1
|
Kawahara D, Koganezawa AS, Yamaguchi H, Wada T, Murakami Y. Biological adaptive radiotherapy for short-time dose compensation in lung SBRT patients. Med Phys 2025. [PMID: 40229143 DOI: 10.1002/mp.17820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/18/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Conventional adaptive radiation therapy (ART) primarily focuses on adapting to anatomical changes during radiation therapy but does not account for biological effects such as changes in radiosensitivity and tumor response, particularly during treatment interruptions. These interruptions may allow sublethal damage repair in tumor cells, reducing the effectiveness of stereotactic body radiation therapy (SBRT). PURPOSE The aim of this study was to develop and evaluate a novel biological adaptive radiotherapy (BART) framework to compensate for the biological effects of radiation interruptions during SBRT for lung cancer. METHODS This study involved lung SBRT patients using volumetric modulated arc therapy. We evaluated the biological dose loss using a microdosimetric kinetic model during four interruption durations (30, 60, 90, and 120 min). The reduction in the biological dose due to interruptions was calculated. The physical dose was calculated from the decreased biological dose in the in-house software, which was incorporated into the TPS. The optimization process was conducted for dose compensation in the TPS. To quantitatively assess the impact of BART on dose distribution, we evaluated the differences in target dose coverage and organ-at-risk (OAR) exposure between the original plan (without interruption), the plan with interruption, the BART plan, and the plan summing the dose before the interruption and the physical dose after compensation (compensated PD plan). The compensated PD plan assumed no biological dose reduction before the interruption. RESULTS Without BART compensation, interruptions of 30, 60, 90, and 120 min resulted in biological dose reductions, ranging from 12.1% to 19.0% for D50% of the gross tumor volume (GTV) and from 16.4% to 24.9% for D98% of the PTV. After applying BART, the differences were minimized to -1.5% to -0.6% for D50% of the GTV and -0.1% to 0.9% for D98% of the PTV. In contrast, the compensated PD plan exhibited larger residual deviations, with dose differences ranging from -9.9% to -14.0% for D50% of the GTV and -12.3% to -7.3% for D98% of the PTV. The volume differences between the BART plan and the plan without interruption remained within -0.8% to -0.4% for V5Gy and -0.2% to 0.0% for V20Gy, while differences between the BART and compensated PD plans were similarly small. The maximum dose to the spinal cord (D0.1cc) also remained within -0.2 to 0.1 Gy for the BART plan relative to the plan without interruption and -0.1 to -0.5 Gy compared to the compensated PD plan. These results confirm that the OAR doses remained within clinically acceptable constraints across all evaluated plans. CONCLUSION This study demonstrated that the BART framework effectively compensates for the biological dose reduction caused by interruptions during lung cancer SBRT. BART successfully maintained target dose coverage and minimized biological dose loss for the target, while keeping OAR doses within safe limits, including for the lungs and spinal cord. The introduction of BART marks a significant advancement in adaptive radiotherapy, offering a comprehensive approach to managing interruptions and improving clinical outcomes.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Department of Radiation Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Akito S Koganezawa
- Department of Information and Electronic Engineering, Faculty of Science and Engineering, Teikyo University, Tochigi, Japan
| | - Hikaru Yamaguchi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takuya Wada
- Department of Radiation Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
2
|
Nakano H, Shiinoki T, Tanabe S, Utsunomiya S, Kaidu M, Nishio T, Ishikawa H. Assessing tumor volumetric reduction with consideration for setup errors based on mathematical tumor model and microdosimetric kinetic model in single-isocenter VMAT for brain metastases. Phys Eng Sci Med 2024; 47:1385-1396. [PMID: 38884671 DOI: 10.1007/s13246-024-01451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
