1
|
Gunage R, Zon LI. Role of RNA modifications in blood development and regeneration. Exp Hematol 2024; 138:104279. [PMID: 39009277 DOI: 10.1016/j.exphem.2024.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Blood development and regeneration require rapid turnover of cells, and ribonucleic acid (RNA) modifications play a key role in it via regulating stemness and cell fate regulation. RNA modifications affect gene activity via posttranscriptional and translation-mediated mechanisms. Diverse molecular players involved in RNA-modification processes are abundantly expressed by hematopoietic stem cells and lineages. Close to 150 RNA chemical modifications have been reported, but only N6-methyl adenosine (m6A), inosine (I), pseudouridine (Ψ), and m1A-a handful-have been studied in-cell fate regulation. The role of RNA modification in blood diseases and disorders is an emerging field and offers potential for therapeutic interventions. Knowledge of RNA-modification and enzymatic activities could be used to design therapies in the future. Here, we summarized the recent advances in RNA modification and the epitranscriptome field and discussed their regulation of blood development and regeneration.
Collapse
Affiliation(s)
- Rajesh Gunage
- Stem Cell Program and Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Department of Medicine, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA.
| |
Collapse
|
2
|
Bhattacharya S, Satpati P. Why Does the E1219V Mutation Expand T-Rich PAM Recognition in Cas9 from Streptococcus pyogenes? J Chem Inf Model 2024; 64:3237-3247. [PMID: 38600752 DOI: 10.1021/acs.jcim.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Popular RNA-guided DNA endonuclease Cas9 from Streptococcus pyogenes (SpCas9) recognizes the canonical 5'-NGG-3' protospacer adjacent motif (PAM) and triggers double-stranded DNA cleavage activity. Mutations in SpCas9 were demonstrated to expand the PAM readability and hold promise for therapeutic and genome editing applications. However, the energetics of the PAM recognition and its relation to the atomic structure remain unknown. Using the X-ray structure (precatalytic SpCas9:sgRNA:dsDNA) as a template, we calculated the change in the PAM binding affinity in response to SpCas9 mutations using computer simulations. The E1219V mutation in SpCas9 fine-tunes the water accessibility in the PAM binding pocket and promotes new interactions in the SpCas9:noncanonical T-rich PAM, thus weakening the PAM stringency. The nucleotide-specific interaction of two arginine residues (i.e., R1333 and R1335 of SpCas9) ensured stringent 5'-NGG-3' PAM recognition. R1335A substitution (SpCas9R1335A) completely disrupts the direct interaction between SpCas9 and PAM sequences (canonical or noncanonical), accounting for the loss of editing activity. Interestingly, the double mutant (SpCas9R1335A,E1219V) boosts DNA binding affinity by favoring protein:PAM electrostatic contact in a desolvated pocket. The underlying thermodynamics explain the varied DNA cleavage activity of SpCas9 variants. A direct link between the energetics, structures, and activity is highlighted, which can aid in the rational design of improved SpCas9-based genome editing tools.
Collapse
Affiliation(s)
- Shreya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Yu X, Li S, Guo Q, Leng J, Ding Y. The Association Between Mitochondrial tRNA Glu Variants and Hearing Loss: A Case-Control Study. Pharmgenomics Pers Med 2024; 17:77-89. [PMID: 38562431 PMCID: PMC10984097 DOI: 10.2147/pgpm.s441281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose This study aimed to examine the frequencies of mt-tRNAGlu variants in 180 pediatric patients with non-syndromic hearing loss (NSHL) and 100 controls. Methods Sanger sequencing was performed to screen for mt-tRNAGlu variants. These mitochondrial DNA (mtDNA) pathogenic mutations were further assessed using phylogenetic conservation and haplogroup analyses. We also traced the origins of the family history of probands carrying potential pathogenic mtDNA mutations. Mitochondrial functions including mtDNA content, ATP and reactive oxygen species (ROS) were examined in cells derived from patients carrying the mt-tRNAGlu A14692G and CO1/tRNASer(UCN) G7444A variants and controls. Results We identified four possible pathogenic variants: m.T14709C, m.A14683G, m.A14692G and m.A14693G, which were found in NSHL patients but not in controls. Genetic counseling suggested that one child with the m.A14692G variant had a family history of NSHL. Sequence analysis of mtDNA suggested the presence of the CO1/tRNASer(UCN) G7444A and mt-tRNAGlu A14692G variants. Molecular analysis suggested that, compared with the controls, patients with these variants exhibited much lower mtDNA copy numbers, ATP production, whereas ROS levels increased (p<0.05 for all), suggesting that the m.A14692G and m.G7444A variants led to mitochondrial dysfunction. Conclusion mt-tRNAGlu variants are important risk factors for NSHL.
Collapse
Affiliation(s)
- Xuejiao Yu
- Department of Clinical Laboratory, Quzhou People’s Hospital, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, 324000, People’s Republic of China
| | - Sheng Li
- Department of Otolaryngology, Quzhou People’s Hospital, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, 324000, People’s Republic of China
| | - Qinxian Guo
- Central Laboratory, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, 310006, People’s Republic of China
| | - Jianhang Leng
- Central Laboratory, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, 310006, People’s Republic of China
| | - Yu Ding
- Central Laboratory, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, 310006, People’s Republic of China
| |
Collapse
|
4
|
Krueger J, Preusse M, Oswaldo Gomez N, Frommeyer YN, Doberenz S, Lorenz A, Kordes A, Grobe S, Müsken M, Depledge DP, Svensson SL, Weiss S, Kaever V, Pich A, Sharma CM, Ignatova Z, Häussler S. tRNA epitranscriptome determines pathogenicity of the opportunistic pathogen Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2024; 121:e2312874121. [PMID: 38451943 PMCID: PMC10945773 DOI: 10.1073/pnas.2312874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 03/09/2024] Open
Abstract
The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.
Collapse
Affiliation(s)
- Jonas Krueger
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover30625, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Nicolas Oswaldo Gomez
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Yannick Noah Frommeyer
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
| | - Sebastian Doberenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
| | - Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Adrian Kordes
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
| | - Svenja Grobe
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover 30625, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Daniel P. Depledge
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
- Institute of Virology, Hannover Medical School, Hannover30625, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover30625, Germany
| | - Sarah L. Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover30625, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover 30625, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover30625, Germany
| | - Cynthia M. Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University Hamburg, 20146, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital—Rigshospitalet, Copenhagen2100, Denmark
| |
Collapse
|
5
|
Chawla M, Kalra K, Cao Z, Cavallo L, Oliva R. Occurrence and stability of anion-π interactions between phosphate and nucleobases in functional RNA molecules. Nucleic Acids Res 2022; 50:11455-11469. [PMID: 36416268 PMCID: PMC9723503 DOI: 10.1093/nar/gkac1081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
We present a systematic structural and energetic characterization of phosphate(OP)-nucleobase anion…π stacking interactions in RNAs. We observed OP-nucleobase stacking contacts in a variety of structural motifs other than regular helices and spanning broadly diverse sequence distances. Apart from the stacking between a phosphate and a guanine or a uracil two-residue upstream in specific U-turns, such interactions in RNA have been scarcely characterized to date. Our QM calculations showed an energy minimum at a distance between the OP atom and the nucleobase plane centroid slightly below 3 Å for all the nucleobases. By sliding the OP atom over the nucleobase plane we localized the optimal mutual positioning of the stacked moieties, corresponding to an energy minimum below -6 kcal•mol-1, for all the nucleobases, consistently with the projections of the OP atoms over the different π-rings we observed in experimental occurrences. We also found that the strength of the interaction clearly correlates with its electrostatic component, pointing to it as the most relevant contribution. Finally, as OP-uracil and OP-guanine interactions represent together 86% of the instances we detected, we also proved their stability under dynamic conditions in model systems simulated by state-of-the art DFT-MD calculations.
