1
|
Bozděchová L, Havlová K, Fajkus P, Fajkus J. Analysis of Telomerase RNA Structure in Physcomitrium patens Indicates Functionally Relevant Transitions Between OPEN and CLOSED Conformations. J Mol Biol 2024; 436:168417. [PMID: 38143018 DOI: 10.1016/j.jmb.2023.168417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Telomerase RNA (TR) conformation determines its function as a template for telomere synthesis and as a scaffold for the assembly of the telomerase nucleoprotein complex. Experimental analyses of TR secondary structure using DMS-Map Seq and SHAPE-Map Seq techniques show its CLOSED conformation as the consensus structure where the template region cannot perform its function. Our data show that the apparent discrepancy between experimental results and predicted TR functional conformation, mostly ignored in published studies, can be explained using data analysis based on single-molecule structure prediction from individual sequencing reads by the recently established DaVinci method. This method results in several clusters of secondary structures reflecting the structural dynamics of TR, possibly related to its multiple functional states. Interestingly, the presumed active (OPEN) conformation of TR corresponds to a minor fraction of TR under in vivo conditions. Therefore, structural polymorphism and dynamic TR transitions between CLOSED and OPEN conformations may be involved in telomerase activity regulation as a switch that functions independently of total TR transcript levels.
Collapse
Affiliation(s)
- Lucie Bozděchová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Kateřina Havlová
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Institute of Biophysics, Czech Acad Sci, Královopolská 135, 61200 Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Institute of Biophysics, Czech Acad Sci, Královopolská 135, 61200 Brno, Czech Republic.
| |
Collapse
|
2
|
Lebo KJ, Zappulla DC. Inverse-Folding Design of Yeast Telomerase RNA Increases Activity In Vitro. Noncoding RNA 2023; 9:51. [PMID: 37736897 PMCID: PMC10514824 DOI: 10.3390/ncrna9050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Saccharomyces cerevisiae telomerase RNA, TLC1, is an 1157 nt non-coding RNA that functions as both a template for DNA synthesis and a flexible scaffold for telomerase RNP holoenzyme protein subunits. The tractable budding yeast system has provided landmark discoveries about telomere biology in vivo, but yeast telomerase research has been hampered by the fact that the large TLC1 RNA subunit does not support robust telomerase activity in vitro. In contrast, 155-500 nt miniaturized TLC1 alleles comprising the catalytic core domain and lacking the RNA's long arms do reconstitute robust activity. We hypothesized that full-length TLC1 is prone to misfolding in vitro. To create a full-length yeast telomerase RNA, predicted to fold into its biologically relevant structure, we took an inverse RNA-folding approach, changing 59 nucleotides predicted to increase the energetic favorability of folding into the modeled native structure based on the p-num feature of Mfold software. The sequence changes lowered the predicted ∆G of this "determined-arm" allele, DA-TLC1, by 61 kcal/mol (-19%) compared to wild-type. We tested DA-TLC1 for reconstituted activity and found it to be ~5-fold more robust than wild-type TLC1, suggesting that the inverse-folding design indeed improved folding in vitro into a catalytically active conformation. We also tested if DA-TLC1 functions in vivo, discovering that it complements a tlc1∆ strain, allowing cells to avoid senescence and maintain telomeres of nearly wild-type length. However, all inverse-designed RNAs that we tested had reduced abundance in vivo. In particular, inverse-designing nearly all of the Ku arm caused a profound reduction in telomerase RNA abundance in the cell and very short telomeres. Overall, these results show that the inverse design of S. cerevisiae telomerase RNA increases activity in vitro, while reducing abundance in vivo. This study provides a biochemically and biologically tested approach to inverse-design RNAs using Mfold that could be useful for controlling RNA structure in basic research and biomedicine.
