1
|
Alhorani Q, Alkhybari E, Rawashdeh M, Sabarudin A, Latiff RA, Al-Ibraheem A, Vinjamuri S, Mohamad M. Revising and exploring the variations in methodologies for establishing the diagnostic reference levels for paediatric PET/CT imaging. Nucl Med Commun 2023; 44:937-943. [PMID: 37615527 DOI: 10.1097/mnm.0000000000001748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
PET-computed tomography (PET/CT) is a hybrid imaging technique that combines anatomical and functional information; to investigate primary cancers, stage tumours, and track treatment response in paediatric oncology patients. However, there is debate in the literature about whether PET/CT could increase the risk of cancer in children, as the machine is utilizing two types of radiation, and paediatric patients have faster cell division and longer life expectancy. Therefore, it is essential to minimize radiation exposure by justifying and optimizing PET/CT examinations and ensure an acceptable image quality. Establishing diagnostic reference levels (DRLs) is a crucial quantitative indicator and effective tool to optimize paediatric imaging procedures. This review aimed to distinguish and acknowledge variations among published DRLs for paediatric patients in PET/CT procedures. A search of relevant articles was conducted using databases, that is, Embase, Scopus, Web of Science, and Medline, using the keywords: PET-computed tomography, computed tomography, PET, radiopharmaceutical, DRL, and their synonyms. Only English and full-text articles were included, with no limitations on the publication year. After the screening, four articles were selected, and the review reveals different DRL approaches for paediatric patients undergoing PET/CT, with primary variations observed in patient selection criteria, reporting of radiation dose values, and PET/CT equipment. The study suggests that future DRL methods for paediatric patients should prioritize data collection in accordance with international guidelines to better understand PET/CT dose discrepancies while also striving to optimize radiation doses without compromising the quality of PET/CT images.
Collapse
Affiliation(s)
- Qays Alhorani
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Essam Alkhybari
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Mohammad Rawashdeh
- Radiologic Technology Program, Applied Medical Sciences College, Jordan University of Science and Technology, Irbid
| | - Akmal Sabarudin
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rukiah A Latiff
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Centre, Amman, Jordan
| | - Sobhan Vinjamuri
- Department of Nuclear Medicine, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Mazlyfarina Mohamad
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Ishibashi T, Masuda T, Kato M, Yamashita Y, Takei Y, Tsukamoto A, Matsumoto K, Sakamoto H. NATIONWIDE SURVEY OF RADIATION EXPOSURE FOR RADIOFREQUENCY CATHETER ABLATION FOR PULMONARY VEIN ISOLATION AND NONPULMONARY VEIN ISOLATION IN JAPAN. RADIATION PROTECTION DOSIMETRY 2022; 198:16-22. [PMID: 35021232 DOI: 10.1093/rpd/ncab185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
To propose typical values for the arrhythmia region between pulmonary vein isolation (PVI) and nonpulmonary vein isolation (non-PVI) in Japan. A nationwide questionnaire was posted to 343 facilities, to which 125 facilities (36.4%) responded. Results is the median for PVI and non-PVI were in terms of Ka,r (317 and 196 mGy), PKA (40.8 and 26.3 Gy.cm2), FT (43.0 and 27.3 min), and CI (326 and 102 images). When comparing PVI and non-PVI procedures, there were significant differences in Ka, r, PKA, FT, and CI (p < 0.05). In other words, by classifying into two types, PVI and non-PVI, we contributed to the establishment of typical values in Japan's RFCA.
