1
|
Yao Q, Jia W, Zhang T, Chen Y, Ding G, Dang Z, Shi S, Chen C, Qu S, Zhao Z, Pan D, Song W. A deep learning-based psi CT network effectively predicts early recurrence after hepatectomy in HCC patients. Abdom Radiol (NY) 2025:10.1007/s00261-025-04849-4. [PMID: 40009155 DOI: 10.1007/s00261-025-04849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) exhibits a high recurrence rate, and early recurrence significantly jeopardizes patient prognosis, necessitating reliable methods for early recurrence prediction. METHODS Utilizing multi-institutional data and integrating deep learning (DL) techniques, we established a neural network based on DenseNet capable of concurrently processing patients' triphasic enhanced CT scans. By incorporating an attention mechanism, the model automatically focuses on regions that significantly impact patient survival. Performance metrics were first evaluated using the concordance index (C-index), calibration curves, and decision curves based on the training and validation cohorts. Finally, class activation map (CAM) techniques were employed to visualize the regions of interest identified by the model. After model construction, five-fold cross-validation was performed to assess overfitting risks and further evaluate model stability. RESULTS We retrospectively collected data from 302 cases across five centers, including patients who underwent Partial Hepatectomy between December 2016 and December 2022. During model development, 180 patients from Institution I formed the training cohort, while the remaining patients comprised the validation cohort. The area under the ROC curve (AUC) for two-year outcomes was 0.797 in the validation cohort. Calibration curves, survival curves, and decision curve analysis (DCA) demonstrated the model's robust performance. CAMs revealed that the model primarily focuses on intra-abdominal solid organs, consistent with clinical experience. After model development, datasets were merged for cross-validation. The best model achieved a C-index of 0.774 in the validation cohort, with five-fold cross-validation yielding an average C-index of 0.778. The 95% confidence interval (CI) for the C-index, derived from cross-validation, ranged from 0.762 to 0.793. CONCLUSION Our DL-based enhanced CT network shows promise in predicting early recurrence in patients, representing a potential new strategy for early recurrence prediction in HCC.
Collapse
Affiliation(s)
- Qianyun Yao
- The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Weili Jia
- The First Affiliated Hospital of Air Force Medical University, Xi'an, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Tianchen Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yan Chen
- Yuncheng Central Hospital, Yuncheng, China
| | - Guangmiao Ding
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zheng Dang
- The 940, Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Shuai Shi
- Shaanxi Provincial People's Hospital, Taiyuan, China
| | - Chao Chen
- The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Shen Qu
- The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zihao Zhao
- The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Deng Pan
- Yuncheng Central Hospital, Yuncheng, China.
| | - Wenjie Song
- The First Affiliated Hospital of Air Force Medical University, Xi'an, China.
| |
Collapse
|
2
|
Zhao Y, Wang S, Wang Y, Li J, Liu J, Liu Y, Ji H, Su W, Zhang Q, Song Q, Yao Y, Liu A. Deep learning radiomics based on contrast enhanced MRI for preoperatively predicting early recurrence in hepatocellular carcinoma after curative resection. Front Oncol 2024; 14:1446386. [PMID: 39582540 PMCID: PMC11581961 DOI: 10.3389/fonc.2024.1446386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024] Open
Abstract
Purpose To explore the role of deep learning (DL) and radiomics-based integrated approach based on contrast enhanced magnetic resonance imaging (CEMRI) for predicting early recurrence (ER) in hepatocellular carcinoma (HCC) patients after curative resection. Methods Total 165 HCC patients (ER, n = 96 vs. non-early recurrence (NER), n = 69) were retrospectively collected and divided into a training cohort (n = 132) and a validation cohort (n = 33). From pretreatment CEMR images, a total of 3111 radiomics features were extracted, and radiomics models were constructed using five machine learning classifiers (logistic regression, support vector machine, k-nearest neighbor, extreme gradient Boosting, and multilayer perceptron). DL models were established via three variations of ResNet architecture. The clinical-radiological (CR), radiomics combined with clinical-radiological (RCR), and deep learning combined with RCR (DLRCR) models were constructed. Model discrimination, calibration, and clinical utilities were evaluated by receiver operating characteristic curve, calibration curve, and decision curve analysis, respectively. The best-performing model was compared with the widely used staging systems and preoperative prognostic indexes. Results The RCR model (area under the curve (AUC): 0.841 and 0.811) and the optimal radiomics model (AUC: 0.839 and 0.804) achieved better performance than the CR model (AUC: 0.662 and 0.752) in the training and validation cohorts, respectively. The optimal DL model (AUC: 0.870 and 0.826) outperformed the radiomics model in the both cohorts. The DL, radiomics, and CR predictors (aspartate aminotransferase (AST) and tumor diameter) were combined to construct the DLRCR model. The DLRCR model presented the best performance over any model, yielding an AUC, an accuracy, a sensitivity, a specificity of 0.917, 0.886, 0.889, and 0.882 in the training cohort and of 0.844, 0.818, 0.800, and 0.846 in the validation cohort, respectively. The DLRCR model achieved better clinical utility compared to the clinical staging systems and prognostic indexes. Conclusion Both radiomics and DL models derived from CEMRI can predict HCC recurrence, and DL and radiomics-based integrated approach can provide a more effective tool for the precise prediction of ER for HCC patients undergoing resection.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sen Wang