Collapse
Affiliation(s)
- Kevin J. Lebo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David C. Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
3
|
Lebo KJ, Zappulla DC. Inverse-folding design of yeast telomerase RNA increases activity in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527468. [PMID: 36798419 PMCID: PMC9934677 DOI: 10.1101/2023.02.08.527468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Saccharomyces cerevisiae telomerase RNA, TLC1, is an 1157 nt non-coding RNA that functions as both a template for DNA synthesis and a flexible scaffold for telomerase RNP holoenzyme protein subunits. The tractable budding yeast system has provided landmark discoveries about telomere biology in vivo , but yeast telomerase research has been hampered by the fact that the large TLC1 RNA subunit does not support robust telomerase activity in vitro . In contrast, 155-500 nt miniaturized TLC1 alleles comprising the catalytic core domain and lacking the RNA's long arms do reconstitute robust activity. We hypothesized that full-length TLC1 is prone to misfolding in vitro . To create a full-length yeast telomerase RNA predicted to fold into its biological relevant structure, we took an inverse RNA folding approach, changing 59 nucleotides predicted to increase the energetic favorability of folding into the modeled native structure based on the p-num feature of Mfold software. The sequence changes lowered the predicted ∆G in this "determined-arm" allele, DA-TLC1, by 61 kcal/mol (-19%) compared to wild type. We tested DA-TLC1 for reconstituted activity and found it to be ∼5-fold more robust than wild-type TLC1, suggesting that the inverse-folding design indeed improved folding in vitro into a catalytically active conformation. We also tested if DA-TLC1 functions in vivo and found that it complements a tlc1 ∆ strain, allowing cells to avoid senescence and maintain telomeres of nearly wild-type length. However, all inverse-designed RNAs that we tested had reduced abundance in vivo . In particular, inverse-designing nearly all of the Ku arm caused a profound reduction in telomerase RNA abundance in the cell and very short telomeres. Overall, these results show that inverse design of S. cerevisiae telomerase RNA increases activity in vitro , while reducing abundance in vivo . This study provides a biochemically and biologically tested approach to inverse-design RNAs using Mfold that could be useful for controlling RNA structure in basic research and biomedicine.
Collapse
Affiliation(s)
- Kevin J. Lebo
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - David C. Zappulla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
4
|
Zappulla DC. Yeast Telomerase RNA Flexibly Scaffolds Protein Subunits: Results and Repercussions. Molecules 2020; 25:E2750. [PMID: 32545864 PMCID: PMC7356895 DOI: 10.3390/molecules25122750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
It is said that "hindsight is 20-20", so, given the current year, it is an opportune time to review and learn from experiences studying long noncoding RNAs. Investigation of the Saccharomyces cerevisiae telomerase RNA, TLC1, has unveiled striking flexibility in terms of both structural and functional features. Results support the "flexible scaffold" hypothesis for this 1157-nt telomerase RNA. This model describes TLC1 acting as a tether for holoenzyme protein subunits, and it also may apply to a plethora of RNAs beyond telomerase, such as types of lncRNAs. In this short perspective review, I summarize findings from studying the large yeast telomerase ribonucleoprotein (RNP) complex in the hope that this hindsight will sharpen foresight as so many of us seek to mechanistically understand noncoding RNA molecules from vast transcriptomes.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
5
|
Deshpande AP, Collins K. Mechanisms of template handling and pseudoknot folding in human telomerase and their manipulation to expand the sequence repertoire of processive repeat synthesis. Nucleic Acids Res 2018; 46:7886-7901. [PMID: 29986069 PMCID: PMC6125678 DOI: 10.1093/nar/gky601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 01/12/2023] Open
Abstract
Telomerase adds telomeric repeats to chromosome ends by processive copying of a template within the telomerase RNA bound to telomerase reverse transcriptase. Telomerase RNAs have single-stranded regions that separate the template from a 5' stem and 3' pseudoknot, and mammals gained additional stem P2a.1 separating the template from the pseudoknot. Using human telomerase, we show that the length of template 3'-flanking single-stranded RNA is a determinant of repeat addition processivity whereas template 5'-flanking single-stranded RNA and P2a.1 are critical for activity but not processivity. In comparison, requirements for the template sequence itself are confounding: different substitutions of the same position have strikingly different consequences, from improved processivity and activity to complete inactivation. We discovered that some altered-template sequences stabilize an alternative RNA conformation that precludes the pseudoknot by base-pairing of one pseudoknot strand to the template 3' end. Using mutations to reduce over-stability of the alternative conformation, we restore high activity and processivity to otherwise inactive altered-template telomerase ribonucleoproteins. In cells, over-stabilization or destabilization of the alternative state severely inhibited biogenesis of active telomerase. Our findings delineate roles for human telomerase RNA template-flanking regions, establish a biologically relevant pseudoknot-alternative RNA conformation, and expand the repertoire of human telomerase repeat synthesis.
