7
|
Bujotzek MR, Akünal Ü, Denner S, Neher P, Zenk M, Frodl E, Jaiswal A, Kim M, Krekiehn NR, Nickel M, Ruppel R, Both M, Döllinger F, Opitz M, Persigehl T, Kleesiek J, Penzkofer T, Maier-Hein K, Bucher A, Braren R. Real-world federated learning in radiology: hurdles to overcome and benefits to gain. J Am Med Inform Assoc 2025; 32:193-205. [PMID: 39455061 DOI: 10.1093/jamia/ocae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE Federated Learning (FL) enables collaborative model training while keeping data locally. Currently, most FL studies in radiology are conducted in simulated environments due to numerous hurdles impeding its translation into practice. The few existing real-world FL initiatives rarely communicate specific measures taken to overcome these hurdles. To bridge this significant knowledge gap, we propose a comprehensive guide for real-world FL in radiology. Minding efforts to implement real-world FL, there is a lack of comprehensive assessments comparing FL to less complex alternatives in challenging real-world settings, which we address through extensive benchmarking. MATERIALS AND METHODS We developed our own FL infrastructure within the German Radiological Cooperative Network (RACOON) and demonstrated its functionality by training FL models on lung pathology segmentation tasks across six university hospitals. Insights gained while establishing our FL initiative and running the extensive benchmark experiments were compiled and categorized into the guide. RESULTS The proposed guide outlines essential steps, identified hurdles, and implemented solutions for establishing successful FL initiatives conducting real-world experiments. Our experimental results prove the practical relevance of our guide and show that FL outperforms less complex alternatives in all evaluation scenarios. DISCUSSION AND CONCLUSION Our findings justify the efforts required to translate FL into real-world applications by demonstrating advantageous performance over alternative approaches. Additionally, they emphasize the importance of strategic organization, robust management of distributed data and infrastructure in real-world settings. With the proposed guide, we are aiming to aid future FL researchers in circumventing pitfalls and accelerating translation of FL into radiological applications.
Collapse
Affiliation(s)
- Markus Ralf Bujotzek
- Division of Medical Image Computing, German Cancer Research Center Heidelberg, Heidelberg, 69120, Germany
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, 69120, Germany
| | - Ünal Akünal
- Division of Medical Image Computing, German Cancer Research Center Heidelberg, Heidelberg, 69120, Germany
| | - Stefan Denner
- Division of Medical Image Computing, German Cancer Research Center Heidelberg, Heidelberg, 69120, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, 69120, Germany
| | - Peter Neher
- Division of Medical Image Computing, German Cancer Research Center Heidelberg, Heidelberg, 69120, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, 69120, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, 69120, Germany
| | - Maximilian Zenk
- Division of Medical Image Computing, German Cancer Research Center Heidelberg, Heidelberg, 69120, Germany
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, 69120, Germany
| | - Eric Frodl
- Institute for Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt (Main), 60590, Germany
- Goethe University Frankfurt, Frankfurt, 60590, Germany
| | - Astha Jaiswal
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
| | - Moon Kim
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Essen, 45131, Germany
| | - Nicolai R Krekiehn
- Intelligent Imaging Lab@Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kel, 24118, Germany
| | - Manuel Nickel
- Institute for AI in Medicine, Technical University of Munich, Munich, 81675, Germany
| | - Richard Ruppel
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Centers Schleswig-Holstein, Kiel, 24105, Germany
| | - Felix Döllinger
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Marcel Opitz
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (AÖR), Essen, 45131, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, 50937, Germany
| | - Jens Kleesiek
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Essen, 45131, Germany
| | - Tobias Penzkofer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, 10117, Germany
- Berlin Institute of Health, Berlin, 10178, Germany
| | - Klaus Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center Heidelberg, Heidelberg, 69120, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, 69120, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, 69120, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and The University Medical Center Heidelberg, Heidelberg, 69120, Germany
| | - Andreas Bucher
- Institute for Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt (Main), 60590, Germany
- Goethe University Frankfurt, Frankfurt, 60590, Germany
| | - Rickmer Braren
- Institute for Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| |
Collapse
|
9
|
Khanna A, Adams J, Antoniades C, Bloem BR, Carroll C, Cedarbaum J, Cosman J, Dexter DT, Dockendorf MF, Edgerton J, Gaetano L, Goikoetxea E, Hill D, Horak F, Izmailova ES, Kangarloo T, Katabi D, Kopil C, Lindemann M, Mammen J, Marek K, McFarthing K, Mirelman A, Muller M, Pagano G, Peterschmitt MJ, Ren J, Rochester L, Sardar S, Siderowf A, Simuni T, Stephenson D, Swanson-Fischer C, Wagner JA, Jones GB. Accelerating Parkinson's Disease drug development with federated learning approaches. NPJ Parkinsons Dis 2024; 10:225. [PMID: 39567515 PMCID: PMC11579312 DOI: 10.1038/s41531-024-00837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Parkinson's Disease is a progressive neurodegenerative disorder afflicting almost 12 million people. Increased understanding of its complex and heterogenous disease pathology, etiology and symptom manifestations has resulted in the need to design, capture and interrogate substantial clinical datasets. Herein we advocate how advances in the deployment of artificial intelligence models for Federated Data Analysis and Federated Learning can help spearhead coordinated and sustainable approaches to address this grand challenge.