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, China
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jun Li
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jinghong Liu
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuhui Liu
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Haitong Ji
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Wenhan Su
- College of Medical Imaging, Dalian Medical University, Dalian, China
| | - Qinhe Zhang
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yu Yao
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, China
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Dalian Engineering Research Center for Artificial Intelligence in Medical Imaging, Dalian, China
| |
Collapse
|
3
|
Wu L, Lai Q, Li S, Wu S, Li Y, Huang J, Zeng Q, Wei D. Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis. BMC Med Imaging 2024; 24:263. [PMID: 39375586 PMCID: PMC11457388 DOI: 10.1186/s12880-024-01440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND The aim of this study was to conduct a systematic review and meta-analysis to comprehensively evaluate the performance and methodological quality of artificial intelligence (AI) in predicting recurrence after single first-line treatment for liver cancer. METHODS A rigorous and systematic evaluation was conducted on the AI studies related to recurrence after single first-line treatment for liver cancer, retrieved from the PubMed, Embase, Web of Science, Cochrane Library, and CNKI databases. The area under the curve (AUC), sensitivity (SENC), and specificity (SPEC) of each study were extracted for meta-analysis. RESULTS Six percutaneous ablation (PA) studies, 16 surgical resection (SR) studies, and 5 transarterial chemoembolization (TACE) studies were included in the meta-analysis for predicting recurrence after hepatocellular carcinoma (HCC) treatment, respectively. Four SR studies and 2 PA studies were included in the meta-analysis for recurrence after intrahepatic cholangiocarcinoma (ICC) and colorectal cancer liver metastasis (CRLM) treatment. The pooled SENC, SEPC, and AUC of AI in predicting recurrence after primary HCC treatment via PA, SR, and TACE were 0.78, 0.90, and 0.92; 0.81, 0.77, and 0.86; and 0.73, 0.79, and 0.79, respectively. The values for ICC treated with SR and CRLM treated with PA were 0.85, 0.71, 0.86 and 0.69, 0.63,0.74, respectively. CONCLUSION This systematic review and meta-analysis demonstrates the comprehensive application value of AI in predicting recurrence after a single first-line treatment of liver cancer, with satisfactory results, indicating the clinical translation potential of AI in predicting recurrence after liver cancer treatment.
Collapse
Affiliation(s)
- Linyong Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Qingfeng Lai
- Second Ward of Nephrology Department, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Songhua Li
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Shaofeng Wu
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Yizhong Li
- Department of Radiology, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Ju Huang
- Department of Radiology, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Qiuli Zeng
- Second Ward of Nephrology Department, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China
| | - Dayou Wei
- Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China.
| |
Collapse
|
4
|
Haghshomar M, Rodrigues D, Kalyan A, Velichko Y, Borhani A. Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies. Front Oncol 2024; 14:1362737. [PMID: 38779098 PMCID: PMC11109422 DOI: 10.3389/fonc.2024.1362737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Liver tumors, whether primary or metastatic, have emerged as a growing concern with substantial global health implications. Timely identification and characterization of liver tumors are pivotal factors in order to provide optimum treatment. Imaging is a crucial part of the detection of liver tumors; however, conventional imaging has shortcomings in the proper characterization of these tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and radiomics have recently emerged as investigational opportunities with the potential to enhance the detection and characterization of liver lesions. These advancements offer opportunities for better diagnostic accuracy, prognostication, and thereby improving patient care. In particular, these techniques have the potential to predict the histopathology, genotype, and immunophenotype of tumors based on imaging data, hence providing guidance for personalized treatment of such tumors. In this review, we outline the progression and potential of AI in the field of liver oncology imaging, specifically emphasizing manual radiomic techniques and deep learning-based representations. We discuss how these tools can aid in clinical decision-making challenges. These challenges encompass a broad range of tasks, from prognosticating patient outcomes, differentiating benign treatment-related factors and actual disease progression, recognizing uncommon response patterns, and even predicting the genetic and molecular characteristics of the tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of these AI-based techniques.
