1
|
Pinhal D, Gonçalves LDB, Campos VF, Patton JG. Decoding microRNA arm switching: a key to evolutionary innovation and gene regulation. Cell Mol Life Sci 2025; 82:197. [PMID: 40347284 PMCID: PMC12065703 DOI: 10.1007/s00018-025-05663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 05/12/2025]
Abstract
miRNA arm switching is a pivotal regulatory mechanism that allows organisms to fine-tune gene expression by selectively utilizing either the 5p or 3p strand of a miRNA duplex. This process, conserved across species, facilitates adaptive responses to developmental cues, environmental changes, and disease states. By dynamically altering strand selection, arm switching reshapes gene regulatory networks, contributing to phenotypic diversity and evolutionary innovation. Despite its growing recognition, the mechanisms driving arm switching-such as thermodynamic properties and enzyme-mediated processing-remain incompletely understood. This review synthesizes current findings, highlighting arm switching as a highly conserved mechanism with profound implications for the evolution of regulatory networks. We explore how this phenomenon expands miRNA functionality, drives phenotypic plasticity, and co-evolves with miRNA gene duplications to fuel the diversification of biological functions across taxa.
Collapse
Affiliation(s)
- Danillo Pinhal
- Genomics and Molecular Evolution Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, DCQB, IBB, UNESP, Botucatu, SP, CEP 18618-689, Brazil.
| | - Leandro de B Gonçalves
- Genomics and Molecular Evolution Laboratory, Department of Chemical and Biological Sciences, Institute of Biosciences, DCQB, IBB, UNESP, Botucatu, SP, CEP 18618-689, Brazil
| | - Vinícius F Campos
- Structural Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
2
|
Schlösser V, Lightfoot HL, Leemann C, Bejoy AM, Tiwari S, Schloßhauer JL, Vongrad V, Brunschweiger A, Hall J, Metzner KJ, Imig J. Anti-HIV-1 Effect of the Fluoroquinolone Enoxacin and Modulation of Pro-Viral hsa-miR-132 Processing in CEM-SS Cells. Noncoding RNA 2025; 11:8. [PMID: 39846686 PMCID: PMC11755467 DOI: 10.3390/ncrna11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Despite tremendous advances in antiretroviral therapy (ART) against HIV-1 infections, no cure or vaccination is available. Therefore, discovering novel therapeutic strategies remains an urgent need. In that sense, miRNAs and miRNA therapeutics have moved intensively into the focus of recent HIV-1-related investigations. A strong reciprocal interdependence has been demonstrated between HIV-1 infection and changes of the intrinsic cellular miRNA milieu. This interrelationship may direct potential alterations of the host cells' environment beneficial for the virus or its suppression of replication. Whether this tightly balanced and controlled battle can be exploited therapeutically remains to be further addressed. In this context, the fluoroquinolone antibiotic Enoxacin has been demonstrated as a potent modulator of miRNA processing. Here, we test the hypothesis that this applies also to selected HIV-1-related miRNAs. METHODS We studied the effect of Enoxacin on HIV-1 replication coupled with miRNA qRT-PCR analysis of HIV-1-related miRNAs in CEM-SS and MT-4 T-cells. The effects of miRNA mimic transfections combined with Enoxacin treatment on HIV-1 replication were assessed. Finally, we employed an in vitro DICER1 cleavage assay to study the effects of Enoxacin on a pro-HIV-1 miRNA hsa-miR-132 processing. RESULTS We established that Enoxacin, but not the structurally similar compound nalidixic acid, exhibits strong anti-HIV-1 effects in the T-cell line CEM-SS, but not MT-4. We provide experimental data that this effect of Enoxacin is partly attributed to the specific downregulation of mature hsa-miR-132-3p, but not other tested pro- or anti-HIV-1 miRNAs, which is likely due to affecting DICER1 processing. CONCLUSIONS Our findings show an anti-retroviral activity of Enoxacin at least in part by downregulation of hsa-miR-132-3p, which may be relevant for future antiviral therapeutic applications by modulation of the RNA interference pathway.
Collapse
Affiliation(s)
- Verena Schlösser
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Christine Leemann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Aathma Merin Bejoy
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, 44227 Dortmund, Germany
| | - Shashank Tiwari
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, 44227 Dortmund, Germany
| | - Jeffrey L. Schloßhauer
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, 44227 Dortmund, Germany
| | - Valentina Vongrad
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Brunschweiger
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
- Department of Pharmaceutical and Medicinal Chemistry, University Würzburg, 97074 Würzburg, Germany
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Jochen Imig
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, 44227 Dortmund, Germany
| |
Collapse
|
3
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Aureli S, Bellina F, Rizzi V, Gervasio FL. Investigating Ligand-Mediated Conformational Dynamics of Pre-miR21: A Machine-Learning-Aided Enhanced Sampling Study. J Chem Inf Model 2024; 64:8595-8603. [PMID: 39526676 PMCID: PMC11600507 DOI: 10.1021/acs.jcim.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRs) are short, noncoding RNA strands that regulate the activity of mRNAs by affecting the repression of protein translation, and their dysregulation has been implicated in several pathologies. miR21 in particular has been implicated in tumorigenesis and anticancer drug resistance, making it a critical target for drug design. miR21 biogenesis involves precise biochemical pathways, including the cleavage of its precursor, pre-miR21, by the enzyme Dicer. The present work investigates the conformational dynamics of pre-miR21, focusing on the role of adenine29 in switching between Dicer-binding-prone and inactive states. We also investigated the effect of L50, a cyclic peptide binder of pre-miR21 and a weak inhibitor of its processing. Using time series data and our novel collective variable-based enhanced sampling technique, OneOPES, we simulated these conformational changes and assessed the effect of L50 on the conformational plasticity of pre-miR21. Our results provide insight into peptide-induced conformational changes and pave the way for the development of a computational platform for the screening of inhibitors of pre-miR21 processing that considers RNA flexibility, a stepping stone for effective structure-based drug design, with potentially broad applications in drug discovery.
Collapse
Affiliation(s)
- Simone Aureli
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Genève, Switzerland
- Swiss
Institute of Bioinformatics, University
of Geneva, 1206 Genève, Switzerland
| | - Francesco Bellina
- D3
PharmaChemistry, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
- Department
of Chemistry and Industrial Chemistry, University
of Genova, Via Dodecaneso
31, 16146 Genoa, Italy
| | - Valerio Rizzi
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Genève, Switzerland
- Swiss
Institute of Bioinformatics, University
of Geneva, 1206 Genève, Switzerland
| | - Francesco Luigi Gervasio
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Genève, Switzerland
- Swiss
Institute of Bioinformatics, University
of Geneva, 1206 Genève, Switzerland
- Department
of Chemistry, University College London, WC1E 6BT London, U.K.
| |
Collapse
|
5
|
McJunkin K, Gottesman S. What goes up must come down: off switches for regulatory RNAs. Genes Dev 2024; 38:597-613. [PMID: 39111824 PMCID: PMC11368247 DOI: 10.1101/gad.351934.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.
Collapse
Affiliation(s)
- Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, Maryland 20892, USA;
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Parvez F, Sangpal D, Paithankar H, Amin Z, Chugh J. Differential conformational dynamics in two type-A RNA-binding domains drive the double-stranded RNA recognition and binding. eLife 2024; 13:RP94842. [PMID: 39116184 PMCID: PMC11309768 DOI: 10.7554/elife.94842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Trans-activation response (TAR) RNA-binding protein (TRBP) has emerged as a key player in the RNA interference pathway, wherein it binds to different pre-microRNAs (miRNAs) and small interfering RNAs (siRNAs), each varying in sequence and/or structure. We hypothesize that TRBP displays dynamic adaptability to accommodate heterogeneity in target RNA structures. Thus, it is crucial to ascertain the role of intrinsic and RNA-induced protein dynamics in RNA recognition and binding. We have previously elucidated the role of intrinsic and RNA-induced conformational exchange in the double-stranded RNA-binding domain 1 (dsRBD1) of TRBP in shape-dependent RNA recognition. The current study delves into the intrinsic and RNA-induced conformational dynamics of the TRBP-dsRBD2 and then compares it with the dsRBD1 study carried out previously. Remarkably, the two domains exhibit differential binding affinity to a 12-bp dsRNA owing to the presence of critical residues and structural plasticity. Furthermore, we report that dsRBD2 depicts constrained conformational plasticity when compared to dsRBD1. Although, in the presence of RNA, dsRBD2 undergoes induced conformational exchange within the designated RNA-binding regions and other residues, the amplitude of the motions remains modest when compared to those observed in dsRBD1. We propose a dynamics-driven model of the two tandem domains of TRBP, substantiating their contributions to the versatility of dsRNA recognition and binding.
