1
|
Hori H. Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA. Genes (Basel) 2023; 14:genes14020382. [PMID: 36833309 PMCID: PMC9957541 DOI: 10.3390/genes14020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase (THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the THUMP domain more than two decades ago, many tRNA modification enzymes containing the THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase, methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review, I focus on the functions and structures of these tRNA modification enzymes and the modified nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the THUMP domain captures the 3'-end of RNA (in the case of tRNA, the CCA-terminus). However, in some cases, this concept is not simply applicable given the modification patterns observed in tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA modification enzymes, are involved in numerous biological phenomena, and the defects of genes for human THUMP-related proteins are implicated in genetic diseases. In this review, these biological phenomena are also introduced.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
2
|
Nishida Y, Ohmori S, Kakizono R, Kawai K, Namba M, Okada K, Yamagami R, Hirata A, Hori H. Required Elements in tRNA for Methylation by the Eukaryotic tRNA (Guanine- N2-) Methyltransferase (Trm11-Trm112 Complex). Int J Mol Sci 2022; 23:ijms23074046. [PMID: 35409407 PMCID: PMC8999500 DOI: 10.3390/ijms23074046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
The Saccharomyces cerevisiae Trm11 and Trm112 complex (Trm11-Trm112) methylates the 2-amino group of guanosine at position 10 in tRNA and forms N2-methylguanosine. To determine the elements required in tRNA for methylation by Trm11-Trm112, we prepared 60 tRNA transcript variants and tested them for methylation by Trm11-Trm112. The results show that the precursor tRNA is not a substrate for Trm11-Trm112. Furthermore, the CCA terminus is essential for methylation by Trm11-Trm112, and Trm11-Trm112 also only methylates tRNAs with a regular-size variable region. In addition, the G10-C25 base pair is required for methylation by Trm11-Trm112. The data also demonstrated that Trm11-Trm112 recognizes the anticodon-loop and that U38 in tRNAAla acts negatively in terms of methylation. Likewise, the U32-A38 base pair in tRNACys negatively affects methylation. The only exception in our in vitro study was tRNAValAAC1. Our experiments showed that the tRNAValAAC1 transcript was slowly methylated by Trm11-Trm112. However, position 10 in this tRNA was reported to be unmodified G. We purified tRNAValAAC1 from wild-type and trm11 gene deletion strains and confirmed that a portion of tRNAValAAC1 is methylated by Trm11-Trm112 in S. cerevisiae. Thus, our study explains the m2G10 modification pattern of all S. cerevisiae class I tRNAs and elucidates the Trm11-Trm112 binding sites.
Collapse
|
3
|
Wang C, van Tran N, Jactel V, Guérineau V, Graille M. Structural and functional insights into Archaeoglobus fulgidus m2G10 tRNA methyltransferase Trm11 and its Trm112 activator. Nucleic Acids Res 2020; 48:11068-11082. [PMID: 33035335 PMCID: PMC7641767 DOI: 10.1093/nar/gkaa830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/20/2023] Open
Abstract
tRNAs play a central role during the translation process and are heavily post-transcriptionally modified to ensure optimal and faithful mRNA decoding. These epitranscriptomics marks are added by largely conserved proteins and defects in the function of some of these enzymes are responsible for neurodevelopmental disorders and cancers. Here, we focus on the Trm11 enzyme, which forms N2-methylguanosine (m2G) at position 10 of several tRNAs in both archaea and eukaryotes. While eukaryotic Trm11 enzyme is only active as a complex with Trm112, an allosteric activator of methyltransferases modifying factors (RNAs and proteins) involved in mRNA translation, former studies have shown that some archaeal Trm11 proteins are active on their own. As these studies were performed on Trm11 enzymes originating from archaeal organisms lacking TRM112 gene, we have characterized Trm11 (AfTrm11) from the Archaeoglobus fulgidus archaeon, which genome encodes for a Trm112 protein (AfTrm112). We show that AfTrm11 interacts directly with AfTrm112 similarly to eukaryotic enzymes and that although AfTrm11 is active as a single protein, its enzymatic activity is strongly enhanced by AfTrm112. We finally describe the first crystal structures of the AfTrm11-Trm112 complex and of Trm11, alone or bound to the methyltransferase inhibitor sinefungin.