Collapse
Affiliation(s)
- Aishwarya P Deshpande
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Wojciechowska M, Dudek M, Trylska J. Thermodynamics of the pseudo-knot in helix 18 of 16S ribosomal RNA. Biopolymers 2018; 109:e23116. [PMID: 29570767 DOI: 10.1002/bip.23116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/13/2023]
Abstract
A fragment of E. coli 16S rRNA formed by nucleotides 500 to 545 is termed helix 18. Nucleotides 505-507 and 524-526 form a pseudo-knot and its distortion affects ribosome function. Helix 18 isolated from the ribosome context is thus an interesting fragment to investigate the structural properties and folding of RNA with pseudo-knots. With all-atom molecular dynamics simulations, spectroscopic and gel electrophoresis experiments, we investigated thermodynamics of helix 18, with a focus on its pseudo-knot. In solution studies at ambient conditions we observed dimerization of helix 18. We proposed that the loop, containing nucleotides forming the pseudo-knot, interacts with another monomer of helix 18. The native dimer is difficult to break but introducing mutations in the pseudo-knot indeed assured a monomeric form of helix 18. Molecular dynamics simulations at 310 K confirmed the stability of the pseudo-knot but at elevated temperatures this pseudo-knot was the first part of helix 18 to lose the hydrogen bond pattern. To further determine helix 18 stability, we analyzed the interactions of helix 18 with short oligomers complementary to a nucleotide stretch containing the pseudo-knot. The formation of higher-order structures by helix 18 impacts hybridization efficiency of peptide nucleic acid and 2'-O methyl RNA oligomers.
Collapse
Affiliation(s)
- Monika Wojciechowska
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw, 02-09, Poland
| | - Marta Dudek
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw, 02-09, Poland.,School of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland.,First Faculty of Medicine, Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, Al. Żwirki i Wigury 61, Warsaw, 02-091, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw, 02-09, Poland
| |
Collapse
|
7
|
Cash DD, Feigon J. Structure and folding of the Tetrahymena telomerase RNA pseudoknot. Nucleic Acids Res 2016; 45:482-495. [PMID: 27899638 PMCID: PMC5224487 DOI: 10.1093/nar/gkw1153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022] Open
Abstract
Telomerase maintains telomere length at the ends of linear chromosomes using an integral telomerase RNA (TER) and telomerase reverse transcriptase (TERT). An essential part of TER is the template/pseudoknot domain (t/PK) which includes the template, for adding telomeric repeats, template boundary element (TBE), and pseudoknot, enclosed in a circle by stem 1. The Tetrahymena telomerase holoenzyme catalytic core (p65-TER-TERT) was recently modeled in our 9 Å resolution cryo-electron microscopy map by fitting protein and TER domains, including a solution NMR structure of the Tetrahymena pseudoknot. Here, we describe in detail the structure and folding of the isolated pseudoknot, which forms a compact structure with major groove U•A-U and novel C•G-A+ base triples. Base substitutions that disrupt the base triples reduce telomerase activity in vitro. NMR studies also reveal that the pseudoknot does not form in the context of full-length TER in the absence of TERT, due to formation of a competing structure that sequesters pseudoknot residues. The residues around the TBE remain unpaired, potentially providing access by TERT to this high affinity binding site during an early step in TERT-TER assembly. A model for the assembly pathway of the catalytic core is proposed.
Collapse
Affiliation(s)
- Darian D Cash
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
8
|
Niederer RO, Zappulla DC. Refined secondary-structure models of the core of yeast and human telomerase RNAs directed by SHAPE. RNA (NEW YORK, N.Y.) 2015; 21:254-261. [PMID: 25512567 PMCID: PMC4338352 DOI: 10.1261/rna.048959.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Telomerase catalyzes the addition of nucleotides to the ends of chromosomes to complete genomic DNA replication in eukaryotes and is implicated in multiple diseases, including most cancers. The core enzyme is composed of a reverse transcriptase and an RNA subunit, which provides the template for DNA synthesis. Despite extensive divergence at the sequence level, telomerase RNAs share several structural features within the catalytic core, suggesting a conserved enzyme mechanism. We have investigated the structure of the core of the human and yeast telomerase RNAs using SHAPE, which interrogates flexibility of each nucleotide. We present improved secondary-structure models, refined by addition of five base triples within the yeast pseudoknot and an alternate pairing within the human-specific element J2a.1 in the human pseudoknot, both of which have implications for thermodynamic stability. We also identified a potentially structured CCC region within the template that may facilitate substrate binding and enzyme mechanism. Overall, the SHAPE findings reveal multiple similarities between the Saccharomyces cerevisiae and Homo sapiens telomerase RNA cores.