Collapse
Affiliation(s)
- Firdousi Parvez
- Department of Biology, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Devika Sangpal
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune UniversityPuneIndia
| | - Harshad Paithankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Zainab Amin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| |
Collapse
|
7
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
8
|
Dadhwal G, Samy H, Bouvette J, El-Azzouzi F, Dagenais P, Legault P. Substrate promiscuity of Dicer toward precursors of the let-7 family and their 3'-end modifications. Cell Mol Life Sci 2024; 81:53. [PMID: 38261114 PMCID: PMC10806991 DOI: 10.1007/s00018-023-05090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA hairpins such as the 5'-phosphate, the apical loop, and the 2-nt 3'-overhang are important for the processing activity of Dicer. Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3'-overhang and get mono-uridylated in vivo, presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and structural features of all human let-7 pre-miRNAs, including their 3'-end modifications, on Dicer binding and processing. Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and cleaving these substrates. Moreover, the 1- or 2-nt 3'-overhang, 3'-mono-uridylation, and 3'-oligo-uridylation of pre-let-7 substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regarding the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3'-modifications on binding and cleavage by Dicer.
Collapse
Affiliation(s)
- Gunjan Dadhwal
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Hebatallah Samy
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Jonathan Bouvette
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Molecular Biology Department, Guyot Hall, Princeton University, Princeton, NJ, 08544, USA
| | - Fatima El-Azzouzi
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
- Biochemistry Department, Wake Forest Biotech Place, 575 Patterson Avenue, Winston-Salem, NC, 27101, USA
| | - Pierre Dagenais
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Pascale Legault
- Département de biochimie et médecine moléculaire, Université de Montréal, Downtown Station, Box 6128, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
9
|
Ma S, Kotar A, Hall I, Grote S, Rouskin S, Keane SC. Structure of pre-miR-31 reveals an active role in Dicer-TRBP complex processing. Proc Natl Acad Sci U S A 2023; 120:e2300527120. [PMID: 37725636 PMCID: PMC10523476 DOI: 10.1073/pnas.2300527120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
As an essential posttranscriptional regulator of gene expression, microRNA (miRNA) levels must be strictly maintained. The biogenesis of many miRNAs is mediated by trans-acting protein partners through a variety of mechanisms, including remodeling of the RNA structure. miR-31 functions as an oncogene in numerous cancers, and interestingly, its biogenesis is not known to be regulated by protein-binding partners. Therefore, the intrinsic structural properties of the precursor element of miR-31 (pre-miR-31) can provide a mechanism by which its biogenesis is regulated. We determined the solution structure of pre-miR-31 to investigate the role of distinct structural elements in regulating processing by the Dicer-TRBP complex. We found that the presence or absence of mismatches within the helical stem does not strongly influence Dicer-TRBP processing of the pre-miRNAs. However, both the apical loop size and structure at the Dicing site are key elements for discrimination by the Dicer-TRBP complex. Interestingly, our NMR-derived structure reveals the presence of a triplet of base pairs that link the Dicer cleavage site and the apical loop. Mutational analysis in this region suggests that the stability of the junction region strongly influences processing by the Dicer-TRBP complex. Our results enrich our understanding of the active role that RNA structure plays in regulating miRNA biogenesis, which has direct implications for the control of gene expression.
Collapse
Affiliation(s)
- Sicong Ma
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Anita Kotar
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
| | - Ian Hall
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Scott Grote
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School,Boston, MA02115
| | - Sarah C. Keane
- Biophysics Program, University of Michigan, Ann Arbor, MI48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
10
|
Prendecka-Wróbel M, Pigoń-Zając D, Sondej D, Grzywna K, Kamińska K, Szuta M, Małecka-Massalska T. Can Dietary Actives Affect miRNAs and Alter the Course or Prevent Colorectal Cancer? Int J Mol Sci 2023; 24:10142. [PMID: 37373289 DOI: 10.3390/ijms241210142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer is a diet-related cancer. There is much research into the effects of nutrients on the prevention, modulation, and treatment of colorectal cancer. Researchers are trying to find a correlation between epidemiological observations indicating certain dietary components as the originator in the process of developing colorectal cancer, such as a diet rich in saturated animal fats, and dietary components that could eliminate the impact of harmful elements of the daily nutritional routine, i.e., substances such as polyunsaturated fatty acids, curcumin, or resveratrol. Nevertheless, it is very important to understand the mechanisms underlying how food works on cancer cells. In this case, microRNA (miRNA) seems to be a very significant research target. MiRNAs participate in many biological processes connected to carcinogenesis, progression, and metastasis. However, this is a field with development prospects ahead. In this paper, we review the most significant and well-studied food ingredients and their effects on various miRNAs involved in colorectal cancer.
Collapse
Affiliation(s)
- Monika Prendecka-Wróbel
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Dominika Pigoń-Zając
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Daria Sondej
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Karolina Grzywna
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Kamińska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Szuta
- Chair of Oral Surgery, Jagiellonian University Medical College, 31-155 Kraków, Poland
| | - Teresa Małecka-Massalska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
11
|
Lausten MA, Boman BM. A Review of IsomiRs in Colorectal Cancer. Noncoding RNA 2023; 9:34. [PMID: 37368334 PMCID: PMC10300944 DOI: 10.3390/ncrna9030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
As advancements in sequencing technology rapidly continue to develop, a new classification of microRNAs has occurred with the discovery of isomiRs, which are relatively common microRNAs with sequence variations compared to their established template microRNAs. This review article seeks to compile all known information about isomiRs in colorectal cancer (CRC), which has not, to our knowledge, been gathered previously to any great extent. A brief overview is given of the history of microRNAs, their implications in colon cancer, the canonical pathway of biogenesis and isomiR classification. This is followed by a comprehensive review of the literature that is available on microRNA isoforms in CRC. The information on isomiRs presented herein shows that isomiRs hold great promise for translation into new diagnostics and therapeutics in clinical medicine.
Collapse
Affiliation(s)
- Molly A. Lausten
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
| | - Bruce M. Boman
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
13
|
Shortridge MD, Chaubey B, Zhang HJ, Pavelitz T, Vidadala V, Tang C, Olsen GL, Calin GA, Varani G. Drug-Like Small Molecules That Inhibit Expression of the Oncogenic MicroRNA-21. ACS Chem Biol 2023; 18:237-250. [PMID: 36727622 PMCID: PMC10593481 DOI: 10.1021/acschembio.2c00502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report the discovery of drug-like small molecules that bind specifically to the precursor of the oncogenic and pro-inflammatory microRNA-21 with mid-nanomolar affinity. The small molecules target a local structure at the Dicer cleavage site and induce distinctive structural changes in the RNA, which correlate with specific inhibition of miRNA processing. Structurally conservative single nucleotide substitutions eliminate the conformational change induced by the small molecules, which is also not observed in other miRNA precursors. The most potent of these compounds reduces cellular proliferation and miR-21 levels in cancer cell lines without inhibiting kinases or classical receptors, while closely related compounds without this specific binding activity are inactive in cells. These molecules are highly ligand-efficient (MW < 330) and display specific biochemical and cellular activity by suppressing the maturation of miR-21, thereby providing an avenue toward therapeutic development in multiple diseases where miR-21 is abnormally expressed.
Collapse
Affiliation(s)
- Matthew D Shortridge
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bhawna Chaubey
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Huanyu J Zhang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Thomas Pavelitz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Venkata Vidadala
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Changyan Tang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gregory L Olsen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - George A Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Yan A, Xiong J, Zhu J, Li X, Xu S, Feng X, Ke X, Wang Z, Chen Y, Wang HW, Zhang MQ, Kee K. DAZL regulates proliferation of human primordial germ cells by direct binding to precursor miRNAs and enhances DICER processing activity. Nucleic Acids Res 2022; 50:11255-11272. [PMID: 36273819 PMCID: PMC9638919 DOI: 10.1093/nar/gkac856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 03/20/2025] Open
Abstract
Understanding the molecular and cellular mechanisms of human primordial germ cells (hPGCs) is essential in studying infertility and germ cell tumorigenesis. Many RNA-binding proteins (RBPs) and non-coding RNAs are specifically expressed and functional during hPGC developments. However, the roles and regulatory mechanisms of these RBPs and non-coding RNAs, such as microRNAs (miRNAs), in hPGCs remain elusive. In this study, we reported a new regulatory function of DAZL, a germ cell-specific RBP, in miRNA biogenesis and cell proliferation. First, DAZL co-localized with miRNA let-7a in human PGCs and up-regulated the levels of >100 mature miRNAs, including eight out of nine let-7 family, miR21, miR22, miR125, miR10 and miR199. Purified DAZL directly bound to the loops of precursor miRNAs with sequence specificity of GUU. The binding of DAZL to the precursor miRNA increased the maturation of miRNA by enhancing the cleavage activity of DICER. Furthermore, cell proliferation assay and cell cycle analysis confirmed that DAZL inhibited the proliferation of in vitro PGCs by promoting the maturation of these miRNAs. Evidently, the mature miRNAs up-regulated by DAZL silenced cell proliferation regulators including TRIM71. Moreover, DAZL inhibited germline tumor cell proliferation and teratoma formation. These results demonstrate that DAZL regulates hPGC proliferation by enhancing miRNA processing.
