1
|
Michalet M, Valenzuela G, Nougaret S, Tardieu M, Azria D, Riou O. Development of Multiparametric Prognostic Models for Stereotactic Magnetic Resonance Guided Radiation Therapy of Pancreatic Cancers. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00282-2. [PMID: 40185208 DOI: 10.1016/j.ijrobp.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE Stereotactic magnetic resonance guided adaptive radiation therapy (SMART) is a new option for local treatment of unresectable pancreatic ductal adenocarcinoma, showing interesting survival and local control (LC) results. Despite this, some patients will experience early local and/or metastatic recurrence leading to death. We aimed to develop multiparametric prognostic models for these patients. METHODS AND MATERIALS All patients treated in our institution with SMART for an unresectable pancreatic ductal adenocarcinoma between October 21, 2019, and August 5, 2022 were included. Several initial clinical characteristics as well as dosimetric data of SMART were recorded. Radiomics data from 0.35-T simulation magnetic resonance imaging were extracted. All these data were combined to build prognostic models of overall survival (OS) and LC using machine learning algorithms. RESULTS Eighty-three patients with a median age of 64.9 years were included. A majority of patients had a locally advanced pancreatic cancer (77%). The median OS was 21 months after SMART completion and 27 months after chemotherapy initiation. The 6- and 12-month post-SMART OS was 87.8% (IC95%, 78.2%-93.2%) and 70.9% (IC95%, 58.8%-80.0%), respectively. The best model for OS was the Cox proportional hazard survival analysis using clinical data, with a concordance index inverse probability of censoring weighted of 0.87. Tested on its 12-month OS prediction capacity, this model had good performance (sensitivity 67%, specificity 71%, and area under the curve 0.90). The median LC was not reached. The 6- and 12-month post-SMART LC was 92.4% [IC95%, 83.7%-96.6%] and 76.3% [IC95%, 62.6%-85.5%], respectively. The best model for LC was the component-wise gradient boosting survival analysis using clinical and radiomics data, with a concordance index inverse probability of censoring weighted of 0.80. Tested on its 9-month LC prediction capacity, this model had good performance (sensitivity 50%, specificity 97%, and area under the curve 0.78). CONCLUSIONS Combining clinical and radiomics data in multiparametric prognostic models using machine learning algorithms showed good performance for the prediction of OS and LC. External validation of these models will be needed.
Collapse
Affiliation(s)
- Morgan Michalet
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute, Montpellier University, Montpellier, France; Montpellier Cancer Research Institute, Montpellier University, Montpellier, France.
| | - Gladis Valenzuela
- Montpellier Cancer Research Institute, Montpellier University, Montpellier, France
| | - Stéphanie Nougaret
- Montpellier Cancer Research Institute, Montpellier University, Montpellier, France
| | - Marion Tardieu
- Montpellier Cancer Research Institute, Montpellier University, Montpellier, France
| | - David Azria
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute, Montpellier University, Montpellier, France; University Federation of Radiation Oncology of Mediterranean Occitanie, Institut de Cancérologie du Gard, Centre Hospitalier Universitaire Carémeau, Nîmes, France; Montpellier Cancer Research Institute, Montpellier University, Montpellier, France
| | - Olivier Riou
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute, Montpellier University, Montpellier, France; Montpellier Cancer Research Institute, Montpellier University, Montpellier, France
| |
Collapse
|
2
|
Zhang B, Liu L, Meng D, Kue CS. Development of a radiomic model for cervical cancer staging based on pathologically verified, retrospective metastatic lymph node data. Acta Radiol 2024; 65:1548-1559. [PMID: 39569554 DOI: 10.1177/02841851241291931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
BACKGROUND Cervical cancer is a major cause of morbidity and mortality among gynecological malignancies. Diagnostic imaging of lymph node (LN) metastasis for prognosis and staging is used; however, the accuracy in classifying the stage needs to improve. PURPOSE To examine the accuracy of AI-based radiomics in diagnosis, prognosis assessment and predicting the diagnostic value of radiomics for pelvic LN metastasis in cervical cancer patients. MATERIAL AND METHODS The study included 118 female patients with 660 LNs and 118 merged LNs. Four imaging histology models-decision tree, random forest, logistic regression, and support vector machine (SVM)-were created in this study. The imaging histology features were extracted from both the independent and merged LN groups. The AUC values for the test sets and the training sets of the four imaging histology models were compared for the independent LN group and the merged LN group. The DeLong test was used to compare the models. RESULT The imaging histology prediction model developed in the merged LN group outperformed the independent LN group in terms of test set AUC (0.668 vs. 0.535 for decision tree, 0.841 vs. 0.627 for logistic regression, 0.785 vs. 0.637 for random forest, 0.85 vs. 0.648 for SVM) and accuracy (0.754 vs. 0.676 for decision tree, 0.780 vs. 0.671 for random forest, 0.848 vs. 0.685 for logistic regression, 0.822 vs. 0.657 for SVM). CONCLUSION The constructed SVM imaging histology model for the merged LN group might be advantageous in predicting pelvic LN metastasis in cervical cancer.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Human Resource, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Postgraduate Center, School of Graduate Studies, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Liang Liu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Deyue Meng
- Department of Obstestrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chin Siang Kue
- Faculty of Health and Life Science, Management and Science University, Shah Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Russo L, Charles-Davies D, Bottazzi S, Sala E, Boldrini L. Radiomics for clinical decision support in radiation oncology. Clin Oncol (R Coll Radiol) 2024; 36:e269-e281. [PMID: 38548581 DOI: 10.1016/j.clon.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/14/2024] [Accepted: 03/08/2024] [Indexed: 07/09/2024]
Abstract
Radiomics is a promising tool for the development of quantitative biomarkers to support clinical decision-making. It has been shown to improve the prediction of response to treatment and outcome in different settings, particularly in the field of radiation oncology by optimising the dose delivery solutions and reducing the rate of radiation-induced side effects, leading to a fully personalised approach. Despite the promising results offered by radiomics at each of these stages, standardised methodologies, reproducibility and interpretability of results are still lacking, limiting the potential clinical impact of these tools. In this review, we briefly describe the principles of radiomics and the most relevant applications of radiomics at each stage of cancer management in the framework of radiation oncology. Furthermore, the integration of radiomics into clinical decision support systems is analysed, defining the challenges and offering possible solutions for translating radiomics into a clinically applicable tool.