Collapse
Affiliation(s)
- Can Wang
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Nhan van Tran
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Vincent Jactel
- Laboratoire de Synthèse Organique (LSO), CNRS, Ecole polytechnique, ENSTA, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Vincent Guérineau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| |
Collapse
|
4
|
Arakawa S, Kamizaki K, Kuwana Y, Kataoka N, Naoe C, Takemoto C, Yokogawa T, Hori H. Application of solid-phase DNA probe method with cleavage by deoxyribozyme for analysis of long non-coding RNAs. J Biochem 2020; 168:273-283. [PMID: 32289169 DOI: 10.1093/jb/mvaa048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 11/12/2022] Open
Abstract
The solid-phase DNA probe method is a well-established technique for tRNA purification. We have applied this method for purification and analysis of other non-coding RNAs. Three columns for purification of tRNAPhe, transfer-messenger RNA (tmRNA) and 16S rRNA from Thermus thermophilus were connected in tandem and purifications were performed. From each column, tRNAPhe, tmRNA and 16S rRNA could be purified in a single step. This is the first report of purification of native tmRNA from T. thermophilus and the purification demonstrates that the solid-phase DNA probe method is applicable to non-coding RNA, which is present in lower amounts than tRNA. Furthermore, if a long non-coding RNA is cleaved site-specifically and the fragment can be purified by the solid-phase DNA probe method, modified nucleosides in the long non-coding RNA can be analysed. Therefore, we designed a deoxyribozyme (DNAzyme) to perform site-specific cleavage of 16S rRNA, examined optimum conditions and purified the resulting RNA fragment. Sequencing of complimentary DNA and mass spectrometric analysis revealed that the purified RNA corresponded to the targeted fragment of 16S rRNA. Thus, the combination of DNAzyme cleavage and purification using solid-phase DNA probe methodology can be a useful technique for analysis of modified nucleosides in long non-coding RNAs.
Collapse
Affiliation(s)
- Shizuka Arakawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kohsuke Kamizaki
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Yusuke Kuwana
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Naruki Kataoka
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Chieko Naoe
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chie Takemoto
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Yokogawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
5
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
6
|
Hori H. Regulatory Factors for tRNA Modifications in Extreme- Thermophilic Bacterium Thermus thermophilus. Front Genet 2019; 10:204. [PMID: 30906314 PMCID: PMC6418473 DOI: 10.3389/fgene.2019.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Thermus thermophilus is an extreme-thermophilic bacterium that can grow at a wide range of temperatures (50-83°C). To enable T. thermophilus to grow at high temperatures, several biomolecules including tRNA and tRNA modification enzymes show extreme heat-resistance. Therefore, the modified nucleosides in tRNA from T. thermophilus have been studied mainly from the view point of tRNA stabilization at high temperatures. Such studies have shown that several modifications stabilize the structure of tRNA and are essential for survival of the organism at high temperatures. Together with tRNA modification enzymes, the modified nucleosides form a network that regulates the extent of different tRNA modifications at various temperatures. In this review, I describe this network, as well as the tRNA recognition mechanism of individual tRNA modification enzymes. Furthermore, I summarize the roles of other tRNA stabilization factors such as polyamines and metal ions.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Sciences and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| |
Collapse
|
7
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
8
|
Nakashima M, Yamagami R, Tomikawa C, Ochi Y, Moriya T, Asahara H, Fourmy D, Yoshizawa S, Oshima T, Hori H. Long and branched polyamines are required for maintenance of the ribosome, tRNAHisand tRNATyrinThermus thermophiluscells at high temperatures. Genes Cells 2017; 22:628-645. [DOI: 10.1111/gtc.12502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Misa Nakashima
- Department of Materials Science and Biotechnology; Graduate School of Science and Engineering; Ehime University; 3 Bunkyo-cho Matsuyama Ehime 790-8577 Japan
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology; Graduate School of Science and Engineering; Ehime University; 3 Bunkyo-cho Matsuyama Ehime 790-8577 Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology; Graduate School of Science and Engineering; Ehime University; 3 Bunkyo-cho Matsuyama Ehime 790-8577 Japan
| | - Yuki Ochi