Collapse
Affiliation(s)
- An Yan
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Xiong
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiadong Zhu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiangyu Li
- School of Software Engineering, Beijing Jiaotong University, Beijing 100044, China
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shuting Xu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Feng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xin Ke
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084,China
| | - Zhenyi Wang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua–Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084,China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, 800 West Campbell Road, RL11, Richardson, TX 75080-3021, USA
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua University-–Peking University Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Shortridge MD, Olsen GL, Yang W, Walker MJ, Varani G. A Slow Dynamic RNA Switch Regulates Processing of microRNA-21. J Mol Biol 2022; 434:167694. [PMID: 35752213 PMCID: PMC10593484 DOI: 10.1016/j.jmb.2022.167694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
The microRNAs are non-coding RNAs which post-transcriptionally regulate the expression of many eukaryotic genes, and whose dysregulation is a driver of human disease. Here we report the discovery of a very slow (0.1 s-1) conformational rearrangement at the Dicer cleavage site of pre-miR-21, which regulates the relative concentration of readily- and inefficiently-processed RNA structural states. We show that this dynamic switch is affected by single nucleotide mutations and can be biased by small molecule and peptide ligands, which can direct the microRNA to occupy the inefficiently processed state and reduce processing efficiency. This result reveals a new mechanism of RNA regulation and suggests a chemical approach to suppressing or activating pathogenic microRNAs by selective stabilization of their unprocessed or processed states.
Collapse
Affiliation(s)
| | - Greg L Olsen
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | - Wen Yang
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province 518036, China
| | - Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA; Neoleukin Therapeutics, 188 East Blaine St, Suite 450, Seattle, WA 98102, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.
| |
Collapse
|
16
|
Peng T, He Y, Wang T, Yu J, Ma X, Zhou Z, Sheng Y, Li L, Peng H, Li S, Zou J, Yuan Y, Zhao Y, Shi H, Li F, Liu W, Hu K, Lu X, Zhang G, Wang F. Discovery of a Novel Small-Molecule Inhibitor Disrupting TRBP-Dicer Interaction against Hepatocellular Carcinoma via the Modulation of microRNA Biogenesis. J Med Chem 2022; 65:11010-11033. [PMID: 35695407 DOI: 10.1021/acs.jmedchem.2c00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are key players in human hepatocellular carcinoma (HCC) tumorigenesis. Therefore, small molecules targeting components of miRNA biogenesis may provide new therapeutic means for HCC treatment. By a high-throughput screening and structural simplification, we identified a small molecule, CIB-3b, which suppresses the growth and metastasis of HCC in vitro and in vivo by modulating expression profiles of miRNAome and proteome in HCC cells. Mechanistically, CIB-3b physically binds to transactivation response (TAR) RNA-binding protein 2 (TRBP) and disrupts the TRBP-Dicer interaction, thereby altering the activity of Dicer and mature miRNA production. Structure-activity relationship study via the synthesis of 45 CIB-3b derivatives showed that some compounds exhibited a similar inhibitory effect on miRNA biogenesis to CIB-3b. These results support TRBP as a potential therapeutic target in HCC and warrant further development of CIB-3b along with its analogues as a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujiao He
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Tao Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipan Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiawei Zou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi Yuan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yongyun Zhao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hailong Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Kaifeng Hu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoxia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
17
|
Lu Q, Yu S, Meng X, Shi M, Huang S, Li J, Zhang J, Liang Y, Ji M, Zhao Y, Fan H. MicroRNAs: Important Regulatory Molecules in Acute Lung Injury/Acute Respiratory Distress Syndrome. Int J Mol Sci 2022; 23:5545. [PMID: 35628354 PMCID: PMC9142048 DOI: 10.3390/ijms23105545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an overactivated inflammatory response caused by direct or indirect injuries that destroy lung parenchymal cells and dramatically reduce lung function. Although some research progress has been made in recent years, the pathogenesis of ALI/ARDS remains unclear due to its heterogeneity and etiology. MicroRNAs (miRNAs), a type of small noncoding RNA, play a vital role in various diseases. In ALI/ARDS, miRNAs can regulate inflammatory and immune responses by targeting specific molecules. Regulation of miRNA expression can reduce damage and promote the recovery of ALI/ARDS. Consequently, miRNAs are considered as potential diagnostic indicators and therapeutic targets of ALI/ARDS. Given that inflammation plays an important role in the pathogenesis of ALI/ARDS, we review the miRNAs involved in the inflammatory process of ALI/ARDS to provide new ideas for the pathogenesis, clinical diagnosis, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Siyu Huang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jianfeng Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
18
|
Wang Q, Wang J, Xu Y, Li Z, Wang B, Li Y. The Interaction of Influenza A NS1 and Cellular TRBP Protein Modulates the Function of RNA Interference Machinery. Front Microbiol 2022; 13:859420. [PMID: 35558132 PMCID: PMC9087287 DOI: 10.3389/fmicb.2022.859420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Influenza A virus (IAV), one of the most prevalent respiratory diseases, causes pandemics around the world. The multifunctional non-structural protein 1 (NS1) of IAV is a viral antagonist that suppresses host antiviral response. However, the mechanism by which NS1 modulates the RNA interference (RNAi) pathway remains unclear. Here, we identified interactions between NS1 proteins of Influenza A/PR8/34 (H1N1; IAV-PR8) and Influenza A/WSN/1/33 (H1N1; IAV-WSN) and Dicer’s cofactor TAR-RNA binding protein (TRBP). We found that the N-terminal RNA binding domain (RBD) of NS1 and the first two domains of TRBP protein mediated this interaction. Furthermore, two amino acid residues (Arg at position 38 and Lys at position 41) in NS1 were essential for the interaction. We generated TRBP knockout cells and found that NS1 instead of NS1 mutants (two-point mutations within NS1, R38A/K41A) inhibited the process of microRNA (miRNA) maturation by binding with TRBP. PR8-infected cells showed masking of short hairpin RNA (shRNA)-mediated RNAi, which was not observed after mutant virus-containing NS1 mutation (R38A/K41A, termed PR8/3841) infection. Moreover, abundant viral small interfering RNAs (vsiRNAs) were detected in vitro and in vivo upon PR8/3841 infection. We identify, for the first time, the interaction between NS1 and TRBP that affects host RNAi machinery.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhe Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Binbin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Abstract
MicroRNAs (miRNAs) are key players in gene regulation that target specific mRNAs for degradation or translational repression. Each miRNA is synthesized as a miRNA duplex comprising two strands (5p and 3p). However, only one of the two strands becomes active and is selectively incorporated into the RNA-induced silencing complex in a process known as miRNA strand selection. Recently, significant progress has been made in understanding the factors and processes involved in strand selection. Here, we explore the selection and functionality of the miRNA star strand (either 5p or 3p), which is generally present in the cell at low levels compared to its partner strand and, historically, has been thought to possess no biological activity. We also highlight the concepts of miRNA arm switching and miRNA isomerism. Finally, we offer insights into the impact of aberrant strand selection on immunity and cancer. Leading us through this journey is miR-155, a well-established regulator of immunity and cancer, and the increasing evidence that its 3p strand plays a role in these arenas. Interestingly, the miR-155-5p/-3p ratio appears to vary dependent on the timing of the immune response, and the 3p strand seems to play a regulatory role upon its partner 5p strand.
