1
|
Smith TAD, West CML, Joseph N, Lane B, Irlam-Jones J, More E, Mistry H, Reeves KJ, Song YP, Reardon M, Hoskin PJ, Hussain SA, Denley H, Hall E, Porta N, Huddart RA, James ND, Choudhury A. A hypoxia biomarker does not predict benefit from giving chemotherapy with radiotherapy in the BC2001 randomised controlled trial. EBioMedicine 2024; 101:105032. [PMID: 38387404 PMCID: PMC10897900 DOI: 10.1016/j.ebiom.2024.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND BC2001 showed combining chemotherapy (5-FU + mitomycin-C) with radiotherapy improves loco-regional disease-free survival in patients with muscle-invasive bladder cancer (MIBC). We previously showed a 24-gene hypoxia-associated signature predicted benefit from hypoxia-modifying radiosensitisation in BCON and hypothesised that only patients with low hypoxia scores (HSs) would benefit from chemotherapy in BC2001. BC2001 allowed conventional (64Gy/32 fractions) or hypofractionated (55Gy/20 fractions) radiotherapy. An exploratory analysis tested an additional hypothesis that hypofractionation reduces reoxygenation and would be detrimental for patients with hypoxic tumours. METHODS RNA was extracted from pre-treatment biopsies (298 BC2001 patients), transcriptomic data generated (Affymetrix Clariom-S arrays), HSs calculated (median expression of 24-signature genes) and patients stratified as hypoxia-high or -low (cut-off: cohort median). PRIMARY ENDPOINT invasive loco-regional control (ILRC); secondary overall survival. FINDINGS Hypoxia affected overall survival (HR = 1.30; 95% CI 0.99-1.70; p = 0.062): more uncertainty for ILRC (HR = 1.29; 95% CI 0.82-2.03; p = 0.264). Benefit from chemotherapy was similar for patients with high or low HSs, with no interaction between HS and treatment arm. High HS associated with poor ILRC following hypofractionated (n = 90, HR 1.69; 95% CI 0.99-2.89 p = 0.057) but not conventional (n = 207, HR 0.70; 95% CI 0.28-1.80, p = 0.461) radiotherapy. The finding was confirmed in an independent cohort (BCON) where hypoxia associated with a poor prognosis for patients receiving hypofractionated (n = 51; HR 14.2; 95% CI 1.7-119; p = 0.015) but not conventional (n = 24, HR 1.04; 95% CI 0.07-15.5, p = 0.978) radiotherapy. INTERPRETATION Tumour hypoxia status does not affect benefit from BC2001 chemotherapy. Hypoxia appears to affect fractionation sensitivity. Use of HSs to personalise treatment needs testing in a biomarker-stratified trial. FUNDING Cancer Research UK, NIHR, MRC.
Collapse
Affiliation(s)
- Tim A D Smith
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK; Nuclear Futures Institute, School of Computer Science and Electronic Engineering, Bangor University, Bangor, UK
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK.
| | - Nuradh Joseph
- Sri Lanka Cancer Research Group, Maharagama, Sri Lanka
| | - Brian Lane
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Joely Irlam-Jones
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Elisabet More
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Hitesh Mistry
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Kimberley J Reeves
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Yee Pei Song
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Mark Reardon
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| | - Peter J Hoskin
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK; Mount Vernon Cancer Centre, Northwood, London, UK
| | - Syed A Hussain
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Helen Denley
- Pathology Centre, Shrewsbury and Telford NHS Trust, Royal Shrewsbury Hospital, Shrewsbury, UK
| | - Emma Hall
- Institute of Cancer Research, Clinical Trials & Statistics Unit, London, UK
| | - Nuria Porta
- Institute of Cancer Research, Clinical Trials & Statistics Unit, London, UK
| | - Robert A Huddart
- Royal Marsden NHS Trust, Department of Oncology, Downs Road, Sutton, Surrey, England, UK
| | - Nick D James
- Royal Marsden NHS Trust, Department of Oncology, Downs Road, Sutton, Surrey, England, UK
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|