Collapse
Affiliation(s)
- Mohit Chawla
- Correspondence may also be addressed to Mohit Chawla. ;
| | - Kanav Kalra
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad 121002, Haryana, India
| | - Zhen Cao
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Correspondence may also be addressed to Luigi Cavallo. Tel: +966 02 8027566; Fax: +966 02 8021347;
| | - Romina Oliva
- To whom correspondence should be addressed. Tel: +39 081 5476541; Fax: +39 081 5476514;
| |
Collapse
|
6
|
Jia Z, Meng F, Chen H, Zhu G, Li X, He Y, Zhang L, He X, Zhan H, Chen M, Ji Y, Wang M, Guan MX. Human TRUB1 is a highly conserved pseudouridine synthase responsible for the formation of Ψ55 in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro. Nucleic Acids Res 2022; 50:9368-9381. [PMID: 36018806 PMCID: PMC9458420 DOI: 10.1093/nar/gkac698] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
Pseudouridine (Ψ) at position 55 in tRNAs plays an important role in their structure and function. This modification is catalyzed by TruB/Pus4/Cbf5 family of pseudouridine synthases in bacteria and yeast. However, the mechanism of TRUB family underlying the formation of Ψ55 in the mammalian tRNAs is largely unknown. In this report, the CMC/reverse transcription assays demonstrated the presence of Ψ55 in the human mitochondrial tRNAAsn, tRNAGln, tRNAGlu, tRNAPro, tRNAMet, tRNALeu(UUR) and tRNASer(UCN). TRUB1 knockout (KO) cell lines generated by CRISPR/Cas9 technology exhibited the loss of Ψ55 modification in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro but did not affect other 18 mitochondrial tRNAs. An in vitro assay revealed that recombinant TRUB1 protein can catalyze the efficient formation of Ψ55 in tRNAAsn and tRNAGln, but not in tRNAMet and tRNAArg. Notably, the overexpression of TRUB1 cDNA reversed the deficient Ψ55 modifications in these tRNAs in TRUB1KO HeLa cells. TRUB1 deficiency affected the base-pairing (18A/G-Ψ55), conformation and stability but not aminoacylation capacity of these tRNAs. Furthermore, TRUB1 deficiency impacted mitochondrial translation and biogenesis of oxidative phosphorylation system. Our findings demonstrated that human TRUB1 is a highly conserved mitochondrial pseudouridine synthase responsible for the Ψ55 modification in the mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro.
Collapse
Affiliation(s)
| | | | | | - Gao Zhu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xincheng Li
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunfan He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liyao Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huisen Zhan
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengquan Chen
- Department of Lab Medicine, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- To whom correspondence should be addressed. Tel: +571 88206916; Fax: +571 88982377;
| |
Collapse
|
7
|
Basu I, Gorai B, Chandran T, Maiti PK, Hussain T. Selection of start codon during mRNA scanning in eukaryotic translation initiation. Commun Biol 2022; 5:587. [PMID: 35705698 PMCID: PMC9200866 DOI: 10.1038/s42003-022-03534-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Accurate and high-speed scanning and subsequent selection of the correct start codon are important events in protein synthesis. Eukaryotic mRNAs have long 5′ UTRs that are inspected for the presence of a start codon by the ribosomal 48S pre-initiation complex (PIC). However, the conformational state of the 48S PIC required for inspecting every codon is not clearly understood. Here, atomistic molecular dynamics (MD) simulations and energy calculations suggest that the scanning conformation of 48S PIC may reject all but 4 (GUG, CUG, UUG and ACG) of the 63 non-AUG codons, and initiation factor eIF1 is crucial for this discrimination. We provide insights into the possible role of initiation factors eIF1, eIF1A, eIF2α and eIF2β in scanning. Overall, the study highlights how the scanning conformation of ribosomal 48S PIC acts as a coarse selectivity checkpoint for start codon selection and scans long 5′ UTRs in eukaryotic mRNAs with accuracy and high speed. Molecular simulations of start codon selection by the eukaryotic ribosome during mRNA scanning provide further insight into high speed of scanning and how initiation factors contribute toward codon-anticodon-ribosome network stability.
Collapse
Affiliation(s)
- Ipsita Basu
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Biswajit Gorai
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.,Department of Chemical Engineering, University of New Hampshire, Durham, NH-03824, USA
| | - Thyageshwar Chandran
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, 560012, India.,Department of Biotechnology, National Institute of Technology-Warangal, Telangana, 506004, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Tanweer Hussain
- Department of Molecular Reproduction, Development and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
8
|
Ji Y, Zhang J, Liang M, Meng F, Zhang M, Mo JQ, Wang M, Guan MX. Mitochondrial tRNA variants in 811 Chinese probands with Leber's hereditary optic neuropathy. Mitochondrion 2022; 65:56-66. [PMID: 35623556 DOI: 10.1016/j.mito.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is the maternal inheritance of eye disorder. LHON-linked mitochondrial DNA (mtDNA) mutations affect the ND1, ND4 or ND6 genes encoding essential subunits of complex I. However, the role of mitochondrial tRNA defects in the pathogenesis of LHON is poorly understood. In this report, Sanger sequence analysis of 22 mitochondrial tRNA genes identified 139 variants in a cohort of 811 Han Chinese probands and 485 control Chinese subjects. Among these, 32 (4 known and 28 novel/putative) tRNA variants in 69 probands may contribute to pathogenesis of LHON, as these exhibited (1) present in <1% of controls; (2) evolutionary conservation; (3) potential and significance of structural and functional modifications. Such variants may have potentially compromised structural and functional aspects in the processing of tRNAs, structure stability, tRNA charging, or codon-anticodon interactions during translation. These 32 variants presented either singly or with multiple mutations, with the primary LHON-linked ND1 3640G>A, ND4 11778G>A or ND6 14484T>C mutations in the probands. The thirty-eight pedigrees carrying only one of tRNA variants exhibited relatively low penetrances of LHON, ranging from 5.7% to 42.9%, with an average of 19%. Strikingly, the average penetrances of optic neuropathy among 33 Chinese families carrying both a known/putative tRNA variant and a primary LHON-associated mtDNA mutation were 40.1%. These findings suggested that mitochondrial tRNA variants represent a significant causative factor for LHON, accounting for 8.75% cases in this cohort. These new insights may lead to beneficial applications in the pathophysiology, disease management, and genetic counseling of LHON.