The volumetric reduction rate (VRR) was evaluated with consideration for six degrees-of-freedom (6DoF) patient setup errors based on a mathematical tumor model in single-isocenter volumetric modulated arc therapy (SI-VMAT) for brain metastases. Simulated gross tumor volumes (GTV) of 1.0 cm and dose distribution were created (27 Gy/3 fractions). The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was translated within 0-1.0 mm (Trans) and rotated within 0-1.0° (Rot) in the three axis directions using affine transformation. The tumor growth volume was calculated using a multicomponent mathematical model (MCTM), and lethal effects of irradiation and repair from damage during irradiation were calculated by a microdosimetric kinetic model (MKM) for non-small cell lung cancer (NSCLC) A549 and NCI-H460 (H460) cells. The VRRs were calculated 5 days after the end of irradiation using the physical dose to the GTV for varying d and 6DoF setup errors. The tolerance value of VRR, the GTV volume reduction rate, was set at 5%, based on the pre-irradiation GTV volume. With the exception of the only one A549 condition where (Trans, Rot) = (1.0 mm, 1.0°) was repeated for 3 fractions, all conditions met all the tolerance VRR values for A549 and H460 cells with varying d from 0 to 10 cm. Evaluation based on the mathematical tumor model suggested that if the 6DoF setup errors at each irradiation could be kept within 1.0 mm and 1.0°, there would be little effect on tumor volume regardless of the distance from the isocenter in SI-VMAT.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan.
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Yamaguchi University, Minamikogushi 1-1-1 Ube, Yamaguchi, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| |
Collapse
|
3
|
Yamaguchi H, Kawahara D, Koganezawa AS, Imano N, Murakami Y, Nishibuchi I, Shiba E, Nagata Y. Dose compensation for decreased biological effective dose due to intrafractional interruption during radiotherapy: integration with a commercial treatment planning system. Biomed Phys Eng Express 2024; 11:015019. [PMID: 39541602 DOI: 10.1088/2057-1976/ad9280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Objective.While the biological effective dose (BED) has been used to estimate the damage to tumor cells in radiotherapy, BED does not consider intrafractional interruption (IFI) occurring during irradiation. We aim to develop a framework to evaluate the decrease in BED [ΔBED] and to create a plan compensating for the decrease by IFI.Approach.ΔBEDwas calculated using a model based on the microdosimetric kinetic model (MKM) for four brain tumor cases treated using a volumetric-modulated arc therapy. Four biologically compensated plans (BCPs) were created in the treatment planning system by a single-time optimization using a base plan consideringΔBEDcreated in in-house software and optimization objectives for the original clinically delivered plan to achieve a homogeneous BED distribution within the planning target volume (PTV). The BED-volume histogram was evaluated for non-compensated plan and BCP with different timepoint of interruption, a percentage of gantry rotation angle (GRA) before interruption in planned GRA,ηand duration of interruptionτ. Characteristics of the dose accumulation were analyzed for different collimator angle sets, Plan A (10°, 85°) and Plan B (45° and 315°), for the first case.Main Results.Hot spots in theΔBEDdistribution forη= 25%, 50%, and 75% were observed at superior-and-interior ends, central region, and peripheral region in PTV, respectively. These behaviors could be understood by characteristics of the MKM-based model producing maximumΔBEDat 50% of the dose accumulation.ΔBED50%ranged 4.5%-6.6%, 5.0%-7.3%, and 5.3%-7.7% forτ= 60, 90, and 120 min, respectively. Plan A showed fast dose accumulation at superior and inferior edges while slow on peripheries in the lateral dose profile. Plan B showed more homogeneous PD distributions than Plan A during irradiation.Significance.The developed framework successfully evaluated and compensated for the decreased BED distribution.