Collapse
Affiliation(s)
- Rachel O Niederer
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
9
|
Mefford MA, Rafiq Q, Zappulla DC. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. EMBO J 2013; 32:2980-93. [PMID: 24129512 DOI: 10.1038/emboj.2013.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/23/2013] [Indexed: 12/25/2022] Open
Abstract
Telomerase is a specialized chromosome end-replicating enzyme required for genome duplication in many eukaryotes. An RNA and reverse transcriptase protein subunit comprise its enzymatic core. Telomerase is evolving rapidly, particularly its RNA component. Nevertheless, nearly all telomerase RNAs, including those of H. sapiens and S. cerevisiae, share four conserved structural elements: a core-enclosing helix (CEH), template-boundary element, template, and pseudoknot, in this order along the RNA. It is not clear how these elements coordinate telomerase activity. We find that although rearranging the order of the four conserved elements in the yeast telomerase RNA subunit, TLC1, disrupts activity, the RNA ends can be moved between the template and pseudoknot in vitro and in vivo. However, the ends disrupt activity when inserted between the other structured elements, defining an Area of Required Connectivity (ARC). Within the ARC, we find that only the junction nucleotides between the pseudoknot and CEH are essential. Integrating all of our findings provides a basic map of functional connections in the core of the yeast telomerase RNP and a framework to understand conserved element coordination in telomerase mechanism.
Collapse
Affiliation(s)
- Melissa A Mefford
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
10
|
Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo. Proc Natl Acad Sci U S A 2013; 110:10970-5. [PMID: 23776224 DOI: 10.1073/pnas.1309590110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex that extends the 3' ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C(+)•G-C triple adjacent to a stem 2-loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.
Collapse
|
11
|
Kuprys PV, Davis SM, Hauer TM, Meltser M, Tzfati Y, Kirk KE. Identification of telomerase RNAs from filamentous fungi reveals conservation with vertebrates and yeasts. PLoS One 2013; 8:e58661. [PMID: 23555591 PMCID: PMC3603654 DOI: 10.1371/journal.pone.0058661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/05/2013] [Indexed: 01/03/2023] Open
Abstract
Telomeres are the nucleoprotein complexes at eukaryotic chromosomal ends. Telomeric DNA is synthesized by the ribonucleoprotein telomerase, which comprises a telomerase reverse transcriptase (TERT) and a telomerase RNA (TER). TER contains a template for telomeric DNA synthesis. Filamentous fungi possess extremely short and tightly regulated telomeres. Although TERT is well conserved between most organisms, TER is highly divergent and thus difficult to identify. In order to identify the TER sequence, we used the unusually long telomeric repeat sequence of Aspergillus oryzae together with reverse-transcription-PCR and identified a transcribed sequence that contains the potential template within a region predicted to be single stranded. We report the discovery of TERs from twelve other related filamentous fungi using comparative genomic analysis. These TERs exhibited strong conservation with the vertebrate template sequence, and two of these potentially use the identical template as humans. We demonstrate the existence of important processing elements required for the maturation of yeast TERs such as an Sm site, a 5' splice site and a branch point, within the newly identified TER sequences. RNA folding programs applied to the TER sequences show the presence of secondary structures necessary for telomerase activity, such as a yeast-like template boundary, pseudoknot, and a vertebrate-like three-way junction. These telomerase RNAs identified from filamentous fungi display conserved structural elements from both yeast and vertebrate TERs. These findings not only provide insights into the structure and evolution of a complex RNA but also provide molecular tools to further study telomere dynamics in filamentous fungi.
Collapse
Affiliation(s)
- Paulius V. Kuprys
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Shaun M. Davis
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Tyler M. Hauer
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Max Meltser
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| | - Yehuda Tzfati
- Department of Genetics, The Silberman
Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram,
Jerusalem, Israel
| | - Karen E. Kirk
- Department of Biology, Lake Forest College,
Lake Forest, Illinois, United States of America
| |
Collapse
|
12
|
Theimer CA, Liu F, Jasper KM. 52 Examining the effects of 2′-OH substitutions on the structure and stability of the S. cerevisiaetelomerase RNA pseudoknot and tertiary structure. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Liu F, Theimer CA. Telomerase Activity Is Sensitive to Subtle Perturbations of the TLC1 Pseudoknot 3′ Stem and Tertiary Structure. J Mol Biol 2012; 423:719-35. [DOI: 10.1016/j.jmb.2012.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/16/2012] [Accepted: 08/28/2012] [Indexed: 01/15/2023]
|