Collapse
Affiliation(s)
- Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Liang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei 051730, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California 92123, USA
| | - Meng Wang
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Mitochondrial Biomedicine, Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Gamper H, Mao Y, Masuda I, McGuigan H, Blaha G, Wang Y, Xu S, Hou YM. Twice exploration of tRNA +1 frameshifting in an elongation cycle of protein synthesis. Nucleic Acids Res 2021; 49:10046-10060. [PMID: 34417618 PMCID: PMC8464047 DOI: 10.1093/nar/gkab734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Inducing tRNA +1 frameshifting to read a quadruplet codon has the potential to incorporate a non-natural amino acid into the polypeptide chain. While this strategy is being considered for genome expansion in biotechnology and bioengineering endeavors, a major limitation is a lack of understanding of where the shift occurs in an elongation cycle of protein synthesis. Here, we use the high-efficiency +1-frameshifting SufB2 tRNA, containing an extra nucleotide in the anticodon loop, to address this question. Physical and kinetic measurements of the ribosome reading frame of SufB2 identify twice exploration of +1 frameshifting in one elongation cycle, with the major fraction making the shift during translocation from the aminoacyl-tRNA binding (A) site to the peptidyl-tRNA binding (P) site and the remaining fraction making the shift within the P site upon occupancy of the A site in the +1-frame. We demonstrate that the twice exploration of +1 frameshifting occurs during active protein synthesis and that each exploration is consistent with ribosomal conformational dynamics that permits changes of the reading frame. This work indicates that the ribosome itself is a determinant of changes of the reading frame and reveals a mechanistic parallel of +1 frameshifting with -1 frameshifting.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yujia Mao
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Henri McGuigan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gregor Blaha
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Zhang Q, He X, Yao S, Lin T, Zhang L, Chen D, Chen C, Yang Q, Li F, Zhu YM, Guan MX. Ablation of Mto1 in zebrafish exhibited hypertrophic cardiomyopathy manifested by mitochondrion RNA maturation deficiency. Nucleic Acids Res 2021; 49:4689-4704. [PMID: 33836087 PMCID: PMC8096277 DOI: 10.1093/nar/gkab228] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Deficient maturations of mitochondrial transcripts are linked to clinical abnormalities but their pathophysiology remains elusive. Previous investigations showed that pathogenic variants in MTO1 for the biosynthesis of τm5U of tRNAGlu, tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR) were associated with hypertrophic cardiomyopathy (HCM). Using mto1 knock-out(KO) zebrafish generated by CRISPR/Cas9 system, we demonstrated the pleiotropic effects of Mto1 deficiency on mitochondrial RNA maturations. The perturbed structure and stability of tRNAs caused by mto1 deletion were evidenced by conformation changes and sensitivity to S1-mediated digestion of tRNAGln, tRNALys, tRNATrp and tRNALeu(UUR). Notably, mto1KO zebrafish exhibited the global decreases in the aminoacylation of mitochondrial tRNAs with the taurine modification. Strikingly, ablated mto1 mediated the expression of MTPAP and caused the altered polyadenylation of cox1, cox3, and nd1 mRNAs. Immunoprecipitation assay indicated the interaction of MTO1 with MTPAP related to mRNA polyadenylation. These alterations impaired mitochondrial translation and reduced activities of oxidative phosphorylation complexes. These mitochondria dysfunctions caused heart development defects and hypertrophy of cardiomyocytes and myocardial fiber disarray in ventricles. These cardiac defects in the mto1KO zebrafish recapitulated the clinical phenotypes in HCM patients carrying the MTO1 mutation(s). Our findings highlighted the critical role of MTO1 in mitochondrial transcript maturation and their pathological consequences in hypertrophic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/physiopathology
- Gene Expression Profiling
- Heart/embryology
- Heart/physiopathology
- In Situ Hybridization
- Microscopy, Electron, Transmission
- Mitochondria/enzymology
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutation
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Phosphorylation
- Polyadenylation/genetics
- RNA, Mitochondrial/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Transfer RNA Aminoacylation/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiao He
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chao Chen
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingxian Yang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feng Li
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi-Min Zhu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Levi O, Arava YS. RNA modifications as a common denominator between tRNA and mRNA. Curr Genet 2021; 67:545-551. [PMID: 33683402 DOI: 10.1007/s00294-021-01168-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022]
Abstract
Recent studies underscore RNA modifications as a novel mechanism to coordinate expression and function of different genes. While modifications on the sugar or base moieties of tRNA are well known, their roles in mRNA regulation are only starting to emerge. Interestingly, some modifications are present in both tRNA and mRNA, and here we discuss the functional significance of these common features. We describe key modifications that are present in both RNA types, elaborate on proteins that interact with them, and indicate recent works that identify roles in communicating tRNA processes and mRNA regulation. We propose that as tools are developed, the shortlist of features that are common between types of RNA will greatly expand and proteins that interact with them will be identified. In conclusion, the presence of the same modification in both RNA types provides an intersect between tRNA processes and mRNA regulation and implies a novel mechanism for connecting diverse cellular processes.
Collapse
Affiliation(s)
- Ofri Levi
- Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yoav S Arava
- Faculty of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
12
|
Meng F, Zhou M, Xiao Y, Mao X, Zheng J, Lin J, Lin T, Ye Z, Cang X, Fu Y, Wang M, Guan MX. A deafness-associated tRNA mutation caused pleiotropic effects on the m1G37 modification, processing, stability and aminoacylation of tRNAIle and mitochondrial translation. Nucleic Acids Res 2021; 49:1075-1093. [PMID: 33398350 PMCID: PMC7826259 DOI: 10.1093/nar/gkaa1225] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 01/16/2023] Open
Abstract
Defects in the posttranscriptional modifications of mitochondrial tRNAs have been linked to human diseases, but their pathophysiology remains elusive. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAIle 4295A>G mutation affecting a highly conserved adenosine at position 37, 3′ adjacent to the tRNA’s anticodon. Primer extension and methylation activity assays revealed that the m.4295A>G mutation introduced a tRNA methyltransferase 5 (TRMT5)-catalyzed m1G37 modification of tRNAIle. Molecular dynamics simulations suggested that the m.4295A>G mutation affected tRNAIle structure and function, supported by increased melting temperature, conformational changes and instability of mutated tRNA. An in vitro processing experiment revealed that the m.4295A>G mutation reduced the 5′ end processing efficiency of tRNAIle precursors, catalyzed by RNase P. We demonstrated that cybrid cell lines carrying the m.4295A>G mutation exhibited significant alterations in aminoacylation and steady-state levels of tRNAIle. The aberrant tRNA metabolism resulted in the impairment of mitochondrial translation, respiratory deficiency, decreasing membrane potentials and ATP production, increasing production of reactive oxygen species and promoting autophagy. These demonstrated the pleiotropic effects of m.4295A>G mutation on tRNAIle and mitochondrial functions. Our findings highlighted the essential role of deficient posttranscriptional modifications in the structure and function of tRNA and their pathogenic consequence of deafness.
Collapse
Affiliation(s)
- Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mi Zhou
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoting Mao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Jiaxi Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Fu
- Division of Otolaryngology-Head and Neck Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Seelam Prabhakar P, Takyi NA, Wetmore SD. Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations. RNA (NEW YORK, N.Y.) 2021; 27:202-220. [PMID: 33214333 PMCID: PMC7812866 DOI: 10.1261/rna.078097.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Isopentenyladenosine/chemistry
- Isopentenyladenosine/metabolism
- Molecular Dynamics Simulation
- Nucleic Acid Conformation
- Nucleosides/chemistry
- Nucleosides/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
Collapse
Affiliation(s)
- Preethi Seelam Prabhakar
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
14
|
Guo Q, Ng PQ, Shi S, Fan D, Li J, Zhao J, Wang H, David R, Mittal P, Do T, Bock R, Zhao M, Zhou W, Searle I. Arabidopsis TRM5 encodes a nuclear-localised bifunctional tRNA guanine and inosine-N1-methyltransferase that is important for growth. PLoS One 2019; 14:e0225064. [PMID: 31756231 PMCID: PMC6874348 DOI: 10.1371/journal.pone.0225064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/28/2019] [Indexed: 12/30/2022] Open
Abstract
Modified nucleosides in tRNAs are critical for protein translation. N1-methylguanosine-37 and N1-methylinosine-37 in tRNAs, both located at the 3'-adjacent to the anticodon, are formed by Trm5. Here we describe Arabidopsis thaliana AtTRM5 (At3g56120) as a Trm5 ortholog. Attrm5 mutant plants have overall slower growth as observed by slower leaf initiation rate, delayed flowering and reduced primary root length. In Attrm5 mutants, mRNAs of flowering time genes are less abundant and correlated with delayed flowering. We show that AtTRM5 complements the yeast trm5 mutant, and in vitro methylates tRNA guanosine-37 to produce N1-methylguanosine (m1G). We also show in vitro that AtTRM5 methylates tRNA inosine-37 to produce N1-methylinosine (m1I) and in Attrm5 mutant plants, we show a reduction of both N1-methylguanosine and N1-methylinosine. We also show that AtTRM5 is localized to the nucleus in plant cells. Proteomics data showed that photosynthetic protein abundance is affected in Attrm5 mutant plants. Finally, we show tRNA-Ala aminoacylation is not affected in Attrm5 mutants. However the abundance of tRNA-Ala and tRNA-Asp 5' half cleavage products are deduced. Our findings highlight the bifunctionality of AtTRM5 and the importance of the post-transcriptional tRNA modifications m1G and m1I at tRNA position 37 in general plant growth and development.
Collapse
Affiliation(s)
- Qianqian Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Qin Ng
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| | - Shanshan Shi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Diwen Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| | - Jing Zhao
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Rakesh David
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, SA, Australia
| | - Trung Do
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Ming Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Iain Searle
- School of Biological Sciences, School of Agriculture, Food and Wine, The University of Adelaide and Shanghai Jiao Tong University Joint International Centre for Agriculture and Health, The University of Adelaide, Adelaide, Adelaide, Australia
| |
Collapse
|
15
|
Rafels-Ybern À, Torres AG, Camacho N, Herencia-Ropero A, Roura Frigolé H, Wulff TF, Raboteg M, Bordons A, Grau-Bove X, Ruiz-Trillo I, Ribas de Pouplana L. The Expansion of Inosine at the Wobble Position of tRNAs, and Its Role in the Evolution of Proteomes. Mol Biol Evol 2019; 36:650-662. [PMID: 30590541 DOI: 10.1093/molbev/msy245] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.