Collapse
Affiliation(s)
- Owen Dawson
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
20
|
Paithankar H, Tarang GS, Parvez F, Marathe A, Joshi M, Chugh J. Inherent conformational plasticity in dsRBDs enables interaction with topologically distinct RNAs. Biophys J 2022; 121:1038-1055. [PMID: 35134335 PMCID: PMC8943759 DOI: 10.1016/j.bpj.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/25/2021] [Accepted: 02/03/2022] [Indexed: 11/02/2022] Open
Abstract
Many double-stranded RNA-binding domains (dsRBDs) interact with topologically distinct dsRNAs in biological pathways pivotal to viral replication, cancer causation, neurodegeneration, and so on. We hypothesized that the adaptability of dsRBDs is essential to target different dsRNA substrates. A model dsRBD and a few dsRNAs, slightly different in shape from each other, were used to test the systematic shape dependence of RNA on the dsRBD-binding using nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. NMR-based titrations showed a distinct binding pattern for the dsRBD with the topologically distinct dsRNAs. The line broadening upon RNA binding was observed to cluster in the residues lying in close proximity, thereby suggesting an RNA-induced conformational exchange in the dsRBD. Further, while the intrinsic microsecond dynamics observed in the apo-dsRBD were found to quench upon binding with the dsRNA, the microsecond dynamics got induced at residues spatially proximal to quench sites upon binding with the dsRNA. This apparent relay of conformational exchange suggests the significance of intrinsic dynamics to help adapt the dsRBD to target various dsRNA-shapes. The conformational pool visualized in MD simulations for the apo-dsRBD reported here has also been observed to sample the conformations seen previously for various dsRBDs in apo- and in dsRNA-bound state structures, further suggesting the conformational adaptability of the dsRBDs. These investigations provide a dynamic basis for the substrate promiscuity for dsRBD proteins.
Collapse
Affiliation(s)
- Harshad Paithankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India
| | - Guneet Singh Tarang
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India
| | - Firdousi Parvez
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India
| | - Aniket Marathe
- Bioinformatics Center, Savitrabai Phule Pune University, Pune, Maharashtra, India
| | - Manali Joshi
- Bioinformatics Center, Savitrabai Phule Pune University, Pune, Maharashtra, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India; Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India.
| |
Collapse
|
21
|
Tripathi AM, Admoni Y, Fridrich A, Lewandowska M, Surm JM, Aharoni R, Moran Y. Functional characterization of a 'plant-like' HYL1 homolog in the cnidarian Nematostella vectensis indicates a conserved involvement in microRNA biogenesis. eLife 2022; 11:69464. [PMID: 35289745 PMCID: PMC9098223 DOI: 10.7554/elife.69464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
While the biogenesis of microRNAs (miRNAs) in both animals and plants depends on the RNase III Dicer, its partner proteins are considered distinct for each kingdom. Nevertheless, recent discovery of homologs of Hyponastic Leaves1 (HYL1), a ‘plant-specific’ Dicer partner, in the metazoan phylum Cnidaria, challenges the view that miRNAs evolved convergently in animals and plants. Here, we show that the HYL1 homolog Hyl1-like a (Hyl1La) is crucial for development and miRNA biogenesis in the cnidarian model Nematostella vectensis. Inhibition of Hyl1La by morpholinos resulted in metamorphosis arrest in Nematostella embryos and a significant reduction in levels of most miRNAs. Further, meta-analysis of morphants of miRNA biogenesis components, like Dicer1, shows clustering of their miRNA profiles with Hyl1La morphants. Strikingly, immunoprecipitation of Hyl1La followed by quantitative PCR revealed that in contrast to the plant HYL1, Hyl1La interacts only with precursor miRNAs and not with primary miRNAs. This was complemented by an in vitro binding assay of Hyl1La to synthetic precursor miRNA. Altogether, these results suggest that the last common ancestor of animals and plants carried a HYL1 homolog that took essential part in miRNA biogenesis and indicate early emergence of the miRNA system before plants and animals separated. In both animals and plants, small molecules known as micro ribonucleic acids (or miRNAs for short) control the amount of proteins cells make from instructions encoded in their DNA. Cells make mature miRNA molecules by cutting and modifying newly-made RNA molecules in two stages. Some of the components animals and plants utilize to make and use miRNAs are similar, but most are completely different. For example, in plants an enzyme known as Dicer cuts newly made RNAs into mature miRNAs with the help of a protein called HYL1, whereas humans and other animals do not have HYL1 and Dicer works with alternative partner proteins, instead. Therefore, it is generally believed that miRNAs evolved separately in animals and plants after they split from a common ancestor around 1.6 billion years ago. Recent studies on sea anemones and other primitive animals challenge this idea. Proteins similar to HYL1 in plants have been discovered in sea anemones and sponges, and sea anemone miRNAs show several similarities to plant miRNAs including their mode of action. However, it is not clear whether these HYL1-like proteins work in the same way as their plant counterparts. Here, Tripathi, Admoni et al. investigated the role of the HYL1-like protein in sea anemones. The experiments found that this protein was essential for the sea anemones to make miRNAs and to grow and develop properly. Unlike HYL1 in plants – which is involved in both stages of processing newly-made miRNAs into mature miRNAs – the sea anemone HYL1-like protein only helped in the second stage to make mature miRNAs from intermediate molecules known as precursor miRNAs. These findings demonstrate that some of the components plants use to make miRNAs also perform similar roles in sea anemones. This suggests that the miRNA system evolved before the ancestors of plants and animals separated from each other. Questions for future studies will include investigating how plants and animals evolved different miRNA machinery, and why sponges and jellyfish have HYL1-like proteins, whereas humans and other more complex animals do not.
Collapse
Affiliation(s)
- Abhinandan M Tripathi
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Admoni
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Shatoff E, Bundschuh R. dsRBPBind: modeling the effect of RNA secondary structure on double-stranded RNA-protein binding. Bioinformatics 2022; 38:687-693. [PMID: 34668517 DOI: 10.1093/bioinformatics/btab724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION RNA-binding proteins are fundamental to many cellular processes. Double-stranded RNA-binding proteins (dsRBPs) in particular are crucial for RNA interference, mRNA elongation, A-to-I editing, host defense, splicing and a multitude of other important mechanisms. Since dsRBPs require double-stranded RNA to bind, their binding affinity depends on the competition among all possible secondary structures of the target RNA molecule. Here, we introduce a quantitative model that allows calculation of the effective affinity of dsRBPs to any RNA given a principal affinity and the sequence of the RNA, while fully taking into account the entire secondary structure ensemble of the RNA. RESULTS We implement our model within the ViennaRNA folding package while maintaining its O(N3) time complexity. We validate our quantitative model by comparing with experimentally determined binding affinities and stoichiometries for transactivation response element RNA-binding protein (TRBP). We also find that the change in dsRBP binding affinity purely due to the presence of alternative RNA structures can be many orders of magnitude and that the predicted affinity of TRBP for pre-miRNA-like constructs correlates with experimentally measured processing rates. AVAILABILITY AND IMPLEMENTATION Our modified version of the ViennaRNA package is available for download at http://bioserv.mps.ohio-state.edu/dsRBPBind, is free to use for research and educational purposes, and utilizes simple get/set methods for footprint size, concentration, cooperativity, principal dissociation constant and overlap.
Collapse
Affiliation(s)
- Elan Shatoff
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Ralf Bundschuh
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Abstract
MicroRNAs are RNAs of about 18-24 nucleotides in lengths, which are found in the small noncoding RNA class and have a crucial role in the posttranscriptional regulation of gene expression, cellular metabolic pathways, and developmental events. These small but essential molecules are first processed by Drosha and DGCR8 in the nucleus and then released into the cytoplasm, where they cleaved by Dicer to form the miRNA duplex. These duplexes are bound by the Argonaute (AGO) protein to form the RNA-induced silencing complex (RISC) in a process called RISC loading. Transcription of miRNAs, processing with Drosha and DGCR8 in the nucleus, cleavage by Dicer, binding to AGO proteins and forming RISC are the most critical steps in miRNA biogenesis. Additional molecules involved in biogenesis at these stages can enhance or inhibit these processes, which can radically change the fate of the cell. Biogenesis is regulated by many checkpoints at every step, primarily at the transcriptional level, in the nucleus, cytoplasm, with RNA regulation, RISC loading, miRNA strand selection, RNA methylation/uridylation, and turnover rate. Moreover, in recent years, different regulation mechanisms have been discovered in noncanonical Drosha or Dicer-independent pathways. This chapter seeks answers to how miRNA biogenesis and function are regulated through both canonical and non-canonical pathways.