Collapse
Affiliation(s)
- Hikaru Yamaguchi
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Akito S Koganezawa
- Department of Radiation Oncology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Department of Information and Electronic Engineering, Faculty of Science and Engineering, Teikyo University, Tochigi 320-8551, Japan
| | - Nobuki Imano
- Department of Radiation Oncology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Ikuno Nishibuchi
- Department of Radiation Oncology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Eiji Shiba
- Department of Radiation Oncology, Hospital of the University of Occupational and Environmental Health, Fukuoka 807-8556, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
4
|
Kawahara D. Improved dose compensation model owing to short irradiation interruption time for hypoxic tumor using a microdosimetric kinetic model. Rep Pract Oncol Radiother 2024; 29:271-279. [PMID: 39144261 PMCID: PMC11321781 DOI: 10.5603/rpor.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/29/2024] [Indexed: 08/16/2024] Open
Abstract
Background The objective was to enhance the biological compensation factor related to irradiation interruption in a short time (short irradiation interruption) in hypoxic tumors using a refined microdosimetric kinetic model (MKM) for photon radiation therapy. Materials and methods The biological dose differences were calculated for CHO-K1 cells exposed to a photon beam, considering interruptions of (τ) of 0-120 min and pO2 at oxygen levels of 0.075-160 mm Hg. The interrupted dose fraction (IDF) was defined as the percentage ratio of the dose delivered before short irradiation interruption to the total dose, which ranged from 10-90%. The compensated dose was calculated based on an IDF of 10-90% for a dose of 2-8 Gy and oxygen levels of 0.075-160 mm Hg. Results The Δ with and without short irradiation interruption was more pronounced with a higher dose and increased pO2. It exceeded 3% between IDF of 50% and either 10% or 90% and occurred more than τ = 50 min at 0.075 mm Hg, τ = 20 min at 3 mm Hg, τ = 20 min at 8 mm Hg, τ = 20 min at 15 mm Hg, τ = 20 min at 38 mm Hg, and τ = 20 min at 160 mm Hg. The dose compensation factor was greater at higher IDF rates. Conclusion The biological dose decreased with longer interruption times and higher oxygen concentrations. The improved model can compensate for the biological doses at various oxygen concentrations. Advances in knowledge The current study improved the dose compensation method for the decrease in the biological effect owing to short irradiation interruption by considering the oxygen concentration.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Lișcu HD, Antone-Iordache IL, Atasiei DI, Anghel IV, Ilie AT, Emamgholivand T, Ionescu AI, Șandru F, Pavel C, Ultimescu F. The Impact on Survival of Neoadjuvant Treatment Interruptions in Locally Advanced Rectal Cancer Patients. J Pers Med 2024; 14:266. [PMID: 38541008 PMCID: PMC10971105 DOI: 10.3390/jpm14030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 11/11/2024] Open
Abstract
The standard oncologic treatment of locally advanced rectal cancer is long-course radio-chemotherapy followed by surgery and adjuvant chemotherapy. This can result in a lengthy total treatment duration, sometimes up to one year from the diagnosis. Interruptions to neoadjuvant treatment can occur for a variety of reasons, forced or unforced. The main purpose of this study is to analyze the survival data of locally advanced rectal cancer patients who received neoadjuvant treatment and to find a cut-off point showing exactly how many days of interruption of neoadjuvant treatment the risk of death or disease relapse increases. We conducted a retrospective study on 299 patients with locally advanced rectal cancer using survival analysis (Kaplan-Meier curve and Cox regression) to determine survival probabilities for overall survival, local control, and disease-free survival. Patients with 0 to 3 days of neoadjuvant therapy interruption had a higher overall survival probability compared to patients with 4 or more days (90.2% compared to 57.9%, p-value < 0.001), hazard ratio 5.89 (p < 0.001). Local control and disease-free survival had a higher probability in patients with 0-2 days of interruption compared to people with 3 or more days (94% vs. 75.4%, and 82.2% vs. 50.5%, respectively, both p-values < 0.001). Patients with tumoral or nodal downstaging experienced fewer days of interruption than patients with no downstage. These findings reinforce the need for radiation oncologists to be well-organized when starting neoadjuvant treatment for rectal cancer, in order to anticipate and prevent potential treatment interruptions and achieve the best therapeutic results.