Collapse
Affiliation(s)
- Àlbert Rafels-Ybern
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Andrea Herencia-Ropero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Helena Roura Frigolé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Thomas F Wulff
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Marina Raboteg
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Xavier Grau-Bove
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiología i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiología i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain.,ICREA, Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.,ICREA, Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Lind C, Esguerra M, Jespers W, Satpati P, Gutierrez-de-Terán H, Åqvist J. Free energy calculations of RNA interactions. Methods 2019; 162-163:85-95. [DOI: 10.1016/j.ymeth.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
|
17
|
Differential interaction strategies of hepatitis c virus genotypes during entry - An in silico investigation of envelope glycoprotein E2 - CD81 interaction. INFECTION GENETICS AND EVOLUTION 2019; 69:48-60. [PMID: 30639544 DOI: 10.1016/j.meegid.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis C Virus is a blood borne pathogen responsible for chronic hepatitis in more than 71 million people. Wide variations across strains and genotypes are one of the major hurdles in therapeutic development. While genotype 1 remains the most extensively studied and abundant strain, genotype 3 is more virulent and second most prevalent. This study aimed to compare differences in the glycoprotein E2 across HCV genotypes at nucleotide, protein and structural levels. Nucleotide sequences of E2 from 29 strains across genotypes 1a, 1b, 3a and 3b revealed a stark preference for C-richness which was attributed to a distinct bias for C-rich codons in genotype 1. Genotype 3 exhibited a similar preference to a lesser extent. Amino acid level comparison revealed majority of the changes at the C-terminal half of the proteins leaving the N-terminal region conspicuously conserved apart from the two hyper variable regions. Amino acid changes across genotypes were mostly polar-nonpolar alterations. In silico models of E2 glycoproteins and docking analysis with the energy minimized PDB-CD81 model revealed unique interacting residues in both E2 and CD81. While several CD81 binding residues were common for all four genotypes, number and composition of interacting residues varied. The interacting residues of E2 were however unique for each genotype. E2 of genotype 3a and CD81 had the strongest interaction. In conclusion this is the first comprehensive study comparing E2 sequences across genotypes 1a, 1b, 3a and 3b revealing stark genotype-specific differences which requires more extensive investigation.
Collapse
|
18
|
Nilsson L, Villa A. Modeling and Simulation of Oligonucleotide Hybrids: Outlining a Strategy. Methods Mol Biol 2019; 2036:113-126. [PMID: 31410793 DOI: 10.1007/978-1-4939-9670-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular dynamics simulations with a state-of-the-art force field provide an atomistic detailed description of the structural and thermodynamic features of biomolecules. Effects of chemical modifications and of the environment such as sequence, solvent, and ionic strength can explicitly be taken into account. Molecular simulation techniques can also provide insight in change in binding affinity, in protonation (pKa shift) and tautomeric propensity due to changes in the environment or in the molecular system. The quality and reliability of a simulation depend on the quality of the force field and on the reproducibility of the data, and validation depends on the availability of suitable experimental data. Here, we describe the workflow to investigate oligonucleotide hybrids using molecular simulation including hardware and software information.
Collapse
Affiliation(s)
- Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
19
|
Zhang Q, Zhang L, Chen D, He X, Yao S, Zhang Z, Chen Y, Guan MX. Deletion of Mtu1 (Trmu) in zebrafish revealed the essential role of tRNA modification in mitochondrial biogenesis and hearing function. Nucleic Acids Res 2018; 46:10930-10945. [PMID: 30137487 PMCID: PMC6237746 DOI: 10.1093/nar/gky758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/14/2022] Open
Abstract
Mtu1(Trmu) is a highly conserved tRNA modifying enzyme responsible for the biosynthesis of τm5s2U at the wobble position of tRNAGln, tRNAGlu and tRNALys. Our previous investigations showed that MTU1 mutation modulated the phenotypic manifestation of deafness-associated mitochondrial 12S rRNA mutation. However, the pathophysiology of MTU1 deficiency remains poorly understood. Using the mtu1 knock-out zebrafish generated by CRISPR/Cas9 system, we demonstrated the abolished 2-thiouridine modification of U34 of mitochondrial tRNALys, tRNAGlu and tRNAGln in the mtu1 knock-out zebrafish. The elimination of this post-transcriptional modification mediated mitochondrial tRNA metabolisms, causing the global decreases in the levels of mitochondrial tRNAs. The aberrant mitochondrial tRNA metabolisms led to the impairment of mitochondrial translation, respiratory deficiencies and reductions of mitochondrial ATP production. These mitochondria dysfunctions caused the defects in hearing organs. Strikingly, mtu1-/- mutant zebrafish displayed the abnormal startle response and swimming behaviors, significant decreases in the sizes of saccular otolith and numbers of hair cells in the auditory and vestibular organs. Furthermore, mtu1-/- mutant zebrafish exhibited the significant reductions in the hair bundle densities in utricle, saccule and lagena. Therefore, our findings may provide new insights into the pathophysiology of deafness, which was manifested by the deficient modifications at wobble position of mitochondrial tRNAs.
Collapse
Affiliation(s)
- Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Luwen Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Danni Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiao He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shihao Yao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zengming Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
20
|
Wong HE, Huang CJ, Zhang Z. Amino Acid Misincorporation Propensities Revealed through Systematic Amino Acid Starvation. Biochemistry 2018; 57:6767-6779. [DOI: 10.1021/acs.biochem.8b00976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- H. Edward Wong
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
21
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
22
|
Hartono YD, Ito M, Villa A, Nilsson L. Computational Study of Uracil Tautomeric Forms in the Ribosome: The Case of Uracil and 5-Oxyacetic Acid Uracil in the First Anticodon Position of tRNA. J Phys Chem B 2018; 122:1152-1160. [PMID: 29260566 DOI: 10.1021/acs.jpcb.7b10878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tautomerism is important in many biomolecular interactions, not least in RNA biology. Crystallographic studies show the possible presence of minor tautomer forms of transfer-RNA (tRNA) anticodon bases in the ribosome. The hydrogen positions are not resolved in the X-ray studies, and we have used ab initio calculations and molecular dynamics simulations to understand if and how the minor enol form of uracil (U), or the modified uracil 5-oxyacetic acid (cmo5U), can be accommodated in the tRNA-messenger-RNA interactions in the ribosome decoding center. Ab initio calculations on isolated bases show that the modification affects the keto-enol equilibrium of the uracil base only slightly; the keto form is dominant (>99.99%) in both U and cmo5U. Other factors such as interactions with the surrounding nucleotides or ions would be required to shift the equilibrium toward the enol tautomer. Classical molecular simulations show a better agreement with the X-ray structures for the enol form, but free energy calculations indicate that the most stable form is the keto. In the ribosome, the enol tautomers of U and cmo5U pair with a guanine forming two hydrogen bonds, which do not involve the enol group. The oxyacetic acid modification has a minor effect on the keto-enol equilibrium.
Collapse
Affiliation(s)
- Yossa Dwi Hartono
- Department of Biosciences and Nutrition, Karolinska Institutet , SE-141 83 Huddinge, Sweden.,Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, 637551 Singapore
| | - Mika Ito
- Department of Biosciences and Nutrition, Karolinska Institutet , SE-141 83 Huddinge, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet , SE-141 83 Huddinge, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet , SE-141 83 Huddinge, Sweden
| |
Collapse
|
23
|
Zhou M, Xue L, Chen Y, Li H, He Q, Wang B, Meng F, Wang M, Guan MX. A hypertension-associated mitochondrial DNA mutation introduces an m 1G37 modification into tRNA Met, altering its structure and function. J Biol Chem 2017; 293:1425-1438. [PMID: 29222331 DOI: 10.1074/jbc.ra117.000317] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Defective nucleotide modifications of mitochondrial tRNAs have been associated with several human diseases, but their pathophysiology remains poorly understood. In this report, we investigated the pathogenic molecular mechanism underlying a hypertension-associated 4435A→G mutation in mitochondrial tRNAMet The m.4435A→G mutation affected a highly conserved adenosine at position 37, 3' adjacent to the tRNA's anticodon, which is important for the fidelity of codon recognition and stabilization. We hypothesized that the m.4435A→G mutation introduced an m1G37 modification of tRNAMet, altering its structure and function. Primer extension and methylation activity assays indeed confirmed that the m.4435A→G mutation created a tRNA methyltransferase 5 (TRMT5)-catalyzed m1G37 modification of tRNAMet We found that this mutation altered the tRNAMet structure, indicated by an increased melting temperature and electrophoretic mobility of the mutated tRNA compared with the wildtype molecule. We demonstrated that cybrid cell lines carrying the m.4435A→G mutation exhibited significantly decreased efficiency in aminoacylation and steady-state levels of tRNAMet, as compared with those of control cybrids. The aberrant tRNAMet metabolism resulted in variable decreases in mitochondrial DNA (mtDNA)-encoded polypeptides in the mutant cybrids. Furthermore, we found that the m.4435A→G mutation caused respiratory deficiency, markedly diminished mitochondrial ATP levels and membrane potential, and increased the production of reactive oxygen species in mutant cybrids. These results demonstrated that an aberrant m1G37 modification of mitochondrial tRNAMet affected the structure and function of its tRNA and consequently altered mitochondrial function. Our findings provide critical insights into the pathophysiology of maternally inherited hypertension, which is manifested by the deficient tRNA nucleotide modification.