Collapse
Affiliation(s)
- L Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze Radiologiche ed Ematologiche. Università Cattolica Del Sacro Cuore, Rome, Italy.
| | - D Charles-Davies
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - S Bottazzi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - E Sala
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Dipartimento di Scienze Radiologiche ed Ematologiche. Università Cattolica Del Sacro Cuore, Rome, Italy
| | - L Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Michalet M, Valenzuela G, Debuire P, Riou O, Azria D, Nougaret S, Tardieu M. Robustness of radiomics features on 0.35 T magnetic resonance imaging for magnetic resonance-guided radiotherapy. Phys Imaging Radiat Oncol 2024; 31:100613. [PMID: 39140002 PMCID: PMC11320460 DOI: 10.1016/j.phro.2024.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Background and purpose MR-guided radiotherapy adds the precision of magnetic resonance imaging (MRI) to the therapeutic benefits of a linear accelerator. Prior to each therapeutic session, an MRI generates a significant volume of imaging data ripe for analysis. Radiomics stands at the forefront of medical imaging and oncology research, dedicated to mining quantitative imaging attributes to forge predictive models. However, the robustness of these models is often challenged. Materials and methods To assess the robustness of feature extraction, we conducted reproducibility studies using a 0.35 T MR-linac system, employing both a specialized phantom and patient-derived images, focusing on cases of pancreatic cancer. We extracted shape-based, first-order and textural features from patient-derived images and only first-order and textural features from phantom-derived images. The impact of the delay between simulation and first fraction images was also assessed with an equivalence test. Results From 107 features evaluated, 58 (54 %) were considered as non-reproducible: 18 were uniformly inconsistent across both phantom and patient images, 9 were specific to phantom-based analysis, and 31 to patient-derived data. Conclusion Our findings show that a significant proportion of radiomic features extracted from this dual dataset were unreliable. It is essential to discard these non-reproducible elements to refine and enhance radiomic model development, particularly for MR-guided radiotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Morgan Michalet
- Institut du Cancer de Montpellier, Fédération Universitaire d’Oncologie-Radiothérapie d’Occitanie Méditerranée (FOROM), INSERM U1194 IRCM, 208 avenue des apothicaires, 34298 Montpellier, France
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Gladis Valenzuela
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Pierre Debuire
- Institut du Cancer de Montpellier, Fédération Universitaire d’Oncologie-Radiothérapie d’Occitanie Méditerranée (FOROM), INSERM U1194 IRCM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Olivier Riou
- Institut du Cancer de Montpellier, Fédération Universitaire d’Oncologie-Radiothérapie d’Occitanie Méditerranée (FOROM), INSERM U1194 IRCM, 208 avenue des apothicaires, 34298 Montpellier, France
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - David Azria
- Institut du Cancer de Montpellier, Fédération Universitaire d’Oncologie-Radiothérapie d’Occitanie Méditerranée (FOROM), INSERM U1194 IRCM, 208 avenue des apothicaires, 34298 Montpellier, France
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Stéphanie Nougaret
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
- Institut du Cancer de Montpellier, Service d’imagerie médicale, 208 avenue des apothicaires, 34298 Montpellier, France
| | - Marion Tardieu
- IRCM, Univ Montpellier, ICM, INSERM, 208 avenue des apothicaires, 34298 Montpellier, France
| |
Collapse
|
5
|
Li X, Marcus D, Russell J, Aboagye EO, Ellis LB, Sheeka A, Park WE, Bharwani N, Ghaem‐Maghami S, Rockall AG. An Integrated Clinical-MR Radiomics Model to Estimate Survival Time in Patients With Endometrial Cancer. J Magn Reson Imaging 2023; 57:1922-1933. [PMID: 36484309 PMCID: PMC10947322 DOI: 10.1002/jmri.28544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Determination of survival time in women with endometrial cancer using clinical features remains imprecise. Features from MRI may improve the survival estimation allowing improved treatment planning. PURPOSE To identify clinical features and imaging signatures on T2-weighted MRI that can be used in an integrated model to estimate survival time for endometrial cancer subjects. STUDY TYPE Retrospective. POPULATION Four hundred thirteen patients with endometrial cancer as training (N = 330, 66.41 ± 11.42 years) and validation (N = 83, 67.60 ± 11.89 years) data and an independent set of 82 subjects as testing data (63.26 ± 12.38 years). FIELD STRENGTH/SEQUENCE 1.5-T and 3-T scanners with sagittal T2-weighted spin echo sequence. ASSESSMENT