Collapse
Affiliation(s)
| | | | | | | | - Amir Borhani
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Bo Z, Song J, He Q, Chen B, Chen Z, Xie X, Shu D, Chen K, Wang Y, Chen G. Application of artificial intelligence radiomics in the diagnosis, treatment, and prognosis of hepatocellular carcinoma. Comput Biol Med 2024; 173:108337. [PMID: 38547656 DOI: 10.1016/j.compbiomed.2024.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with an increasing incidence and poor prognosis. In the past decade, artificial intelligence (AI) technology has undergone rapid development in the field of clinical medicine, bringing the advantages of efficient data processing and accurate model construction. Promisingly, AI-based radiomics has played an increasingly important role in the clinical decision-making of HCC patients, providing new technical guarantees for prediction, diagnosis, and prognostication. In this review, we evaluated the current landscape of AI radiomics in the management of HCC, including its diagnosis, individual treatment, and survival prognosis. Furthermore, we discussed remaining challenges and future perspectives regarding the application of AI radiomics in HCC.
Collapse
Affiliation(s)
- Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiatao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danyang Shu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiyu Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Kucukkaya AS, Zeevi T, Chai NX, Raju R, Haider SP, Elbanan M, Petukhova-Greenstein A, Lin M, Onofrey J, Nowak M, Cooper K, Thomas E, Santana J, Gebauer B, Mulligan D, Staib L, Batra R, Chapiro J. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Sci Rep 2023; 13:7579. [PMID: 37165035 PMCID: PMC10172370 DOI: 10.1038/s41598-023-34439-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
Tumor recurrence affects up to 70% of early-stage hepatocellular carcinoma (HCC) patients, depending on treatment option. Deep learning algorithms allow in-depth exploration of imaging data to discover imaging features that may be predictive of recurrence. This study explored the use of convolutional neural networks (CNN) to predict HCC recurrence in patients with early-stage HCC from pre-treatment magnetic resonance (MR) images. This retrospective study included 120 patients with early-stage HCC. Pre-treatment MR images were fed into a machine learning pipeline (VGG16 and XGBoost) to predict recurrence within six different time frames (range 1-6 years). Model performance was evaluated with the area under the receiver operating characteristic curves (AUC-ROC). After prediction, the model's clinical relevance was evaluated using Kaplan-Meier analysis with recurrence-free survival (RFS) as the endpoint. Of 120 patients, 44 had disease recurrence after therapy. Six different models performed with AUC values between 0.71 to 0.85. In Kaplan-Meier analysis, five of six models obtained statistical significance when predicting RFS (log-rank p < 0.05). Our proof-of-concept study indicates that deep learning algorithms can be utilized to predict early-stage HCC recurrence. Successful identification of high-risk recurrence candidates may help optimize follow-up imaging and improve long-term outcomes post-treatment.
Collapse
Affiliation(s)
- Ahmet Said Kucukkaya
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tal Zeevi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Nathan Xianming Chai
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Rajiv Raju
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Stefan Philipp Haider
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Mohamed Elbanan
- Department of Diagnostic Radiology, Bridgeport Hospital, Yale New Haven Health System, 267 Grant Street, Bridgeport, CT, 06610, USA
| | - Alexandra Petukhova-Greenstein
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
- Visage Imaging, Inc., 12625 High Bluff Drive, Suite 205, San Diego, CA, 92130, USA
| | - John Onofrey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Michal Nowak
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Kirsten Cooper
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Elizabeth Thomas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Jessica Santana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Bernhard Gebauer
- Institute of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - David Mulligan
- Transplantation and Immunology, Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Lawrence Staib
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA
| | - Ramesh Batra
- Transplantation and Immunology, Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520-8042, USA.
| |
Collapse
|