Collapse
Affiliation(s)
- Mi Zhou
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Ling Xue
- the Attardi Institute of Mitochondrial Biomedicine and
| | - Yaru Chen
- the Attardi Institute of Mitochondrial Biomedicine and
| | - Haiying Li
- the Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Qiufen He
- the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Bibin Wang
- the Attardi Institute of Mitochondrial Biomedicine and
| | - Feilong Meng
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Meng Wang
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China, .,the Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310058 Zhejiang, China, and.,the Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
24
|
Chawla M, Chermak E, Zhang Q, Bujnicki JM, Oliva R, Cavallo L. Occurrence and stability of lone pair-π stacking interactions between ribose and nucleobases in functional RNAs. Nucleic Acids Res 2017; 45:11019-11032. [PMID: 28977572 PMCID: PMC5737201 DOI: 10.1093/nar/gkx757] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
The specific folding pattern and function of RNA molecules lies in various weak interactions, in addition to the strong base-base pairing and stacking. One of these relatively weak interactions, characterized by the stacking of the O4' atom of a ribose on top of the heterocycle ring of a nucleobase, has been known to occur but has largely been ignored in the description of RNA structures. We identified 2015 ribose-base stacking interactions in a high-resolution set of non-redundant RNA crystal structures. They are widespread in structured RNA molecules and are located in structural motifs other than regular stems. Over 50% of them involve an adenine, as we found ribose-adenine contacts to be recurring elements in A-minor motifs. Fewer than 50% of the interactions involve a ribose and a base of neighboring residues, while approximately 30% of them involve a ribose and a nucleobase at least four residues apart. Some of them establish inter-domain or inter-molecular contacts and often implicate functionally relevant nucleotides. In vacuo ribose-nucleobase stacking interaction energies were calculated by quantum mechanics methods. Finally, we found that lone pair-π stacking interactions also occur between ribose and aromatic amino acids in RNA-protein complexes.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Edrisse Chermak
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| | - Qingyun Zhang
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy.,King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia.,Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Artem S. Novozhilov
- Department of Mathematics, North Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
26
|
Abstract
When given an option to choose among a set of alternatives and only one selection is right, one might stop and reflect over which one is best. However, the ribosome has no time to stop and make such reflections, proteins need to be produced and very fast. Eukaryotic translation initiation is an example of such a conundrum. Here, scanning for the correct codon match must be fast, efficient and accurate. We highlight our recent computational findings, which show how the initiation machinery manages to recognize one specific codon among many possible challengers, by fine-tuning the energetic landscape of base-pairing with the aid of the initiation factors eIF1 and eIF1A. Using a recent 3-dimensional structure of the eukaryotic initiation complex we have performed simulations of codon recognition in atomic detail. These calculations provide an in-depth energetic and structural view of how discrimination against near-cognate codons is achieved by the initiation complex.
Collapse
Affiliation(s)
- Christoffer Lind
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Mauricio Esguerra
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Johan Åqvist
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| |
Collapse
|
27
|
Xu Y, Villa A, Nilsson L. The free energy of locking a ring: Changing a deoxyribonucleoside to a locked nucleic acid. J Comput Chem 2017; 38:1147-1157. [PMID: 28101966 PMCID: PMC5434909 DOI: 10.1002/jcc.24692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023]
Abstract
Locked nucleic acid (LNA), a modified nucleoside which contains a bridging group across the ribose ring, improves the stability of DNA/RNA duplexes significantly, and therefore is of interest in biotechnology and gene therapy applications. In this study, we investigate the free energy change between LNA and DNA nucleosides. The transformation requires the breaking of the bridging group across the ribose ring, a problematic transformation in free energy calculations. To address this, we have developed a 3-step (easy to implement) and a 1-step protocol (more efficient, but more complicated to setup), for single and dual topologies in classical molecular dynamics simulations, using the Bennett Acceptance Ratio method to calculate the free energy. We validate the approach on the solvation free energy difference for the nucleosides thymidine, cytosine, and 5-methyl-cytosine. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- You Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Alessandra Villa
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| |
Collapse
|
28
|
Meng F, Cang X, Peng Y, Li R, Zhang Z, Li F, Fan Q, Guan AS, Fischel-Ghosian N, Zhao X, Guan MX. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation. J Biol Chem 2017; 292:2881-2892. [PMID: 28049726 DOI: 10.1074/jbc.m116.749374] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/15/2016] [Indexed: 11/06/2022] Open
Abstract
Nuclear modifier gene(s) was proposed to modulate the phenotypic expression of mitochondrial DNA mutation(s). Our previous investigations revealed that a nuclear modifier allele (A10S) in TRMU (methylaminomethyl-2-thiouridylate-methyltransferase) related to tRNA modification interacts with 12S rRNA 1555A→G mutation to cause deafness. The A10S mutation resided at a highly conserved residue of the N-terminal sequence. It was hypothesized that the A10S mutation altered the structure and function of TRMU, thereby causing mitochondrial dysfunction. Using molecular dynamics simulations, we showed that the A10S mutation introduced the Ser10 dynamic electrostatic interaction with the Lys106 residue of helix 4 within the catalytic domain of TRMU. The Western blotting analysis displayed the reduced levels of TRMU in mutant cells carrying the A10S mutation. The thermal shift assay revealed the Tm value of mutant TRMU protein, lower than that of the wild-type counterpart. The A10S mutation caused marked decreases in 2-thiouridine modification of U34 of tRNALys, tRNAGlu and tRNAGln However, the A10S mutation mildly increased the aminoacylated efficiency of tRNAs. The altered 2-thiouridine modification worsened the impairment of mitochondrial translation associated with the m.1555A→G mutation. The defective translation resulted in the reduced activities of mitochondrial respiration chains. The respiratory deficiency caused the reduction of mitochondrial ATP production and elevated the production of reactive oxidative species. As a result, mutated TRMU worsened mitochondrial dysfunctions associated with m.1555A→G mutation, exceeding the threshold for expressing a deafness phenotype. Our findings provided new insights into the pathophysiology of maternally inherited deafness that was manifested by interaction between mtDNA mutation and nuclear modifier gene.
