scan, a hypermetabolic finding was selected, reporting both for OSEM and Q.Clear: SUVmax and SUVmean values of the finding, the liver and the background close to the finding; size of the finding; percentage variations of SUVmax and SUVmean. Each finding was subsequently correlated with clinical and radiological follow-up, to define its benign/malignant nature. Results Overall, Q.Clear improved the SUV values in each scan, especially in small findings (< 10 mm), high SUVmax values (≥ 10), and medium/low backgrounds. Furthermore, Q.Clear amplifies the signal of hypermetabolic findings without modifying the background signal, which leads to an increase in signal-to-noise ratio, improving overall image quality. Finally, Q.Clear did not affect PET sensitivity or specificity, in terms of number of reported findings and characterization of their nature. Conclusions Q.Clear is an iterative algorithm that improves significantly the quality of PET images compared to OSEM, increasing the SUVmax of findings (in particular for small findings) and the signal-to-noise ratio. However, due to the intrinsic characteristics of this algorithm, it will be necessary to adapt and/or modify the current interpretative criteria based of quantitative evaluation, to avoid an overestimation of the disease burden.
Collapse
|
30
|
Evaluation and Optimization of a New PET Reconstruction Algorithm, Bayesian Penalized Likelihood Reconstruction, for Lung Cancer Assessment According to Lesion Size. AJR Am J Roentgenol 2019; 213:W50-W56. [PMID: 30995096 DOI: 10.2214/ajr.18.20478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. The purpose of this study was to characterize the Bayesian penalized likelihood (BPL) reconstruction algorithm in comparison with an ordered subset expectation maximization (OSEM) reconstruction algorithm and to determine its optimal penalization factor (expressed as a beta value) for clinical use. MATERIALS AND METHODS. FDG PET/CT scans of 46 patients with lung cancer were reconstructed using OSEM and BPL with beta values of 200, 300, 400, 500, and 1000. The liver signal-to-noise ratio, mean standardized uptake value (SUVmean) of the liver, and maximum standardized uptake value (SUVmax) and SUVmean of the cancers were measured. Tumors were categorized into three size groups, and the percentage difference in the tumor SUVmax between OSEM and BPL with a beta value of 200 as well as the percentage difference in the SUVmax between BPL with a beta value of 200 and BPL with a beta value of 1000 were calculated. Image quality was assessed by visual scoring. RESULTS. BPL showed a significantly higher liver signal-to-noise ratio than OSEM, except for BPL with a beta value of 200. The liver SUVmean showed no statistical difference among all algorithms. The SUVmax and SUVmean of tumors decreased as the beta value increased. BPL with a beta value of 200 produced a significantly higher tumor SUVmax than did OSEM (p < 0.01), and BPL with a beta value of 400, 500, or 1000 produced a significantly lower tumor SUVmax than did OSEM (p < 0.01). Visual analysis showed the highest and lowest scores for BPL with beta values of 500 and 200, respectively. In the small size group, the percentage difference in the SUVmax between OSEM and BPL with a beta value of 200 and the percentage difference in the SUVmax between BPL with a beta value of 200 and BPL with a beta value of 1000 were significantly larger than that in the other size groups (p < 0.01). CONCLUSION. The BPL algorithm improves image quality without compromising image quantification. A beta value of 500 appeared to be optimal in this study. Smaller tumors were more influenced by BPL.
Collapse
|
31
|
Bjöersdorff M, Oddstig J, Karindotter-Borgendahl N, Almquist H, Zackrisson S, Minarik D, Trägårdh E. Impact of penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm for 18F-fluorocholine PET-CT regarding image quality and interpretation. EJNMMI Phys 2019; 6:5. [PMID: 30900064 PMCID: PMC6428870 DOI: 10.1186/s40658-019-0242-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/05/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Recently, the block-sequential regularized expectation maximization (BSREM) reconstruction algorithm was commercially introduced (Q.Clear, GE Healthcare, Milwaukee, WI, USA). However, the combination of noise-penalizing factor (β), acquisition time, and administered activity for optimal image quality has not been established for 18F-fluorocholine (FCH). The aim was to compare image quality and diagnostic performance of different reconstruction protocols for patients with prostate cancer being examined with 18F-FCH on a silicon photomultiplier-based PET-CT. Thirteen patients were included, injected with 4 MBq/kg, and images were acquired after 1 h. Images were reconstructed with frame durations of 1.0, 1.5, and 2.0 min using β of 150, 200, 300, 400, 500, and 550. An ordered subset expectation maximization (OSEM) reconstruction with a frame duration of 2.0 min was used for comparison. Images were quantitatively analyzed regarding standardized uptake values (SUV) in metastatic lymph nodes, local background, and muscle to obtain contrast-to-noise ratios (CNR) as well as the noise level in muscle. Images were analyzed regarding image quality and number of metastatic lymph nodes by two nuclear medicine physicians. RESULTS The highest median CNR was found for BSREM with a β of 300 and a frame duration of 2.0 min. The OSEM reconstruction had the lowest median CNR. Both the noise level and lesion SUVmax decreased with increasing β. For a frame duration of 1.5 min, the median quality score was highest for β 400-500, and for a frame duration of 2.0 min the score was highest for β 300-500. There was no statistically significant difference in the number of suspected lymph node metastases between the different image series for one of the physicians, and for the other physician the number of lymph nodes differed only for one combination of image series. CONCLUSIONS To achieve acceptable image quality at 4 MBq/kg 18F-FCH, we propose using a β of 400-550 with a frame duration of 1.5 min. The lower β should be used if a high CNR is desired and the higher if a low noise level is important.
Collapse
Affiliation(s)
- Mimmi Bjöersdorff
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital and Lund University, Malmö, Sweden.
| | - Jenny Oddstig
- Radiation Physics, Skåne University Hospital and Lund University, Carl Bertil Laurells gata 9, SE-205 02, Malmö, Sweden
| | | | - Helén Almquist
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital and Lund University, Malmö, Sweden
| | - Sophia Zackrisson
- Medical Radiology, Skåne University Hospital and Lund University, Carl Bertil Laurells gata 9, SE-205 02, Malmö, Sweden
| | - David Minarik
- Radiation Physics, Skåne University Hospital and Lund University, Carl Bertil Laurells gata 9, SE-205 02, Malmö, Sweden
| | - Elin Trägårdh
- Clinical Physiology and Nuclear Medicine, Skåne University Hospital and Lund University, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|