- Department of Materials Science and Biotechnology; Graduate School of Science and Engineering; Ehime University; 3 Bunkyo-cho Matsuyama Ehime 790-8577 Japan
| | - Toshiyuki Moriya
- Institute of Environmental Microbiology; Kyowa Kako Co. Ltd.; Tadao 2-15-5 Machida 194-0035 Japan
| | - Haruichi Asahara
- New England Biolabs, Inc; 240 County Road Ipswich Massachusetts 01938 USA
| | - Dominique Fourmy
- Institute for Integrative Biology of the Cell (I2BC); CEA, CNRS; Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Satoko Yoshizawa
- Institute for Integrative Biology of the Cell (I2BC); CEA, CNRS; Univ Paris-Sud; Université Paris-Saclay; 91198 Gif-sur-Yvette cedex France
| | - Tairo Oshima
- Institute of Environmental Microbiology; Kyowa Kako Co. Ltd.; Tadao 2-15-5 Machida 194-0035 Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology; Graduate School of Science and Engineering; Ehime University; 3 Bunkyo-cho Matsuyama Ehime 790-8577 Japan
| |
Collapse
|
9
|
Hirata A, Nishiyama S, Tamura T, Yamauchi A, Hori H. Structural and functional analyses of the archaeal tRNA m2G/m22G10 methyltransferase aTrm11 provide mechanistic insights into site specificity of a tRNA methyltransferase that contains common RNA-binding modules. Nucleic Acids Res 2016; 44:6377-90. [PMID: 27325738 PMCID: PMC5291279 DOI: 10.1093/nar/gkw561] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/09/2016] [Indexed: 12/30/2022] Open
Abstract
N(2)-methylguanosine is one of the most universal modified nucleosides required for proper function in transfer RNA (tRNA) molecules. In archaeal tRNA species, a specific S-adenosyl-L-methionine (SAM)-dependent tRNA methyltransferase (MTase), aTrm11, catalyzes formation of N(2)-methylguanosine and N(2),N(2)-dimethylguanosine at position 10. Here, we report the first X-ray crystal structures of aTrm11 from Thermococcus kodakarensis (Tko), of the apo-form, and of its complex with SAM. The structures show that TkoTrm11 consists of three domains: an N-terminal ferredoxinlike domain (NFLD), THUMP domain and Rossmann-fold MTase (RFM) domain. A linker region connects the THUMP-NFLD and RFM domains. One SAM molecule is bound in the pocket of the RFM domain, suggesting that TkoTrm11 uses a catalytic mechanism similar to that of other tRNA MTases containing an RFM domain. Furthermore, the conformation of NFLD and THUMP domains in TkoTrm11 resembles that of other tRNA-modifying enzymes specifically recognizing the tRNA acceptor stem. Our docking model of TkoTrm11-SAM in complex with tRNA, combined with biochemical analyses and pre-existing evidence, provides insights into the substrate tRNA recognition mechanism: The THUMP domain recognizes a 3'-ACCA end, and the linker region and RFM domain recognize the T-stem, acceptor stem and V-loop of tRNA, thereby causing TkoTrm11 to specifically identify its methylation site.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Seiji Nishiyama
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Toshihiro Tamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ayano Yamauchi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
10
|
Yamagami R, Tomikawa C, Shigi N, Kazayama A, Asai SI, Takuma H, Hirata A, Fourmy D, Asahara H, Watanabe K, Yoshizawa S, Hori H. Folate-/FAD-dependent tRNA methyltransferase from Thermus thermophilus regulates other modifications in tRNA at low temperatures. Genes Cells 2016; 21:740-54. [PMID: 27238446 DOI: 10.1111/gtc.12376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/19/2016] [Indexed: 11/29/2022]
Abstract
TrmFO is a N(5) , N(10) -methylenetetrahydrofolate (CH2 THF)-/FAD-dependent tRNA methyltransferase, which synthesizes 5-methyluridine at position 54 (m(5) U54) in tRNA. Thermus thermophilus is an extreme-thermophilic eubacterium, which grows in a wide range of temperatures (50-83 °C). In T. thermophilus, modified nucleosides in tRNA and modification enzymes form a network, in which one modification regulates the degrees of other modifications and controls the flexibility of tRNA. To clarify the role of m(5) U54 and TrmFO in the network, we constructed the trmFO gene disruptant (∆trmFO) strain of T. thermophilus. Although this strain did not show any growth retardation at 70 °C, it showed a slow-growth phenotype at 50 °C. Nucleoside analysis showed increase in 2'-O-methylguanosine at position 18 and decrease in N(1) -methyladenosine at position 58 in the tRNA mixture from the ∆trmFO strain at 50 °C. These in vivo results were reproduced by in vitro experiments with purified enzymes. Thus, we concluded that the m(5) U54 modification have effects on the other modifications in tRNA through the network at 50 °C. (35) S incorporations into proteins showed that the protein synthesis activity of ∆trmFO strain was inferior to the wild-type strain at 50 °C, suggesting that the growth delay at 50 °C was caused by the inferior protein synthesis activity.