Collapse
Affiliation(s)
- Feilong Meng
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Xiaohui Cang
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,the Institute of Genetics and
| | - Yanyan Peng
- the Institute of Genetics and.,the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ronghua Li
- the Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30307
| | | | | | | | - Anna S Guan
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | - Nathan Fischel-Ghosian
- the Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 90095, and
| | | | - Min-Xin Guan
- From the Division of Medical Genetics and Genomics, Zhejiang Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China, .,the Institute of Genetics and.,the Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China.,the Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
29
|
Mortazavi M, Zarenezhad M, Alavian SM, Gholamzadeh S, Malekpour A, Ghorbani M, Torkzadeh Mahani M, Lotfi S, Fakhrzad A. Bioinformatic Analysis of Codon Usage and Phylogenetic Relationships in Different Genotypes of the Hepatitis C Virus. HEPATITIS MONTHLY 2016; 16:e39196. [PMID: 27882066 PMCID: PMC5111459 DOI: 10.5812/hepatmon.39196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/16/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The hepatitis C virus (HCV) has six major genotypes. The purpose of this study was to phylogenetically investigate the differences between the genotypes of HCV, and to determine the types of amino acid codon usage in the structure of the virus in order to discover new methods for treatment regimes. METHODS The codon usage of the six genotypes of the HCV nucleotide sequence was investigated through the online application available on the website Gene Infinity. Also, phylogenetic analysis and the evolutionary relationship of HCV genotypes were analyzed with MEGA 7 software. RESULTS The six genotypes of HCV were divided into two groups based on their codon usage properties. In the first group, genotypes 1 and 5 (74.02%), and in the second group, genotypes 2 and 6 (72.43%) were shown to have the most similarity in terms of codon usage. Unlike the results with respect to determining the similarity of codon usage, the phylogenetic analysis showed the closest resemblance and correlation between genotypes 1 and 4. The results also showed that HCV has a GC (guanine-cytosine) abundant genome structure and prefers codons with GC for translation. CONCLUSIONS Genotypes 1 and 4 demonstrated remarkable similarity in terms of genome sequences and proteins, but surprisingly, in terms of the preferred codons for gene expression, they showed the greatest difference. More studies are therefore needed to confirm the results and select the best approach for treatment of these genotypes based on their codon usage properties.
Collapse
Affiliation(s)
- Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, IR Iran
| | - Mohammad Zarenezhad
- Gastroentrohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Legal Medicine Research Center, Legal Medicine Organization of Iran, Tehran, IR Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Saeed Gholamzadeh
- Legal Medicine Research Center, Legal Medicine Organization of Iran, Tehran, IR Iran
| | - Abdorrasoul Malekpour
- Legal Medicine Research Center, Legal Medicine Organization of Iran, Tehran, IR Iran
| | - Mohammad Ghorbani
- Department of Pathology, School of Medicine, Fasa University of Medical Sciences, Fasa, IR Iran
| | - Masoud Torkzadeh Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, IR Iran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, IR Iran
| | - Ali Fakhrzad
- Gastroentrohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
30
|
Sonawane KD, Sambhare SB. The influence of hypermodified nucleosides lysidine and t(6)A to recognize the AUA codon instead of AUG: a molecular dynamics simulation study. Integr Biol (Camb) 2016. [PMID: 26215455 DOI: 10.1039/c5ib00058k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypermodified nucleosides lysidine (L) and N(6)-threonylcarbamoyladenosine (t(6)A) influence codon-anticodon interactions during the protein biosynthesis process. Lysidine prevents the misrecognition of the AUG codon as isoleucine and that of AUA as methionine. The structural significance of these modified bases has not been studied in detail at the atomic level. Hence, in the present study we performed multiple molecular dynamics (MD) simulations of anticodon stem loop (ASL) of tRNA(Ile) in the presence and absence of modified bases 'L' and 't(6)A' at the 34th and 37th positions respectively along with trinucleotide 'AUA' and 'AUG' codons. Hydrogen bonding interactions formed by the tautomeric form of lysidine may assist in reading the third base adenine of the 'AUA' codon, unlike the guanine of the 'AUG' codon. Such interactions might be useful to restrict codon specificity to recognize isoleucine tRNA instead of methionine tRNA. The t(6)A side chain interacts with the purine ring of the first codon nucleotide adenine, which might provide base stacking interactions and could be responsible for restricting extended codon-anticodon recognition. We found that ASL tRNA(Ile) in the absence of modifications at the 34th and 37th positions cannot establish proper hydrogen bonding interactions to recognize the isoleucine codon 'AUA' and subsequently disturbs the anticodon loop structure. The binding free energy calculations revealed that tRNA(Ile) ASL with modified nucleosides prefers the codon AUA over AUG. Thus, these findings might be useful to understand the role of modified bases L and t(6)A to recognize the AUA codon instead of AUG.
Collapse
Affiliation(s)
- Kailas D Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur-416 004, Maharashtra, India. and Department of Microbiology, Shivaji University, Kolhapur- 416 004, Maharashtra, India
| | - Susmit B Sambhare
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur-416 004, Maharashtra, India.
| |
Collapse
|
31
|
Wang M, Peng Y, Zheng J, Zheng B, Jin X, Liu H, Wang Y, Tang X, Huang T, Jiang P, Guan MX. A deafness-associated tRNAAsp mutation alters the m1G37 modification, aminoacylation and stability of tRNAAsp and mitochondrial function. Nucleic Acids Res 2016; 44:10974-10985. [PMID: 27536005 PMCID: PMC5159531 DOI: 10.1093/nar/gkw726] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023] Open
Abstract
In this report, we investigated the pathogenic mechanism underlying the deafness-associated mitochondrial(mt) tRNAAsp 7551A > G mutation. The m.7551A > G mutation is localized at a highly conserved nucleotide(A37), adjacent (3′) to the anticodon, which is important for the fidelity of codon recognition and stabilization in functional tRNAs. It was anticipated that the m.7551A > G mutation altered the structure and function of mt-tRNAAsp. The primer extension assay demonstrated that the m.7551A > G mutation created the m1G37 modification of mt-tRNAAsp. Using cybrid cell lines generated by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA(mtDNA)-less (ρo) cells, we demonstrated the significant decreases in the efficiency of aminoacylation and steady-state level of mt-tRNAAsp in mutant cybrids, compared with control cybrids. A failure in metabolism of mt-tRNAAsp caused the variable reductions in mtDNA-encoded polypeptides in mutant cybrids. Impaired mitochondrial translation led to the respiratory phenotype in mutant cybrids. The respiratory deficiency lowed mitochondrial adenosine triphosphate production and increased the production of oxidative reactive species in mutant cybrids. Our data demonstrated that mitochondrial dysfunctions caused by the m.7551A > G mutation are associated with deafness. Our findings may provide new insights into the pathophysiology of maternally transmitted deafness that was manifested by altered nucleotide modification of mitochondrial tRNA.