Collapse
|
24
|
Abou Zeid LY, Shanmugapriya S, Rumney RL, Mosser DD. Caspase-mediated cleavage of miRNA processing proteins Drosha, DGCR8, Dicer, and TRBP2 in heat-shocked cells and its inhibition by HSP70 overexpression. Cell Stress Chaperones 2022; 27:11-25. [PMID: 34719748 PMCID: PMC8821752 DOI: 10.1007/s12192-021-01242-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 10/19/2022] Open
Abstract
Cells respond to stress through adaptive mechanisms that limit cellular damage and prevent cell death. MicroRNAs act as regulators of stress responses and stress can impact the functioning of miRNA biogenesis pathways. We were interested in the effect that severe proteotoxic stress capable of inducing apoptosis may have on miRNA biogenesis and the impact of the molecular chaperone protein HSP70 under these conditions. We found that the miRNA processing enzymes Drosha and Dicer and their accessory proteins DGCR8 and TRBP2 are cleaved by caspases in apoptotic cells. Overexpression of HSP70 prevented caspase activation and the degradation of these processing proteins. Caspase cleavage of TRBP2 was mapped to amino acid 234 which separates the two dsRNA-binding domains from the C-terminal Dicer interacting domain. Overexpression of TRBP2 was found to increase miRNA maturation, while expression of either of the fragments generated by caspase cleavage impaired maturation. These results indicate that inactivation of miRNA biogenesis is a critical feature of apoptosis and that cleavage of TRBP2, rather than simply a loss of function, serves to create positive acting inhibitors of pre-miRNA maturation.
Collapse
Affiliation(s)
- Lina Y Abou Zeid
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Rebecca L Rumney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Dick D Mosser
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
25
|
Huang XH, Li JL, Li XY, Wang SX, Jiao ZH, Li SQ, Liu J, Ding J. miR-208a in Cardiac Hypertrophy and Remodeling. Front Cardiovasc Med 2021; 8:773314. [PMID: 34957257 PMCID: PMC8695683 DOI: 10.3389/fcvm.2021.773314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
Various stresses, including pressure overload and myocardial stretch, can trigger cardiac remodeling and result in heart diseases. The disorders are associated with high risk of morbidity and mortality and are among the major health problems in the world. MicroRNAs, a class of ~22nt-long small non-coding RNAs, have been found to participate in regulating heart development and function. One of them, miR-208a, a cardiac-specific microRNA, plays key role(s) in modulating gene expression in the heart, and is involved in a broad array of processes in cardiac pathogenesis. Genetic deletion or pharmacological inhibition of miR-208a in rodents attenuated stress-induced cardiac hypertrophy and remodeling. Transgenic expression of miR-208a in the heart was sufficient to cause hypertrophic growth of cardiomyocytes. miR-208a is also a key regulator of cardiac conduction system, either deletion or transgenic expression of miR-208a disturbed heart electrophysiology and could induce arrhythmias. In addition, miR-208a appeared to assist in regulating the expression of fast- and slow-twitch myofiber genes in the heart. Notably, this heart-specific miRNA could also modulate the “endocrine” function of cardiac muscle and govern the systemic energy homeostasis in the whole body. Despite of the critical roles, the underlying regulatory networks involving miR-208a are still elusive. Here, we summarize the progress made in understanding the function and mechanisms of this important miRNA in the heart, and propose several topics to be resolved as well as the hypothetical answers. We speculate that miR-208a may play diverse and even opposite roles by being involved in distinct molecular networks depending on the contexts. A deeper understanding of the precise mechanisms of its action under the conditions of cardiac homeostasis and diseases is needed. The clinical implications of miR-208a are also discussed.
Collapse
Affiliation(s)
- Xing-Huai Huang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jia-Lu Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin-Yue Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Xia Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhi-Han Jiao
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Si-Qi Li
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jun Liu
- Department of Orthopaedics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Chinese Traditional Medicine, Nanjing, China
| | - Jian Ding
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
26
|
Jang B, Jang H, Kim H, Kim M, Jeong M, Lee GS, Lee K, Lee H. Protein-RNA interaction guided chemical modification of Dicer substrate RNA nanostructures for superior in vivo gene silencing. J Control Release 2021; 343:57-65. [PMID: 34763005 DOI: 10.1016/j.jconrel.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023]
Abstract
Dicer substrate RNA is an alternative gene silencing agent to canonical siRNA. Enhanced in vitro gene silencing can be achieved with RNA substrates by facilitating Ago loading of dsRNA after Dicer processing. However, the in vivo use of Dicer substrate RNA has been hindered by its instability and immunogenicity in the body due to the lack of proper chemical modification in the structure. Here, we report a universal chemical modification approach for Dicer substrate RNA nanostructures by optimizing protein-RNA interactions in the RNAi pathway. Proteins involved in the RNAi pathway were utilized for evaluating their recognition and binding of substrate RNA. It was found that conventional chemical modifications could severely affect the binding and processing of substrate RNA, consequently reducing RNAi activity. Protein-RNA interaction guided chemical modification was introduced to RNA nanostructures, and their gene silencing activity was assessed. The optimized RNA nanostructures showed excellent binding and processability with RNA binding proteins and offered the enhancement of in vivo EC50 up to 1/8 of its native form.
Collapse
Affiliation(s)
- Bora Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyejin Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunsook Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gyeong Seok Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
27
|
Yoshida T, Asano Y, Ui-Tei K. Modulation of MicroRNA Processing by Dicer via Its Associated dsRNA Binding Proteins. Noncoding RNA 2021; 7:57. [PMID: 34564319 PMCID: PMC8482068 DOI: 10.3390/ncrna7030057] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are about 22 nucleotides in length. They regulate gene expression post-transcriptionally by guiding the effector protein Argonaute to its target mRNA in a sequence-dependent manner, causing the translational repression and destabilization of the target mRNAs. Both Drosha and Dicer, members of the RNase III family proteins, are essential components in the canonical miRNA biogenesis pathway. miRNA is transcribed into primary-miRNA (pri-miRNA) from genomic DNA. Drosha then cleaves the flanking regions of pri-miRNA into precursor-miRNA (pre-miRNA), while Dicer cleaves the loop region of the pre-miRNA to form a miRNA duplex. Although the role of Drosha and Dicer in miRNA maturation is well known, the modulation processes that are important for regulating the downstream gene network are not fully understood. In this review, we summarized and discussed current reports on miRNA biogenesis caused by Drosha and Dicer. We also discussed the modulation mechanisms regulated by double-stranded RNA binding proteins (dsRBPs) and the function and substrate specificity of dsRBPs, including the TAR RNA binding protein (TRBP) and the adenosine deaminase acting on RNA (ADAR).
Collapse
Affiliation(s)
| | | | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; (T.Y.); (Y.A.)
| |
Collapse
|
28
|
Itoh A, Adams D, Huang W, Wu Y, Kachapati K, Bednar KJ, Leung PSC, Zhang W, Flavell RA, Gershwin ME, Ridgway WM. Enoxacin Up-Regulates MicroRNA Biogenesis and Down-Regulates Cytotoxic CD8 T-Cell Function in Autoimmune Cholangitis. Hepatology 2021; 74:835-846. [PMID: 33462854 DOI: 10.1002/hep.31724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/01/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Primary biliary cholangitis (PBC) is a prototypical organ-specific autoimmune disease that is mediated by autoreactive T-cell attack and destruction of cholangiocytes. Despite the clear role of autoimmunity in PBC, immune-directed therapies have failed to halt PBC, including biologic therapies effective in other autoimmune diseases. MicroRNA (miRNA) dysregulation is implicated in the pathogenesis (PBC). In the dominant-negative TGF-β receptor type II (dnTGFβRII) mouse model of PBC, autoreactive CD8 T cells play a major pathogenic role and demonstrate a striking pattern of miRNA down-regulation. Enoxacin is a small molecule fluoroquinolone that enhances miRNA biogenesis, partly by stabilizing the interaction of transactivation response RNA-binding protein with Argonaute (Ago) 2. APPROACH AND RESULTS We hypothesized that correcting aberrant T-cell miRNA expression with enoxacin in dnTGFβRII mice could modulate autoreactive T-cell function and prevent PBC. Here, we show that liver-infiltrating dnTGFβRII CD8 T cells have significantly decreased levels of the miRNA biogenesis molecules prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and Ago2 along with significantly increased levels of granzyme B and perforin. Enoxacin treatment significantly up-regulated miRNAs in dnTGFβRII CD8 T cells and effectively treated autoimmune cholangitis in dnTGFβRII mice. Enoxacin treatment directly altered T cells both ex vivo and in vitro, resulting in altered memory subset numbers, decreased proliferation, and decreased interferon-γ production. Enoxacin significantly decreased CD8 T-cell expression of the transcription factor, Runx3, and significantly decreased perforin expression at both the mRNA and protein levels. CONCLUSIONS Enoxacin increases miRNA expression in dnTGFβRII CD8 T cells, reduces CD8 T-cell pathogenicity, and effectively halted progression of autoimmune biliary disease. Targeting the miRNA pathway is a therapeutic approach to autoimmunity that corrects pathological miRNA abnormalities in autoreactive T cells.