Tumor regions were manually segmented on T2-weighted images. Features were extracted from segmented masks, and clinical variables including age, cancer histologic grade and risk score were included in a Cox proportional hazards (CPH) model. A group least absolute shrinkage and selection operator method was implemented to determine the model from the training and validation datasets. STATISTICAL TESTS A likelihood-ratio test and decision curve analysis were applied to compare the models. Concordance index (CI) and area under the receiver operating characteristic curves (AUCs) were calculated to assess the model. RESULTS Three radiomic features (two image intensity and volume features) and two clinical variables (age and cancer grade) were selected as predictors in the integrated model. The CI was 0.797 for the clinical model (includes clinical variables only) and 0.818 for the integrated model using training and validation datasets, the associated mean AUC value was 0.805 and 0.853. Using the testing dataset, the CI was 0.792 and 0.882, significantly different and the mean AUC was 0.624 and 0.727 for the clinical model and integrated model, respectively. DATA CONCLUSION The proposed CPH model with radiomic signatures may serve as a tool to improve estimated survival time in women with endometrial cancer. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xingfeng Li
- Department of Surgery and CancerImperial CollegeLondonUK
| | - Diana Marcus
- Department of Surgery and CancerImperial CollegeLondonUK
- Chelsea and Westminster Hospital NHS Foundation TrustLondonUK
| | - James Russell
- Imaging DepartmentImperial College Healthcare NHS TrustLondonUK
| | | | - Laura Burney Ellis
- Department of Surgery and CancerImperial CollegeLondonUK
- Imaging DepartmentImperial College Healthcare NHS TrustLondonUK
| | | | | | - Nishat Bharwani
- Department of Surgery and CancerImperial CollegeLondonUK
- Imaging DepartmentImperial College Healthcare NHS TrustLondonUK
| | | | - Andrea G. Rockall
- Department of Surgery and CancerImperial CollegeLondonUK
- Imaging DepartmentImperial College Healthcare NHS TrustLondonUK
| |
Collapse
|
6
|
O'Sullivan NJ, Kelly ME. Radiomics and Radiogenomics in Pelvic Oncology: Current Applications and Future Directions. Curr Oncol 2023; 30:4936-4945. [PMID: 37232830 DOI: 10.3390/curroncol30050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Radiomics refers to the conversion of medical imaging into high-throughput, quantifiable data in order to analyse disease patterns, guide prognosis and aid decision making. Radiogenomics is an extension of radiomics that combines conventional radiomics techniques with molecular analysis in the form of genomic and transcriptomic data, serving as an alternative to costly, labour-intensive genetic testing. Data on radiomics and radiogenomics in the field of pelvic oncology remain novel concepts in the literature. We aim to perform an up-to-date analysis of current applications of radiomics and radiogenomics in the field of pelvic oncology, particularly focusing on the prediction of survival, recurrence and treatment response. Several studies have applied these concepts to colorectal, urological, gynaecological and sarcomatous diseases, with individual efficacy yet poor reproducibility. This article highlights the current applications of radiomics and radiogenomics in pelvic oncology, as well as the current limitations and future directions. Despite a rapid increase in publications investigating the use of radiomics and radiogenomics in pelvic oncology, the current evidence is limited by poor reproducibility and small datasets. In the era of personalised medicine, this novel field of research has significant potential, particularly for predicting prognosis and guiding therapeutic decisions. Future research may provide fundamental data on how we treat this cohort of patients, with the aim of reducing the exposure of high-risk patients to highly morbid procedures.
Collapse
Affiliation(s)
- Niall J O'Sullivan
- The Trinity St. James's Cancer Institute, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Michael E Kelly
- The Trinity St. James's Cancer Institute, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
7
|
Nougaret S, Vargas HA, Sala E. BJR female genitourinary oncology special feature: introductory editorial. Br J Radiol 2021; 94:20219003. [PMID: 34415200 DOI: 10.1259/bjr.20219003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Stephanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, University of Montpellier, Montpellier, France.,INSERM, Montpellier Cancer Research Institute, U1194, University of Montpellier, Montpellier, France
| | | | - Evis Sala
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK.,Department of Radiology and Cancer Research UK Cambridge Centre, University of Cambridge School of Clinical Medicine, Hills Road, Cambridge, UK
| |
Collapse
|