Collapse
Affiliation(s)
- Meng Wang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jing Zheng
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Binjiao Zheng
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Xiaofen Jin
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hao Liu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowen Tang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Pingping Jiang
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Clinical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China .,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
32
|
Xue L, Wang M, Li H, Wang H, Jiang F, Hou L, Geng J, Lin Z, Peng Y, Zhou H, Yu H, Jiang P, Mo JQ, Guan MX. Mitochondrial tRNA mutations in 2070 Chinese Han subjects with hypertension. Mitochondrion 2016; 30:208-21. [PMID: 27544295 DOI: 10.1016/j.mito.2016.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mitochondria have the profound impact on vascular function in both health and disease. However, mitochondrial genetic determinants for the development of hypertension remain poorly explored. METHODS AND RESULTS The Sanger sequence analysis of 22 mitochondrial tRNA genes were performed in a cohort of 2070 Han Chinese hypertensive and 512 control subjects. This analysis identified 165 variants among 22 tRNA genes. These variants were evaluated for the pathogenicity using the following criteria: (1) present in <1% of the controls; (2) evolutional conservation; (3) potential structural and functional alterations. We identified 47 (5 known and 42 novel/putative) hypertension-associated tRNA variants in 80 hypertensive subjects. These variants could have potential structural alterations and functional significance of tRNAs. By using lymphoblastoid cell lines derived from 6 probands carrying one of 6 represented variants (tRNA(Ala) 5655T>C, tRNA(Gly) 10003T>C, tRNA(Leu(UUR)) 3253T>C, tRNA(Asp) 7551A>G, tRNA(Glu) 14692A>G, tRNA(Thr) 15909A>G) and 6 control subjects lacking these variants, we showed marked reductions in the steady-state level of corresponding 5 tRNAs, but not tRNA(Thr), in mutant cell lines, compared with control cells lines. The various decreases in the activities of complexes I, III and IV were observed in mutant cells carrying one of five tRNA variants, except tRNA(Thr) 15909A>G variant. The deficient respirations were responsible for the decrease in the mitochondrial ATP production and increasing production of reactive oxygen species in mutant cell lines carrying one of five tRNA variants. CONCLUSION Mitochondrial tRNA variants are the important causes of hypertension, accounting for 3.9% cases of 2070 Han Chinese hypertensive subjects. Our findings may provide new insights into the pathophysiology of hypertension that were manifested by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ling Xue
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Meng Wang
- Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiying Li
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Heng Wang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Jiang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingling Hou
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junwei Geng
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhi Lin
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanyan Peng
- Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hong Zhou
- Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Han Yu
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Jiang
- Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Genetics, Zhejiang University, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Wang M, Liu H, Zheng J, Chen B, Zhou M, Fan W, Wang H, Liang X, Zhou X, Eriani G, Jiang P, Guan MX. A Deafness- and Diabetes-associated tRNA Mutation Causes Deficient Pseudouridinylation at Position 55 in tRNAGlu and Mitochondrial Dysfunction. J Biol Chem 2016; 291:21029-21041. [PMID: 27519417 DOI: 10.1074/jbc.m116.739482] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 02/03/2023] Open
Abstract
Several mitochondrial tRNA mutations have been associated with maternally inherited diabetes and deafness. However, the pathophysiology of these tRNA mutations remains poorly understood. In this report, we identified the novel homoplasmic 14692A→G mutation in the mitochondrial tRNAGlu gene among three Han Chinese families with maternally inherited diabetes and deafness. The m.14692A→G mutation affected a highly conserved uridine at position 55 of the TΨC loop of tRNAGlu The uridine is modified to pseudouridine (Ψ55), which plays an important role in the structure and function of this tRNA. Using lymphoblastoid cell lines derived from a Chinese family, we demonstrated that the m.14692A→G mutation caused loss of Ψ55 modification and increased angiogenin-mediated endonucleolytic cleavage in mutant tRNAGlu The destabilization of base-pairing (18A-Ψ55) caused by the m.14692A→G mutation perturbed the conformation and stability of tRNAGlu An approximately 65% decrease in the steady-state level of tRNAGlu was observed in mutant cells compared with control cells. A failure in tRNAGlu metabolism impaired mitochondrial translation, especially for polypeptides with a high proportion of glutamic acid codons such as ND1, ND6, and CO2 in mutant cells. An impairment of mitochondrial translation caused defective respiratory capacity, especially reducing the activities of complexes I and IV. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These mitochondrial dysfunctions caused an increasing production of reactive oxygen species in the mutant cells. Our findings may provide new insights into the pathophysiology of maternally inherited diabetes and deafness, which is primarily manifested by the deficient nucleotide modification of mitochondrial tRNAGlu.
Collapse
Affiliation(s)
- Meng Wang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Hao Liu
- the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Jing Zheng
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Bobei Chen
- the Department of Otolaryngology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035, the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Mi Zhou
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Wenlu Fan
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Hen Wang
- the Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Xiaoyang Liang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Xiaolong Zhou
- the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 200031, and
| | - Gilbert Eriani
- the Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | - Pingping Jiang
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001
| | - Min-Xin Guan
- From the Division of Clinical Genetics and Genomics, Children's Hospital and the Institute of Genetics, Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China 310001, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, and Joining Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China 310058,
| |
Collapse
|
34
|
Structural effects of modified ribonucleotides and magnesium in transfer RNAs. Bioorg Med Chem 2016; 24:4826-4834. [PMID: 27364608 DOI: 10.1016/j.bmc.2016.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 11/20/2022]
Abstract
Modified nucleotides are ubiquitous and important to tRNA structure and function. To understand their effect on tRNA conformation, we performed a series of molecular dynamics simulations on yeast tRNAPhe and tRNAinit, Escherichia coli tRNAinit and HIV tRNALys. Simulations were performed with the wild type modified nucleotides, using the recently developed CHARMM compatible force field parameter set for modified nucleotides (J. Comput. Chem.2016, 37, 896), or with the corresponding unmodified nucleotides, and in the presence or absence of Mg2+. Results showed a stabilizing effect associated with the presence of the modifications and Mg2+ for some important positions, such as modified guanosine in position 37 and dihydrouridines in 16/17 including both structural properties and base interactions. Some other modifications were also found to make subtle contributions to the structural properties of local domains. While we were not able to investigate the effect of adenosine 37 in tRNAinit and limitations were observed in the conformation of E. coli tRNAinit, the presence of the modified nucleotides and of Mg2+ better maintained the structural features and base interactions of the tRNA systems than in their absence indicating the utility of incorporating the modified nucleotides in simulations of tRNA and other RNAs.
Collapse
|
35
|
Deb I, Pal R, Sarzynska J, Lahiri A. Reparameterizations of theχTorsion and Lennard-JonesσParameters Improve the Conformational Characteristics of Modified Uridines. J Comput Chem 2016; 37:1576-88. [DOI: 10.1002/jcc.24374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/05/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; 92 APC Road Kolkata West Bengal 700009 India
- Institute of Bioorganic Chemistry, Polish Academy of Sciences; Noskowskiego 12/14 Poznan 61-704 Poland
| | - Rupak Pal
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; 92 APC Road Kolkata West Bengal 700009 India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences; Noskowskiego 12/14 Poznan 61-704 Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; 92 APC Road Kolkata West Bengal 700009 India
| |
Collapse
|
36
|
Xu Y, Vanommeslaeghe K, Aleksandrov A, MacKerell AD, Nilsson L. Additive CHARMM force field for naturally occurring modified ribonucleotides. J Comput Chem 2016; 37:896-912. [PMID: 26841080 PMCID: PMC4801715 DOI: 10.1002/jcc.24307] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 01/13/2023]
Abstract
More than 100 naturally occurring modified nucleotides have been found in RNA molecules, in particular in tRNAs. We have determined molecular mechanics force field parameters compatible with the CHARMM36 all‐atom additive force field for all these modifications using the CHARMM force field parametrization strategy. Emphasis was placed on fine tuning of the partial atomic charges and torsion angle parameters. Quantum mechanics calculations on model compounds provided the initial set of target data, and extensive molecular dynamics simulations of nucleotides and oligonucleotides in aqueous solutions were used for further refinement against experimental data. The presented parameters will allow for computational studies of a wide range of RNAs containing modified nucleotides, including the ribosome and transfer RNAs. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- You Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201.,Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, B-1090, Belgium
| | - Alexey Aleksandrov
- Department of Biology, Ecole Polytechnique, Laboratoire De Biochimie (CNRS UMR7654), Palaiseau, F-91128, France
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland, 21201
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, HUDDINGE, SE-141 83, Sweden
| |
Collapse
|
37
|
Satpati P, Åqvist J. Why base tautomerization does not cause errors in mRNA decoding on the ribosome. Nucleic Acids Res 2014; 42:12876-84. [PMID: 25352546 PMCID: PMC4227757 DOI: 10.1093/nar/gku1044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The structure of the genetic code implies strict Watson–Crick base pairing in the first two codon positions, while the third position is known to be degenerate, thus allowing wobble base pairing. Recent crystal structures of near-cognate tRNAs accommodated into the ribosomal A-site, however, show canonical geometry even with first and second position mismatches. This immediately raises the question of whether these structures correspond to tautomerization of the base pairs. Further, if unusual tautomers are indeed trapped why do they not cause errors in decoding? Here, we use molecular dynamics free energy calculations of ribosomal complexes with cognate and near-cognate tRNAs to analyze the structures and energetics of G-U mismatches in the first two codon positions. We find that the enol tautomer of G is almost isoenergetic with the corresponding ketone in the first position, while it is actually more stable in the second position. Tautomerization of U, on the other hand is highly penalized. The presence of the unusual enol form of G thus explains the crystallographic observations. However, the calculations also show that this tautomer does not cause high codon reading error frequencies, as the resulting tRNA binding free energies are significantly higher than for the cognate complex.