Collapse
Affiliation(s)
- Toru Ishibashi
- Department of Radiological Technology, Tsuchiya General Hospital, Nakajima-cho 3-30, Naka-ku, Hiroshima 730-8655, Japan
| | - Takanori Masuda
- Department of Radiological Technology, Tsuchiya General Hospital, Nakajima-cho 3-30, Naka-ku, Hiroshima 730-8655, Japan
| | - Mamoru Kato
- Department of Radiological Technology, Tsuchiya General Hospital, 3-30 Nakajima-cho, Naka-ku, Hiroshima 730-8655, Japan
| | - Yukari Yamashita
- Department of Radiological Technology, Tsuchiya General Hospital, Nakajima-cho 3-30, Naka-ku, Hiroshima 730-8655, Japan
| | - Yasutaka Takei
- Department of Radiological Technology, Faculty of Health Science and Technology, 288 Matsushima, Kurashiki-City, Okayama 701-0193, Japan
| | - Atsuko Tsukamoto
- Department of Radiology, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan
| | - Kazuma Matsumoto
- Department of Clinical Radiology, Hyogo College of Medicine College Hospital, 1-3-6 Minatojima, Chuo-ku, Kobe City, Hyogo 663-8501, Japan
| | - Hajime Sakamoto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, bunkyou-ku, Tokyo 113-8421, Japan
| |
Collapse
|
3
|
Abstract
Nuclear medicine provides methods and techniques in that has benefited pediatric patients and their referring physicians for over 40 years. Nuclear medicine provides qualitative and quantitative information about overall and regional function of organs, systems, and lesions in the body. This involves applications in many organ systems including the skeleton, the brain, the kidneys and the heart as well as in the diagnosis and treatment of cancer. The practice of nuclear medicine requires the administration of radiopharmaceuticals which expose the patient to very low levels of ionizing radiation. Advanced approaches in the estimation of radiation dose from the internal distribution of radiopharmaceuticals in patients of various sizes and shapes have been developed in the past 20 years. Although there is considerable uncertainty in the estimation of the risk of adverse health effects from radiation at the very low exposure levels typically associated with nuclear medicine, some considers it prudent to be more cautious when applied to children as they are generally considered to be at higher risk than adults. Standard guidelines for administered activities for nuclear medicine procedures in children have been established including the North American consensus guidelines and the Paediatric Dosage Card developed by the European Association of Nuclear Medicine. As we move into the future, these guidelines would likely be reviewed in response to changes in clinical practice, a better understanding of radiation dosimetry as applied to children as well as new clinical applications, new advancements in the field with respect to both instrumentation and image reconstruction and processing.
Collapse
Affiliation(s)
- S Ted Treves
- Harvard Medical School; Brigham and Women's Hospital.
| | | |
Collapse
|
4
|
Cox CPW, van Assema DME, Verburg FA, Brabander T, Konijnenberg M, Segbers M. A dedicated paediatric [ 18F]FDG PET/CT dosage regimen. EJNMMI Res 2021; 11:65. [PMID: 34279735 PMCID: PMC8289942 DOI: 10.1186/s13550-021-00812-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The role of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) in children is still expanding. Dedicated paediatric dosage regimens are needed to keep the radiation dose as low as reasonably achievable and reduce the risk of radiation-induced carcinogenesis. The aim of this study is to investigate the relation between patient-dependent parameters and [18F]FDG PET image quality in order to propose a dedicated paediatric dose regimen. METHODS In this retrospective analysis, 102 children and 85 adults were included that underwent a diagnostic [18F]FDG PET/CT scan. The image quality of the PET scans was measured by the signal-to-noise ratio (SNR) in the liver. The SNR liver was normalized (SNRnorm) for administered activity and acquisition time to apply curve fitting with body weight, body length, body mass index, body weight/body length and body surface area. Curve fitting was performed with two power fits, a nonlinear two-parameter model α p-d and a linear single-parameter model α p-0.5. The fit parameters of the preferred model were combined with a user preferred SNR to obtain at least moderate or good image quality for the dosage regimen proposal. RESULTS Body weight demonstrated the highest coefficient of determination for the nonlinear (R2 = 0.81) and linear (R2 = 0.80) models. The nonlinear model was preferred by the Akaike's corrected information criterion. We decided to use a SNR of 6.5, based on the expert opinion of three nuclear medicine physicians. Comparison with the quadratic adult protocol confirmed the need for different dosage regimens for both patient groups. In this study, the amount of administered activity can be considerably reduced in comparison with the current paediatric guidelines. CONCLUSION Body weight has the strongest relation with [18F]FDG PET image quality in children. The proposed nonlinear dosage regimen based on body mass will provide a constant and clinical sufficient image quality with a significant reduction of the effective dose compared to the current guidelines. A dedicated paediatric dosage regimen is necessary, as a universal dosing regimen for paediatric and adult is not feasible.
Collapse
Affiliation(s)
- Christina P W Cox
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Postbus, 2040 3000 CA, Rotterdam, The Netherlands.
| | - Daniëlle M E van Assema
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Postbus, 2040 3000 CA, Rotterdam, The Netherlands
| | - Frederik A Verburg
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Postbus, 2040 3000 CA, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Postbus, 2040 3000 CA, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Postbus, 2040 3000 CA, Rotterdam, The Netherlands
| | - Marcel Segbers
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Postbus, 2040 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|