Collapse
Affiliation(s)
- Amit Khanna
- Neuroscience Development, Novartis AG, Basel, Switzerland
| | - Jamie Adams
- Department of Neurology and Center for Health and Technology, University of Rochester, Rochester, NY, USA
| | | | | | - Camille Carroll
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jesse Cedarbaum
- Department of Neurology, Yale School of Medicine, New Haven, CT, 06511, USA
| | | | | | | | | | - Laura Gaetano
- Neuroscience Development, Novartis AG, Basel, Switzerland
| | | | - Derek Hill
- Panoramic Digital Health, Grenoble, France
| | - Fay Horak
- Oregon Health and Science University, Portland, USA
| | - Elena S Izmailova
- Koneksa Health, One World Trade Center, 285 Fulton St., New York, NY, USA
| | | | - Dina Katabi
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine Kopil
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, USA
| | | | - Jennifer Mammen
- University of Massachusetts, Dartmouth, College of Nursing and Health Sciences, Dartmouth, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | | | - Anat Mirelman
- Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University and Tel Aviv Medical Center, Tel Aviv-Yafo, Israel
| | - Martijn Muller
- Critical Path Institute for Parkinson's Disease Consortium, Critical Path Institute, 1840 E River Rd, Suite 100, Tucson, AZ, 85718, USA
| | | | | | - Jie Ren
- Merck & Co., Inc., Rahway, NJ, USA
| | - Lynn Rochester
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Sakshi Sardar
- Critical Path Institute for Parkinson's Disease Consortium, Critical Path Institute, 1840 E River Rd, Suite 100, Tucson, AZ, 85718, USA
| | - Andrew Siderowf
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tanya Simuni
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Diane Stephenson
- Critical Path Institute for Parkinson's Disease Consortium, Critical Path Institute, 1840 E River Rd, Suite 100, Tucson, AZ, 85718, USA
| | - Christine Swanson-Fischer
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Wagner
- Koneksa Health, One World Trade Center, 285 Fulton St., New York, NY, USA
| | - Graham B Jones
- Data, Design and Clinical Innovation, Novartis Pharmaceuticals, Cambridge, MA, USA.
- Tufts University Medical Center, Boston, MA, USA.
| |
Collapse
|
12
|
Linguraru MG, Bakas S, Aboian M, Chang PD, Flanders AE, Kalpathy-Cramer J, Kitamura FC, Lungren MP, Mongan J, Prevedello LM, Summers RM, Wu CC, Adewole M, Kahn CE. Clinical, Cultural, Computational, and Regulatory Considerations to Deploy AI in Radiology: Perspectives of RSNA and MICCAI Experts. Radiol Artif Intell 2024; 6:e240225. [PMID: 38984986 PMCID: PMC11294958 DOI: 10.1148/ryai.240225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 07/11/2024]
Abstract
The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval. This article presents the perspectives of experts from MICCAI and RSNA on the clinical, cultural, computational, and regulatory considerations-coupled with recommended reading materials-essential to adopt AI technology successfully in radiology and, more generally, in clinical practice. The report emphasizes the importance of collaboration to improve clinical deployment, highlights the need to integrate clinical and medical imaging data, and introduces strategies to ensure smooth and incentivized integration. Keywords: Adults and Pediatrics, Computer Applications-General (Informatics), Diagnosis, Prognosis © RSNA, 2024.
Collapse
Affiliation(s)
- Marius George Linguraru
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Spyridon Bakas
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Mariam Aboian
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Peter D. Chang
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Adam E. Flanders
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Jayashree Kalpathy-Cramer
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Felipe C. Kitamura
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Matthew P. Lungren
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - John Mongan
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Luciano M. Prevedello
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Ronald M. Summers
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Carol C. Wu
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Maruf Adewole
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| | - Charles E. Kahn
- From the Sheikh Zayed Institute for Pediatric Surgical Innovation,
Children’s National Hospital, Washington, DC (M.G.L.); Divisions of
Radiology and Pediatrics, George Washington University School of Medicine and
Health Sciences, Washington, DC (M.G.L.); Division of Computational Pathology,
Department of Pathology & Laboratory Medicine, School of Medicine,
Indiana University, Indianapolis, Ind (S.B.); Department of Radiology,
Children’s Hospital of Philadelphia, Philadelphia, Pa (M.A.); Department
of Radiological Sciences, University of California Irvine, Irvine, Calif
(P.D.C.); Department of Radiology, Thomas Jefferson University, Philadelphia, Pa
(A.E.F.); Department of Ophthalmology, University of Colorado Anschutz Medical
Campus, Aurora, Colo (J.K.C.); Department of Applied Innovation and AI,
Diagnósticos da América SA (DasaInova), São Paulo, Brazil
(F.C.K.); Department of Diagnostic Imaging, Universidade Federal de São
Paulo, São Paulo, Brazil (F.C.K.); Microsoft, Nuance, Burlington, Mass
(M.P.L.); Department of Radiology and Biomedical Imaging and Center for
Intelligent Imaging, University of California San Francisco, San Francisco,
Calif (J.M.); Department of Radiology, The Ohio State University Wexner Medical
Center, Columbus, Ohio (L.M.P.); Department of Radiology and Imaging Sciences,
National Institutes of Health Clinical Center, Bethesda, Md (R.M.S.); Division
of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston,
Tex (C.C.W.); Medical Artificial Intelligence Laboratory, University of Lagos
College of Medicine, Lagos, Nigeria (M.A.); and Department of Radiology,
University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA
19104-6243 (C.E.K.)
| |
Collapse
|