Collapse
Affiliation(s)
- Horia-Dan Lișcu
- Discipline of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (D.-I.A.); (I.V.A.); (A.-T.I.); (T.E.); (A.-I.I.)
- Radiotherapy Department, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Ionut-Lucian Antone-Iordache
- Discipline of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (D.-I.A.); (I.V.A.); (A.-T.I.); (T.E.); (A.-I.I.)
| | - Dimitrie-Ionuț Atasiei
- Discipline of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (D.-I.A.); (I.V.A.); (A.-T.I.); (T.E.); (A.-I.I.)
| | - Ioana Valentina Anghel
- Discipline of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (D.-I.A.); (I.V.A.); (A.-T.I.); (T.E.); (A.-I.I.)
| | - Andreea-Teodora Ilie
- Discipline of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (D.-I.A.); (I.V.A.); (A.-T.I.); (T.E.); (A.-I.I.)
| | - Taraneh Emamgholivand
- Discipline of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (D.-I.A.); (I.V.A.); (A.-T.I.); (T.E.); (A.-I.I.)
| | - Andreea-Iuliana Ionescu
- Discipline of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (H.-D.L.); (D.-I.A.); (I.V.A.); (A.-T.I.); (T.E.); (A.-I.I.)
- Medical Oncology Department, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Florica Șandru
- Department of Dermatology, Elias University Emergency Hospital, 011461 Bucharest, Romania;
| | - Christopher Pavel
- Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Flavia Ultimescu
- Department of Pathology, Institute of Oncology “Prof. Dr. Alexandru Trestioreanu”, 022328 Bucharest, Romania;
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
6
|
Kawahara D, Nagata Y. Biological dosimetric impact of dose-delivery time for hypoxic tumour with modified microdosimetric kinetic model. Rep Pract Oncol Radiother 2023; 28:514-521. [PMID: 37795224 PMCID: PMC10547428 DOI: 10.5603/rpor.a2023.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/03/2023] [Indexed: 10/06/2023] Open
Abstract
Background An improved microdosimetric kinetic model (MKM) can address radiobiological effects with prolonged delivery times. However, these do not consider the effects of oxygen. The current study aimed to evaluate the biological dosimetric effects associated with the dose delivery time in hypoxic tumours with improved MKM for photon radiation therapy. Materials and methods Cell survival was measured under anoxic, hypoxic, and oxic conditions using the Monte Carlo code PHITS. The effect of the dose rate of 0.5-24 Gy/min for the biological dose (Dbio) was estimated using the microdosimetric kinetic model. The dose per fraction and pressure of O2 (pO2) in the tumour varied from 2 to 20 Gy and from 0.01 to 5.0% pO2, respectively. Results The ratio of the Dbio at 1.0-24 Gy/min to that at 0.5 Gy/min (RDR) was higher at higher doses. The maximum RDR was 1.09 at 1.0 Gy/min, 1.12 at 12 Gy/min, and 1.13 at 24 Gy/min. The ratio of the Dbio at 0.01-2.0% of pO2 to that at 5.0% of pO2 (Roxy) was within 0.1 for 2-20 Gy of physical dose. The maximum Roxy was 0.42 at 0.01% pO2, 0.76 at 0.4% pO2, 0.89 at 1% pO2, and 0.96 at 2% pO2. Conclusion Our proposed model can estimate the cell killing and biological dose under hypoxia in a clinical and realistic patient. A shorter dose-delivery time with a higher oxygen distribution increased the radiobiological effect. It was more effective at higher doses per fraction than at lower doses.