Collapse
Affiliation(s)
- Arata Itoh
- Division of Immunology, Allergy and RheumatologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - David Adams
- Division of Immunology, Allergy and RheumatologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Wenting Huang
- Division of Immunology, Allergy and RheumatologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Yuehong Wu
- Division of Immunology, Allergy and RheumatologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Kritika Kachapati
- Division of Immunology, Allergy and RheumatologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Kyle J Bednar
- Division of Immunology, Allergy and RheumatologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California, DavisDavisCA
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California, DavisDavisCA
| | - Richard A Flavell
- Department of Internal MedicineYale University School of MedicineNew HavenCT
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California, DavisDavisCA
| | - William M Ridgway
- Division of Immunology, Allergy and RheumatologyUniversity of Cincinnati College of MedicineCincinnatiOH.,Division of Rheumatology, Allergy and Clinical ImmunologyUniversity of California, DavisDavisCA
| |
Collapse
|
29
|
Yang X, Dong W, Ren W, Zhao Q, Wu F, He Y. Cytoplasmic HYL1 modulates miRNA-mediated translational repression. THE PLANT CELL 2021; 33:1980-1996. [PMID: 33764452 PMCID: PMC8290291 DOI: 10.1093/plcell/koab090] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/19/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) control various biological processes by repressing target mRNAs. In plants, miRNAs mediate target gene repression via both mRNA cleavage and translational repression. However, the mechanism underlying this translational repression is poorly understood. Here, we found that Arabidopsis thaliana HYPONASTIC LEAVES1 (HYL1), a core component of the miRNA processing machinery, regulates miRNA-mediated mRNA translation but not miRNA biogenesis when it localized in the cytoplasm. Cytoplasmic HYL1 localizes to the endoplasmic reticulum and associates with ARGONAUTE1 (AGO1) and ALTERED MERISTEM PROGRAM1. In the cytoplasm, HYL1 monitors the distribution of AGO1 onto polysomes, binds to the mRNAs of target genes, represses their translation, and partially rescues the phenotype of the hyl1 null mutant. This study uncovered another function of HYL1 and provides insight into the mechanism of plant gene regulation.
Collapse
Affiliation(s)
- Xi Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenqing Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuxia Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for correspondence:
| |
Collapse
|
30
|
New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs. Biomed Pharmacother 2021; 140:111753. [PMID: 34044272 PMCID: PMC8222190 DOI: 10.1016/j.biopha.2021.111753] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have critical role in the pathophysiology as well as recovery after ischemic stroke. ncRNAs, particularly microRNAs, and the long non-coding RNAs (lncRNAs) are critical for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. Moreover, exosomes have been considered as nanocarriers capable of transferring various cargos, such as lncRNAs and miRNAs to recipient cells, with prominent inter-cellular roles in the mediation of neuro-restorative events following strokes and neural injuries. In this review, we summarize the pathogenic role of ncRNAs and exosomal ncRNAs in the stroke.
Collapse
|
31
|
Wang Y, Soneson C, Malinowska AL, Laski A, Ghosh S, Kanitz A, Gebert LFR, Robinson MD, Hall J. MiR-CLIP reveals iso-miR selective regulation in the miR-124 targetome. Nucleic Acids Res 2021; 49:25-37. [PMID: 33300035 PMCID: PMC7797034 DOI: 10.1093/nar/gkaa1117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/04/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Many microRNAs regulate gene expression via atypical mechanisms, which are difficult to discern using native cross-linking methods. To ascertain the scope of non-canonical miRNA targeting, methods are needed that identify all targets of a given miRNA. We designed a new class of miR-CLIP probe, whereby psoralen is conjugated to the 3p arm of a pre-microRNA to capture targetomes of miR-124 and miR-132 in HEK293T cells. Processing of pre-miR-124 yields miR-124 and a 5′-extended isoform, iso-miR-124. Using miR-CLIP, we identified overlapping targetomes from both isoforms. From a set of 16 targets, 13 were differently inhibited at mRNA/protein levels by the isoforms. Moreover, delivery of pre-miR-124 into cells repressed these targets more strongly than individual treatments with miR-124 and iso-miR-124, suggesting that isomirs from one pre-miRNA may function synergistically. By mining the miR-CLIP targetome, we identified nine G-bulged target-sites that are regulated at the protein level by miR-124 but not isomiR-124. Using structural data, we propose a model involving AGO2 helix-7 that suggests why only miR-124 can engage these sites. In summary, access to the miR-124 targetome via miR-CLIP revealed for the first time how heterogeneous processing of miRNAs combined with non-canonical targeting mechanisms expand the regulatory range of a miRNA.
Collapse
Affiliation(s)
- Yuluan Wang
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Charlotte Soneson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057, Zurich, Switzerland
| | - Anna L Malinowska
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Artur Laski
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Souvik Ghosh
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Luca F R Gebert
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057, Zurich, Switzerland
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
32
|
Genetic Insight into the Domain Structure and Functions of Dicer-Type Ribonucleases. Int J Mol Sci 2021; 22:ijms22020616. [PMID: 33435485 PMCID: PMC7827160 DOI: 10.3390/ijms22020616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Ribonuclease Dicer belongs to the family of RNase III endoribonucleases, the enzymes that specifically hydrolyze phosphodiester bonds found in double-stranded regions of RNAs. Dicer enzymes are mostly known for their essential role in the biogenesis of small regulatory RNAs. A typical Dicer-type RNase consists of a helicase domain, a domain of unknown function (DUF283), a PAZ (Piwi-Argonaute-Zwille) domain, two RNase III domains, and a double-stranded RNA binding domain; however, the domain composition of Dicers varies among species. Dicer and its homologues developed only in eukaryotes; nevertheless, the two enzymatic domains of Dicer, helicase and RNase III, display high sequence similarity to their prokaryotic orthologs. Evolutionary studies indicate that a combination of the helicase and RNase III domains in a single protein is a eukaryotic signature and is supposed to be one of the critical events that triggered the consolidation of the eukaryotic RNA interference. In this review, we provide the genetic insight into the domain organization and structure of Dicer proteins found in vertebrate and invertebrate animals, plants and fungi. We also discuss, in the context of the individual domains, domain deletion variants and partner proteins, a variety of Dicers’ functions not only related to small RNA biogenesis pathways.
Collapse
|
33
|
Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Melatonin and regulation of miRNAs: novel targeted therapy for cancerous and noncancerous disease. Epigenomics 2020; 13:65-81. [PMID: 33350862 DOI: 10.2217/epi-2020-0241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
miRNAs, small noncoding RNAs with crucial diagnostic and prognostic capabilities, play essential therapeutic roles in different human diseases. These biomarkers are involved in several biological mechanisms and are responsible for the regulation of multiple genes expressions in cells. miRNA-based therapy has shown a very bright future in the case of clinical interventions. Melatonin, the main product of the pineal gland, is a multifunctional neurohormone with numerous therapeutic potentials in human diseases. Melatonin is able to regulate miRNAs in different pathologies such as malignant and nonmalignant diseases, which can be considered as a novel kind of targeted therapy. Herein, this review discusses possible therapeutic utility of melatonin for the regulation of miRNAs in various pathological conditions.
Collapse
Affiliation(s)
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Baisden JT, Boyer JA, Zhao B, Hammond SM, Zhang Q. Visualizing a protonated RNA state that modulates microRNA-21 maturation. Nat Chem Biol 2020; 17:80-88. [PMID: 33106660 DOI: 10.1038/s41589-020-00667-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/02/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023]
Abstract
MicroRNAs are evolutionarily conserved small, noncoding RNAs that regulate diverse biological processes. Due to their essential regulatory roles, microRNA biogenesis is tightly regulated, where protein factors are often found to interact with specific primary and precursor microRNAs for regulation. Here, using NMR relaxation dispersion spectroscopy and mutagenesis, we reveal that the precursor of oncogenic microRNA-21 exists as a pH-dependent ensemble that spontaneously reshuffles the secondary structure of the entire apical stem-loop region, including the Dicer cleavage site. We show that the alternative excited conformation transiently sequesters the bulged adenine into a noncanonical protonated A+-G mismatch, conferring a substantial enhancement in Dicer processing over its ground conformational state. These results indicate that microRNA maturation efficiency may be encoded in the intrinsic dynamic ensemble of primary and precursor microRNAs, providing a potential means of regulating microRNA biogenesis in response to environmental and cellular stimuli.