Collapse
Affiliation(s)
- Priyadarshi Satpati
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
38
|
Odoi KA, Huang Y, Rezenom YH, Liu WR. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl) pairs in the Escherichia coli BL21(DE3) cell strain. PLoS One 2013; 8:e57035. [PMID: 23520461 PMCID: PMC3592851 DOI: 10.1371/journal.pone.0057035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/16/2013] [Indexed: 12/03/2022] Open
Abstract
Systematic studies of nonsense and sense suppression of the original and three derivative Methanosarcina mazei PylRS-tRNAPyl pairs and cross recognition between nonsense codons and various tRNAPyl anticodons in the Escherichia coli BL21(DE3) cell strain are reported. is orthogonal in E. coli and able to induce strong amber suppression when it is co-expressed with pyrrolysyl-tRNA synthetase (PylRS) and charged with a PylRS substrate, Nε-tert-butoxycarbonyl-l-lysine (BocK). Similar to, is also orthogonal in E. coli and can be coupled with PylRS to genetically incorporate BocK at an ochre mutation site. Although is expected to recognize a UAG codon based on the wobble hypothesis, the PylRS- pair does not give rise to amber suppression that surpasses the basal amber suppression level in E. coli. E. coli itself displays a relatively high opal suppression level and tryptophan (Trp) is incorporated at an opal mutation site. Although the PylRS- pair can be used to encode BocK at an opal codon, the pair fails to suppress the incorporation of Trp at the same site. fails to deliver BocK at an AGG codon when co-expressed with PylRS in E. coli.
Collapse
Affiliation(s)
- Keturah A. Odoi
- Department of Chemistry, Texas A&M University, College Station, Texas, United States of America
| | - Ying Huang
- Department of Chemistry, Texas A&M University, College Station, Texas, United States of America
| | - Yohannes H. Rezenom
- Department of Chemistry, Texas A&M University, College Station, Texas, United States of America
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Zhou W, Karcher D, Bock R. Importance of adenosine-to-inosine editing adjacent to the anticodon in an Arabidopsis alanine tRNA under environmental stress. Nucleic Acids Res 2013; 41:3362-72. [PMID: 23355609 PMCID: PMC3597679 DOI: 10.1093/nar/gkt013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In all organisms, transfer RNAs (tRNAs) undergo extensive post-transcriptional modifications. Although base modifications in the anticodon are known to alter decoding specificity or improve decoding accuracy, much less is known about the functional relevance of modifications in other positions of tRNAs. Here, we report the identification of an A-to-I tRNA editing enzyme that modifies the tRNA-Ala(AGC) in the model plant Arabidopsis thaliana. The enzyme is homologous to Tad1p, a yeast tRNA-specific adenosine deaminase, and it selectively deaminates the adenosine in the position 3'-adjacent to the anticodon (A37) to inosine. We show that the AtTAD1 protein is exclusively localized in the nucleus. The tad1 loss-of-function mutants isolated in Arabidopsis show normal accumulation of the tRNA-Ala(AGC), suggesting that the loss of the I37 modification does not affect tRNA stability. The tad1 knockout mutants display no discernible phenotype under standard growth conditions, but produce less biomass under environmental stress conditions. Our results provide the first evidence in support of a physiological relevance of the A37-to-I modification in eukaryotes.
Collapse
Affiliation(s)
| | | | - Ralph Bock
- *To whom correspondence should be addressed. Tel: +49 3315 67 8700; Fax: +49 3315 67 8701;
| |
Collapse
|
40
|
Brandmayr C, Wagner M, Brückl T, Globisch D, Pearson D, Kneuttinger AC, Reiter V, Hienzsch A, Koch S, Thoma I, Thumbs P, Michalakis S, Müller M, Biel M, Carell T. Isotope-based analysis of modified tRNA nucleosides correlates modification density with translational efficiency. Angew Chem Int Ed Engl 2012; 51:11162-5. [PMID: 23037940 PMCID: PMC3533783 DOI: 10.1002/anie.201203769] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/26/2012] [Indexed: 11/09/2022]
Abstract
Useful diversity: Quantification of modified tRNA nucleobases in different murine and porcine tissues reveals a tissue-specific overall modification content. The modification content correlates with rates of protein synthesis in vitro, suggesting a direct link between tRNA modification levels and tissue-specific translational efficiency.
Collapse
Affiliation(s)
- Caterina Brandmayr
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Mirko Wagner
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Tobias Brückl
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Daniel Globisch
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - David Pearson
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Andrea Christa Kneuttinger
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Veronika Reiter
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Antje Hienzsch
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Susanne Koch
- Center for Integrated Protein Science at the Department of Pharmacy, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany)
| | - Ines Thoma
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Peter Thumbs
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Stylianos Michalakis
- Center for Integrated Protein Science at the Department of Pharmacy, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany)
| | - Markus Müller
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| | - Martin Biel
- Center for Integrated Protein Science at the Department of Pharmacy, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany)
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität MünchenButenandtstrasse 5–13, 81377 Munich (Germany) E-mail: Homepage: http://www.carellgroup.de
| |
Collapse
|
41
|
Brandmayr C, Wagner M, Brückl T, Globisch D, Pearson D, Kneuttinger AC, Reiter V, Hienzsch A, Koch S, Thoma I, Thumbs P, Michalakis S, Müller M, Biel M, Carell T. Eine isotopenbasierte Analyse modifizierter tRNA-Nukleoside korreliert die Modifikationsdichte mit der Translationseffizienz. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Aqvist J, Lind C, Sund J, Wallin G. Bridging the gap between ribosome structure and biochemistry by mechanistic computations. Curr Opin Struct Biol 2012; 22:815-23. [PMID: 22884263 DOI: 10.1016/j.sbi.2012.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/14/2012] [Accepted: 07/09/2012] [Indexed: 11/18/2022]
Abstract
The wealth of structural and biochemical data now available for protein synthesis on the ribosome presents major new challenges for computational biochemistry. Apart from technical difficulties in modeling ribosome systems, the complexity of the overall translation cycle with a multitude of different kinetic steps presents a formidable problem for computational efforts where we have only seen the beginning. However, a range of methodologies including molecular dynamics simulations, free energy calculations, molecular docking and quantum chemical approaches have already been put to work with promising results. In particular, the combined efforts of structural biology, biochemistry, kinetics and computational modeling can lead towards a quantitative structure-based description of translation.
Collapse
Affiliation(s)
- Johan Aqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
43
|
Allnér O, Nilsson L, Villa A. Magnesium Ion-Water Coordination and Exchange in Biomolecular Simulations. J Chem Theory Comput 2012; 8:1493-502. [PMID: 26596759 DOI: 10.1021/ct3000734] [Citation(s) in RCA: 290] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnesium ions have an important role in the structure and folding mechanism of ribonucleic acid systems. To properly simulate these biophysical processes, the applied molecular models should reproduce, among other things, the kinetic properties of the ions in water solution. Here, we have studied the kinetics of the binding of magnesium ions with water molecules and nucleic acid systems using molecular dynamics simulation in detail. We have validated the parameters used in biomolecular force fields, such as AMBER and CHARMM, for Mg(2+) ions and also for the biologically relevant ions Na(+), K(+), and Ca(2+) together with three different water models (TIP3P, SPC/E, and TIP5P). The results show that Mg(2+) ions have a slower exchange rate than Na(+), K(+), and Ca(2+) in agreement with the experimental trend, but the simulated value underestimates the experimentally observed Mg(2+)-water exchange rate by several orders of magnitude, irrespective of the force field and water model. A new set of parameters for Mg(2+) was developed to reproduce the experimental kinetic data. This set also leads to better reproduction of structural data than existing models. We have applied the new parameter set to Mg(2+) binding with a monophosphate model system and with the purine riboswitch, add A-riboswitch. In line with the Mg(2+)-water results, the newly developed parameters show a better description of the structure and kinetics of the Mg(2+)-phosphate binding than all other models. The characterization of the ion binding to the riboswitch system shows that the new parameter set does not affect the global structure of the ribonucleic acid system or the number of ions involved in direct or indirect binding. A slight decrease in the number of water-bridged contacts between A-riboswitch and the Mg(2+) ion is observed. The results support the ability of the newly developed parameters to improve the kinetic description of the Mg(2+) and phosphate ions and their applicability in nucleic acid simulation.
Collapse
Affiliation(s)
- Olof Allnér
- Karolinska Institutet, Department of Biosciences and Nutrition, Center for Biosciences, SE-141 83 HUDDINGE, Sweden
| | - Lennart Nilsson
- Karolinska Institutet, Department of Biosciences and Nutrition, Center for Biosciences, SE-141 83 HUDDINGE, Sweden
| | - Alessandra Villa
- Karolinska Institutet, Department of Biosciences and Nutrition, Center for Biosciences, SE-141 83 HUDDINGE, Sweden
| |
Collapse
|