Collapse
Affiliation(s)
- Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Institute of Biomedical & Health Science, Hiroshima University, Japan
| |
Collapse
|
7
|
Nakano H, Shiinoki T, Tanabe S, Utsunomiya S, Takizawa T, Kaidu M, Nishio T, Ishikawa H. Mathematical model combined with microdosimetric kinetic model for tumor volume calculation in stereotactic body radiation therapy. Sci Rep 2023; 13:10981. [PMID: 37414844 PMCID: PMC10326039 DOI: 10.1038/s41598-023-38232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
We proposed a new mathematical model that combines an ordinary differential equation (ODE) and microdosimetric kinetic model (MKM) to predict the tumor-cell lethal effect of Stereotactic body radiation therapy (SBRT) applied to non-small cell lung cancer (NSCLC). The tumor growth volume was calculated by the ODE in the multi-component mathematical model (MCM) for the cell lines NSCLC A549 and NCI-H460 (H460). The prescription doses 48 Gy/4 fr and 54 Gy/3 fr were used in the SBRT, and the effect of the SBRT on tumor cells was evaluated by the MKM. We also evaluated the effects of (1) linear quadratic model (LQM) and the MKM, (2) varying the ratio of active and quiescent tumors for the total tumor volume, and (3) the length of the dose-delivery time per fractionated dose (tinter) on the initial tumor volume. We used the ratio of the tumor volume at 1 day after the end of irradiation to the tumor volume before irradiation to define the radiation effectiveness value (REV). The combination of MKM and MCM significantly reduced REV at 48 Gy/4 fr compared to the combination of LQM and MCM. The ratio of active tumors and the prolonging of tinter affected the decrease in the REV for A549 and H460 cells. We evaluated the tumor volume considering a large fractionated dose and the dose-delivery time by combining the MKM with a mathematical model of tumor growth using an ODE in lung SBRT for NSCLC A549 and H460 cells.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan.
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Yamaguchi University, Minamikogushi 1-1-1 Ube, Yamaguchi, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-Dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiation Oncology, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| |
Collapse
|
8
|
Zhao F, Yang D, Li X. Effect of radiotherapy interruption on nasopharyngeal cancer. Front Oncol 2023; 13:1114652. [PMID: 37091186 PMCID: PMC10116059 DOI: 10.3389/fonc.2023.1114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the epithelial cells of the nasopharynx with a unique geographic distribution, and is particularly prevalent in East and Southeast Asia. Due to its anatomical location, the surgery is difficult to access and the high sensitivity of nasopharyngeal cancer to radiotherapy (RT) makes it the main treatment modality. Radical radiotherapy is the first-line treatment for early-stage nasopharyngeal carcinoma and the cornerstone of multidisciplinary treatment for patients with locally advanced nasopharyngeal carcinoma. Nevertheless, radiotherapy interruption is inevitable as a consequence of unavoidable factors such as public holidays, machine malfunction, patient compliance, and adverse response to treatment, which in turn leads to a reduction in bioactivity and causes sublethal loss of tumor cells to repair. Unirradiated tumor cells are more likely to repopulate at or near their original fastest growth rate during this interval. If no measures are taken after the radiotherapy interruption, such as increasing the dose of radiotherapy and systemic therapy, the tumor is most likely to go uncontrolled and then progress. This review describes the effects of radiotherapy interruption on nasopharyngeal carcinoma, the mechanism of the effect, and explores the measures that can be taken in response to such interruption.