Collapse
Affiliation(s)
- Jared T Baisden
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua A Boyer
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Zhao
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott M Hammond
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Medley JC, Panzade G, Zinovyeva AY. microRNA strand selection: Unwinding the rules. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1627. [PMID: 32954644 PMCID: PMC8047885 DOI: 10.1002/wrna.1627] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post‐transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA‐Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute‐loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch‐like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under:RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs
Collapse
Affiliation(s)
- Jeffrey C Medley
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Ganesh Panzade
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Anna Y Zinovyeva
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
36
|
Fard EM, Moradi S, Salekdeh NN, Bakhshi B, Ghaffari MR, Zeinalabedini M, Salekdeh GH. Plant isomiRs: origins, biogenesis, and biological functions. Genomics 2020; 112:3382-3395. [DOI: 10.1016/j.ygeno.2020.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
|
37
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
38
|
A Mechanism for microRNA Arm Switching Regulated by Uridylation. Mol Cell 2020; 78:1224-1236.e5. [PMID: 32442398 DOI: 10.1016/j.molcel.2020.04.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023]
Abstract
Strand selection is a critical step in microRNA (miRNA) biogenesis. Although the dominant strand may change depending on cellular contexts, the molecular mechanism and physiological significance of such alternative strand selection (or "arm switching") remain elusive. Here we find miR-324 to be one of the strongly regulated miRNAs by arm switching and identify the terminal uridylyl transferases TUT4 and TUT7 to be the key regulators. Uridylation of pre-miR-324 by TUT4/7 re-positions DICER on the pre-miRNA and shifts the cleavage site. This alternative processing produces a duplex with a different terminus from which the 3' strand (3p) is selected instead of the 5' strand (5p). In glioblastoma, the TUT4/7 and 3p levels are upregulated, whereas the 5p level is reduced. Manipulation of the strand ratio is sufficient to impair glioblastoma cell proliferation. This study uncovers a role of uridylation as a molecular switch in alternative strand selection and implicates its therapeutic potential.
Collapse
|
39
|
Vishlaghi N, Lisse TS. Dicer- and Bulge Stem Cell-Dependent MicroRNAs During Induced Anagen Hair Follicle Development. Front Cell Dev Biol 2020; 8:338. [PMID: 32478074 PMCID: PMC7240072 DOI: 10.3389/fcell.2020.00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are a major class of conserved non-coding RNAs that have a wide range of functions during development and disease. Biogenesis of canonical miRNAs depend on the cytoplasmic processing of pre-miRNAs to mature miRNAs by the Dicer endoribonuclease. Once mature miRNAs are generated, the miRNA-induced silencing complex (miRISC), or miRISC, incorporates one strand of miRNAs as a template for recognizing complementary target messenger RNAs (mRNAs) to dictate post-transcriptional gene expression. Besides regulating miRNA biogenesis, Dicer is also part of miRISC to assist in activation of the complex. Dicer associates with other regulatory miRISC co-factors such as trans-activation responsive RNA-binding protein 2 (Tarbp2) to regulate miRNA-based RNA interference. Although the functional role of miRNAs within epidermal keratinocytes has been extensively studied within embryonic mouse skin, its contribution to the normal function of hair follicle bulge stem cells (BSCs) during post-natal hair follicle development is unclear. With this question in mind, we sought to ascertain whether Dicer-Tarpb2 plays a functional role within BSCs during induced anagen development by utilizing conditional knockout mouse models. Our findings suggest that Dicer, but not Tarbp2, functions within BSCs to regulate induced anagen (growth phase) development of post-natal hair follicles. These findings strengthen our understanding of miRNA-dependency within hair follicle cells during induced anagen development.
Collapse
Affiliation(s)
- Neda Vishlaghi
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Thomas S Lisse
- Department of Biology, University of Miami, Coral Gables, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
40
|
Hansen SR, Aderounmu AM, Donelick HM, Bass BL. Dicer's Helicase Domain: A Meeting Place for Regulatory Proteins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:185-193. [PMID: 32179591 PMCID: PMC7384945 DOI: 10.1101/sqb.2019.84.039750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The function of Dicer’s helicase domain has been enigmatic since its discovery. Why do only some Dicers require ATP, despite a high degree of sequence conservation in their helicase domains? We discuss evolutionary considerations based on differences between vertebrate and invertebrate antiviral defense, and how the helicase domain has been co-opted in extant organisms as the binding site for accessory proteins. Many accessory proteins are double-stranded RNA binding proteins, and we propose models for how they modulate Dicer function and catalysis.
Collapse
Affiliation(s)
- Sarah R Hansen
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Adedeji M Aderounmu
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Helen M Donelick
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650, USA
| |
Collapse
|
41
|
Bas-Orth C, Koch M, Lau D, Buchthal B, Bading H. A microRNA signature of toxic extrasynaptic N-methyl-D-aspartate (NMDA) receptor signaling. Mol Brain 2020; 13:3. [PMID: 31924235 PMCID: PMC6954508 DOI: 10.1186/s13041-020-0546-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022] Open
Abstract
The cellular consequences of N-Methyl-D-Aspartate receptor (NMDAR) stimulation depend on the receptors' subcellular localization. Synaptic NMDARs promote plasticity and survival whereas extrasynaptic NMDARs mediate excitotoxicity and contribute to cell death in neurodegenerative diseases. The mechanisms that couple activation of extrasynaptic NMDARs to cell death remain incompletely understood. We here show that activation of extrasynaptic NMDARs by bath application of NMDA or L-glutamate leads to the upregulation of a group of 19 microRNAs in cultured mouse hippocampal neurons. In contrast, none of these microRNAs is induced upon stimulation of synaptic activity. Increased microRNA expression depends on the pri-miRNA processing enzyme Drosha, but not on de novo gene transcription. These findings suggest that toxic NMDAR signaling involves changes in the expression levels of particular microRNAs.
Collapse
Affiliation(s)
- Carlos Bas-Orth
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany. .,Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| | - Mirja Koch
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - David Lau
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Bettina Buchthal
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
42
|
Functional Significance and Therapeutic Potential of miR-15a Mimic in Pancreatic Ductal Adenocarcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:228-239. [PMID: 31846800 PMCID: PMC6921186 DOI: 10.1016/j.omtn.2019.11.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Treatment of pancreatic ductal adenocarcinoma (PDAC) remains a clinical challenge. There is an urgent need to develop novel strategies to enhance survival and improve patient prognosis. MicroRNAs (miRNAs) play critical roles as oncogenes or tumor suppressors in the regulation of cancer development and progression. In this study, we demonstrate that low expression of miR-15a is associated with poor prognosis of PDAC patients. miR-15a expression is reduced in PDAC while closely related miR-16 expression remains relatively unchanged. miR-15a suppresses several important targets such as Wee1, Chk1, Yap-1, and BMI-1, causing cell cycle arrest and inhibiting cell proliferation. Ectopic expression of miR-15a sensitizes PDAC cells to gemcitabine reducing the half maximal inhibitory concentration (IC50) more than 6.5-fold. To investigate the therapeutic potential of miR-15a, we used a modified miR-15a (5-FU-miR-15a) with uracil (U) residues in the guide strand replaced with 5-fluorouracil (5-FU). We demonstrated enhanced inhibition of PDAC cell proliferation by 5-FU-miR-15a compared to native miR-15a. In vivo we showed the therapeutic power of 5-FU-miR-15a alone or in combination with gemcitabine with near complete elimination of PDAC lung metastatic tumor growth. These results support the future development of 5-FU-miR-15a as a novel therapeutic agent as well as a prognostic biomarker in the clinical management of PDAC.
Collapse
|
43
|
Schlösser V, Hall J. Labeling microRNA precursors for Dicer assays. Anal Biochem 2019; 579:35-37. [DOI: 10.1016/j.ab.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/10/2019] [Indexed: 01/12/2023]
|
44
|
Zhu L, Kandasamy SK, Fukunaga R. Dicer partner protein tunes the length of miRNAs using base-mismatch in the pre-miRNA stem. Nucleic Acids Res 2019; 46:3726-3741. [PMID: 29373753 PMCID: PMC5909426 DOI: 10.1093/nar/gky043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022] Open
Abstract
Dicer partner proteins Drosophila Loquacious-PB (Loqs-PB) and human TRBP tune the length of miRNAs produced by Dicer from a subset of pre-miRNAs and thereby alter their target repertoire, by an unknown mechanism. Here, we developed a novel high-throughput method that we named Dram-seq (Dice randomized pre-miRNA pool and seq) to study length distributions of miRNAs produced from thousands of different pre-miRNA variants. Using Dram-seq, we found that a base-mismatch in the pre-miRNA stem can alter the length of miRNAs compared with a base-pair at the same position in both Drosophila and human, and is important for the miRNA length tuning by Loqs-PB. Loqs-PB directly bound base-mismatched nucleotides in the pre-miRNA stem. We speculate that Loqs-PB tunes miRNA length by changing the conformation of base-mismatched nucleotides in the pre-miRNA stem to that of base-paired ones and thereby altering the distance of the pre-miRNA stem.