Collapse
Affiliation(s)
- Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Naoki Shigi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ai Kazayama
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Shin-Ichi Asai
- Japan Biological Information Research Center (JBIRC), Japan Biological Informatics Consortium (JBIC), Tokyo, 135-0064, Japan
| | - Hiroyuki Takuma
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Dominique Fourmy
- Institute for Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, Cedex, 91198, France
| | - Haruichi Asahara
- New England Biolabs, Inc, 240 County Road, Ipswich, MA, 01938, USA
| | - Kimitsuna Watanabe
- Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Satoko Yoshizawa
- Institute for Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, Gif-sur-Yvette, Cedex, 91198, France
| | - Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| |
Collapse
|
11
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
12
|
Suzuki T, Suzuki T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res 2014; 42:7346-57. [PMID: 24831542 PMCID: PMC4066797 DOI: 10.1093/nar/gku390] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammalian mitochondria, 22 species of tRNAs encoded in mitochondrial DNA play crucial roles in the translation of 13 essential subunits of the respiratory chain complexes involved in oxidative phosphorylation. Following transcription, mitochondrial tRNAs are modified by nuclear-encoded tRNA-modifying enzymes. These modifications are required for the proper functioning of mitochondrial tRNAs (mt tRNAs), and the absence of these modifications can cause pathological consequences. To date, however, the information available about these modifications has been incomplete. To address this issue, we isolated all 22 species of mt tRNAs from bovine liver and comprehensively determined the post-transcriptional modifications in each tRNA by mass spectrometry. Here, we describe the primary structures with post-transcriptional modifications of seven species of mt tRNAs which were previously uncharacterized, and provide revised information regarding base modifications in five other mt tRNAs. In the complete set of bovine mt tRNAs, we found 15 species of modified nucleosides at 118 positions (7.48% of total bases). This result provides insight into the molecular mechanisms underlying the decoding system in mammalian mitochondria and enables prediction of candidate tRNA-modifying enzymes responsible for each modification of mt tRNAs.
Collapse
Affiliation(s)
- Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Kamalampeta R, Keffer-Wilkes LC, Kothe U. tRNA binding, positioning, and modification by the pseudouridine synthase Pus10. J Mol Biol 2013; 425:3863-74. [PMID: 23743107 DOI: 10.1016/j.jmb.2013.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Pus10 is the most recently identified pseudouridine synthase found in archaea and higher eukaryotes. It modifies uridine 55 in the TΨC arm of tRNAs. Here, we report the first quantitative biochemical analysis of tRNA binding and pseudouridine formation by Pyrococcus furiosus Pus10. The affinity of Pus10 for both substrate and product tRNA is high (Kd of 30nM), and product formation occurs with a Km of 400nM and a kcat of 0.9s(-1). Site-directed mutagenesis was used to demonstrate that the thumb loop in the catalytic domain is important for efficient catalysis; we propose that the thumb loop positions the tRNA within the active site. Furthermore, a new catalytic arginine residue was identified (arginine 208), which is likely responsible for triggering flipping of the target uridine into the active site of Pus10. Lastly, our data support the proposal that the THUMP-containing domain, found in the N-terminus of Pus10, contributes to binding of tRNA. Together, our findings are consistent with the hypothesis that tRNA binding by Pus10 occurs through an induced-fit mechanism, which is a prerequisite for efficient pseudouridine formation.
Collapse
Affiliation(s)
- Rajashekhar Kamalampeta
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
| | | | | |
Collapse
|
14
|
Fislage M, Roovers M, Tuszynska I, Bujnicki JM, Droogmans L, Versées W. Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life. Nucleic Acids Res 2012; 40:5149-61. [PMID: 22362751 PMCID: PMC3367198 DOI: 10.1093/nar/gks163] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Methyltransferases (MTases) form a major class of tRNA-modifying enzymes needed for the proper functioning of tRNA. Recently, RNA MTases from the TrmN/Trm14 family that are present in Archaea, Bacteria and Eukaryota have been shown to specifically modify tRNAPhe at guanosine 6 in the tRNA acceptor stem. Here, we report the first X-ray crystal structures of the tRNA m2G6 (N2-methylguanosine) MTase TTCTrmN from Thermus thermophilus and its ortholog PfTrm14 from Pyrococcus furiosus. Structures of PfTrm14 were solved in complex with the methyl donor S-adenosyl-l-methionine (SAM or AdoMet), as well as the reaction product S-adenosyl-homocysteine (SAH or AdoHcy) and the inhibitor sinefungin. TTCTrmN and PfTrm14 consist of an N-terminal THUMP domain fused to a catalytic Rossmann-fold MTase (RFM) domain. These results represent the first crystallographic structure analysis of proteins containing both THUMP and RFM domain, and hence provide further insight in the contribution of the THUMP domain in tRNA recognition and catalysis. Electrostatics and conservation calculations suggest a main tRNA binding surface in a groove between the THUMP domain and the MTase domain. This is further supported by a docking model of TrmN in complex with tRNAPhe of T. thermophilus and via site-directed mutagenesis.
Collapse
Affiliation(s)
- Marcus Fislage
- VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | | | | | | | | | | |
Collapse
|