Collapse
Affiliation(s)
- Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Nakano H, Takizawa T, Kawahara D, Tanabe S, Utsunomiya S, Kaidu M, Maruyama K, Takeuchi S, Onda K, Koizumi M, Nishio T, Ishikawa H. Radiobiological evaluation considering the treatment time with stereotactic radiosurgery for brain metastases. BJR Open 2022; 4:20220013. [PMID: 38525167 PMCID: PMC10958663 DOI: 10.1259/bjro.20220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Objective We evaluated the radiobiological effect of the irradiation time with the interruption time of stereotactic radiosurgery (SRS) using CyberKnife® (CK) systemfor brain metastases. Methods We used the DICOM data and irradiation log file of the 10 patients with brain metastases from non-small-cell lung cancer (NSCLC) who underwent brain SRS. We defined the treatment time as the sum of the dose-delivery time and the interruption time during irradiations, and we used a microdosimetric kinetic model (MKM) to evaluate the radiobiological effects of the treatment time. The biological parameters, i.e. α0, β0, and the DNA repair constant rate (a + c), were acquired from NCI-H460 cell for the MKM. We calculated the radiobiological dose for the gross tumor volume (GTVbio) to evaluate the treatment time's effect compared with no treatment time as a reference. The D95 (%) and the Radiation Therapy Oncology Group conformity index (RCI) and Paddick conformity index (PCI) were calculated as dosimetric indices. We used several DNA repair constant rates (a + c) (0.46, 1.0, and 2.0) to assess the radiobiological effect by varying the DNA repair date (a + c) values. Results The mean values of D95 (%), RCI, and PCI for GTVbio were 98.8%, 0.90, and 0.80, respectively, and decreased with increasing treatment time. The mean values of D95 (%), RCI, and PCI of GTVbio at 2.0 (a+c) value were 94.9%, 0.71, and 0.49, respectively. Conclusion The radiobiological effect of the treatment time on tumors was accurately evaluated with brain SRS using CK. Advances in knowledge There has been no published investigation of the radiobiological impact of the longer treatment time with multiple interruptions of SRS using a CK on the target dose distribution in a comparison with the use of a linac. Radiobiological dose assessment that takes into account treatment time in the physical dose in this study may allow more accurate dose assessment in SRS for metastatic brain tumors using CK.
Collapse
Affiliation(s)
| | | | - Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Katsuya Maruyama
- Department of Radiation Oncology, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Shigekazu Takeuchi
- Department of Neurosurgery, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Kiyoshi Onda
- Department of Neurosurgery, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| |
Collapse
|
10
|
Xu C, Yang KB, Feng RJ, Chen L, Du XJ, Mao YP, Li WF, Liu Q, Sun Y, Ma J. Radiotherapy interruption due to holidays adversely affects the survival of patients with nasopharyngeal carcinoma: a joint analysis based on large-scale retrospective data and clinical trials. Radiat Oncol 2022; 17:36. [PMID: 35183221 PMCID: PMC8858542 DOI: 10.1186/s13014-022-02006-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/07/2022] [Indexed: 12/26/2022] Open
Abstract
Background The impact of radiotherapy interruption due to the Spring Festival holidays in China on the survival of patients with nasopharyngeal carcinoma (NPC) is unclear. Methods Nontrial patients with locoregionally advanced NPC receiving radiotherapy plus induction chemotherapy (IC) and/or concurrent chemotherapy (CC) were included (N = 5035) and divided into two groups based on the Spring Festival-induced radiotherapy interruption. Kaplan–Meier curves for overall survival (OS) and failure-free survival (FFS) were compared between rival groups. Impact of the timing of radiotherapy interruption (during or outside the Spring Festival) on survival was investigated in a propensity score-matched dataset. We adopted ordination correspondence analysis to determine the cut-off of radiotherapy prolongation for prognostic prediction, and accordingly performed subgroup analysis based on delayed days and chemotherapy details. Individual patient data of three phase III NPC trials (NCT00677118, NCT01245959, NCT01872962) were used for validation (N = 1465). Results Radiotherapy interruption was most frequently observed between December to January of the following year. Significantly lower OS and FFS were associated with the Spring Festival-induced interruption of radiotherapy (P = 0.009 and 0.033, respectively), but not that interruption of IC. In two matched comparison groups, the timing of radiotherapy interruption during the Spring Festival was more likely to lead to a decrease in FFS than outside the Spring Festival (P = 0.046), which was not observed in the validation using clinical trial data or in the subgroup analysis based on the 5-day delayed time. The absence of CC and the accumulated dose of cisplatin < 200 mg were related to the negative influences of the Spring Festival-induced radiotherapy interruption on FFS (P = 0.002) and OS (P = 0.010), respectively. Conclusions The poor survival of patients with NPC is associated with the Spring Festival-induced interruption of radiotherapy. We recommend that these patients receive adequate doses of cisplatin concurrently with radiotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02006-5.
Collapse
|
11
|
Ravichandran R, Mondal T, Barman B, Datta G, Kannan R. Role of LQ Model to Address Effect of Missed Treatment Days in External-Beam Radiotherapy. J Med Phys 2021; 46:52-54. [PMID: 34267490 PMCID: PMC8240914 DOI: 10.4103/jmp.jmp_24_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ramamoorthy Ravichandran
- Department of Radiation Oncology, Cachar Cancer Hospital and Research Centre, Meherpur, Silchar, Assam, India
| | - Tarani Mondal
- Department of Radiation Oncology, Cachar Cancer Hospital and Research Centre, Meherpur, Silchar, Assam, India
| | - Bandana Barman
- Department of Radiation Oncology, Cachar Cancer Hospital and Research Centre, Meherpur, Silchar, Assam, India
| | - Gopal Datta
- Department of Radiation Oncology, Cachar Cancer Hospital and Research Centre, Meherpur, Silchar, Assam, India
| | - Ravi Kannan
- Department of Surgical Oncology, Cachar Cancer Hospital and Research Centre, Meherpur, Silchar, Assam, India
| |
Collapse
|
12
|
Nakano H, Kawahara D, Tanabe S, Utsunomiya S, Takizawa T, Sakai M, Saito H, Ohta A, Kaidu M, Ishikawa H. Radiobiological effects of the interruption time with Monte Carlo Simulation on multiple fields in photon beams. J Appl Clin Med Phys 2020; 21:288-294. [PMID: 33270984 PMCID: PMC7769402 DOI: 10.1002/acm2.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The interruption time is the irradiation interruption that occurs at sites and operations such as the gantry, collimator, couch rotation, and patient setup within the field in radiotherapy. However, the radiobiological effect of prolonging the treatment time by the interruption time for tumor cells is little evaluated. We investigated the effect of the interruption time on the radiobiological effectiveness with photon beams based on a modified microdosimetric kinetic (mMK) model. METHODS The dose-mean lineal energy yD (keV/µm) of 6-MV photon beams was calculated by the particle and heavy ion transport system (PHITS). We set the absorbed dose to 2 or 8 Gy, and the interruption time (τ) was set to 1, 3, 5, 10, 30, and 60 min. The biological parameters such as α0, β0, and DNA repair constant rate (a + c) values were acquired from a human non-small-cell lung cancer cell line (NCI-H460) for the mMK model. We used two-field and four-field irradiation with a constant dose rate (3 Gy/min); the photon beams were paused for interruption time τ. We calculated the relative biological effectiveness (RBE) to evaluate the interruption time's effect compared with no interrupted as a reference. RESULTS The yD of 6-MV photon beams was 2.32 (keV/µm), and there was little effect by changing the water depth (standard deviation was 0.01). The RBE with four-field irradiation for 8 Gy was decreased to 0.997, 0.975, 0.900, and 0.836 τ = 1, 10, 30, 60 min, respectively. In addition, the RBE was affected by the repair constant rate (a + c) value, the greater the decrease in RBE with the longer the interruption time when the (a + c) value was large. CONCLUSION The ~10-min interruption of 6-MV photon beams did not significantly impact the radiobiological effectiveness, since the RBE decrease was <3%. Nevertheless, the RBE's effect on tumor cells was decreased about 30% by increasing the 60 min interruption time at 8 Gy with four-field irradiation. It is thus necessary to make the interruption time as short as possible.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan.,Niigata Neurosurgical Hospital, Niigata, Japan
| | - Madoka Sakai
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hirotake Saito
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Atsushi Ohta
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|