Collapse
Affiliation(s)
- Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, 521A Physiology Building, Baltimore, MD 21205, USA
| | - Suresh K Kandasamy
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, 521A Physiology Building, Baltimore, MD 21205, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, 521A Physiology Building, Baltimore, MD 21205, USA
| |
Collapse
|
45
|
Transcriptome-wide identification of miRNA targets and a TAS3-homologous gene in Populus by degradome sequencing. Genes Genomics 2019; 41:849-861. [PMID: 30912003 DOI: 10.1007/s13258-019-00797-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/19/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Degradome sequencing has been applied to identify miRNA-directed mRNA cleavage and understand the biological function of miRNAs and their target genes in plants defense to stress. miRNAs involved in the response to cold stress have been identified in Populus, however, there are few reports about the validated targets of miRNAs in Populus under cold stress. OBJECTIVES The primary objective of this investigation was to globally identify and validate the targets of the miRNAs and regulatory components in Populus under cold stress. METHODS Populus plantlets grown in vitro were treated with cold (4 °C for 8 h) and total RNA was extracted using Trizol reagent. Approximately 200 µg total RNA was used for the construction of the degradome library, and degradome sequencing was conducted on an Illumina HiSeq 2000. The sequences were mapped to Populus genome using SOAP 2.0 and then were collected for degradome analysis. Additionally, trans-acting siRNA sequences from transacting siRNA gene 3 sequences and mature miRNAs cleaved from precursor miRNAs of Populus were analyzed. 5' RNA ligase-mediated-RACE (5'-RACE) were further conducted. RESULTS 80 genes were experimentally determined to be the target of 51 unique miRNAs, including three down-regulated miRNAs (pto-miR156k, pto-miR169i-m, and pto-miR394a-5p/b-5p) and two up-regulated miRNAs (pto-miR167a-d and pto-miR167f/g). The specificity and diversity of cleavage sites of miRNA targets were validated through 5'-RACE experiment and the results were similar with that of degradome sequencing, further supporting the empirical cleavage of miRNAs on targets in vivo in Populus. Interestingly, the TAS-homologous gene pto-TAS3 (EF146176.1) was identified and 11 potential ta-siRNAs [D1(+)-D11(+)] and their possible biogenesis sites within the pto-TAS3 transcript sequence were predicted in Populus. In addition, the biosynthesis of miRNA from precursor miRNA (pre-miRNA) was also validated through the detection of a total of 17 pre-miRNAs. CONCLUSION Our investigation expands the application of degradome sequencing for evaluating miRNA regulatory elements and evidence of the miRNA synthesis process, and provides empirical evidence of bona fide cleavage of target genes by miRNAs in Populus, which might be used for the research of miRNA-mediated regulation mechanism and molecular improvement of resistance to cold stress.
Collapse
|
46
|
Bofill-De Ros X, Kasprzak WK, Bhandari Y, Fan L, Cavanaugh Q, Jiang M, Dai L, Yang A, Shao TJ, Shapiro BA, Wang YX, Gu S. Structural Differences between Pri-miRNA Paralogs Promote Alternative Drosha Cleavage and Expand Target Repertoires. Cell Rep 2019; 26:447-459.e4. [PMID: 30625327 PMCID: PMC6369706 DOI: 10.1016/j.celrep.2018.12.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/11/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA) processing begins with Drosha cleavage, the fidelity of which is critical for downstream processing and mature miRNA target specificity. To understand how pri-miRNA sequence and structure influence Drosha cleavage, we studied the maturation of three pri-miR-9 paralogs, which encode the same mature miRNA but differ in the surrounding scaffold. We show that pri-miR-9-1 has a unique Drosha cleavage profile due to its distorted and flexible stem structure. Cleavage of pri-miR-9-1, but not pri-miR-9-2 or pri-miR-9-3, generates an alternative miR-9 with a shifted seed sequence that expands the scope of its target RNAs. Analyses of low-grade glioma patient samples indicate that the alternative-miR-9 has a potential role in tumor progression. Furthermore, we provide evidence that distortion of pri-miRNA stems induced by asymmetric internal loops correlates with Drosha cleavage at non-canonical sites. Our studies reveal that pri-miRNA paralogs can have distinct functions via differential Drosha processing.
Collapse
Affiliation(s)
- Xavier Bofill-De Ros
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wojciech K Kasprzak
- Basic Science Program, RNA Biology Laboratory, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD 21702, USA
| | - Yuba Bhandari
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Lixin Fan
- Small-Angle X-ray Scattering Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Quinn Cavanaugh
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Minjie Jiang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Lisheng Dai
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Acong Yang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Tie-Juan Shao
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bruce A Shapiro
- RNA Structure and Design Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
47
|
Abstract
Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex networks that regulate cell differentiation, development and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of the control of miRNA function. Here, we review the mechanisms that modulate miRNA activity, stability and cellular localization through alternative processing and maturation, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA-target interactions. We conclude by discussing intriguing, unresolved research questions.
Collapse
Affiliation(s)
- Luca F R Gebert
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
48
|
Bouvette J, Korkut DN, Fouillen A, Amellah S, Nanci A, Durocher Y, Omichinski JG, Legault P. High-yield production of human Dicer by transfection of human HEK293-EBNA1 cells grown in suspension. BMC Biotechnol 2018; 18:76. [PMID: 30522464 PMCID: PMC6282390 DOI: 10.1186/s12896-018-0485-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 01/04/2023] Open
Abstract
Background Dicer is a 219-kDa protein that plays key roles in gene regulation, particularly as the ribonuclease III enzyme responsible for cleaving precursor miRNA substrates. Its enzymatic activity is highly regulated by protein factors, and this regulation can impact on the levels of miRNAs and modulate the behavior of a cell. To better understand the underlying mechanisms of regulation, detailed enzymatic and structural characterization of Dicer are needed. However, these types of studies generally require several milligrams of recombinant protein, and efficient preparation of such quantities of pure human Dicer remains a challenge. To prepare large quantities of human Dicer, we have optimized transfection in HEK293-6E cells grown in suspension and streamlined a purification procedure. Results Transfection conditions were first optimized to achieve expression levels between 10 and 18 mg of recombinant Dicer per liter of culture. A three-step purification protocol was then developed that yields 4–9 mg of purified Dicer per liter of culture in a single day. From SEC-MALS/RI analysis and negative stain TEM, we confirmed that the purified protein is monomerically pure ( ≥ 98%) and folds with the characteristic L-shape geometry. Using an electrophoretic mobility shift assay, a dissociation constant (Kd) of 5 nM was measured for Dicer binding to pre-let-7a-1, in agreement with previous reports. However, when probing the cleavage activity of Dicer for pre-let-7a-1, we measured kcat (7.2 ± 0.5 min− 1) and KM (1.2 ± 0.3 μM) values that are much higher than previously reported due to experimental conditions that better respect the steady-state assumption. Conclusions The expression and purification protocols described here provide high yields of monomerically pure and active human Dicer. Cleavage studies of a pre-let-7 substrate with this purified Dicer reveal higher kcat and KM values than previously reported and support the current view that conformational changes are associated with substrate binding. Large quantities of highly pure Dicer will be valuable for future biochemical, biophysical and structural investigations of this key protein of the miRNA pathway. Electronic supplementary material The online version of this article (10.1186/s12896-018-0485-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Bouvette
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Dursun Nizam Korkut
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Aurélien Fouillen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Département de Stomatologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Soumiya Amellah
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Antonio Nanci
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Département de Stomatologie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Yves Durocher
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.,Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - James G Omichinski
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, H3C 3J7, QC, Canada.
| |
Collapse
|
49
|
Hadj-Moussa H, Storey KB. Micromanaging freeze tolerance: the biogenesis and regulation of neuroprotective microRNAs in frozen brains. Cell Mol Life Sci 2018; 75:3635-3647. [PMID: 29681008 PMCID: PMC11105625 DOI: 10.1007/s00018-018-2821-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/08/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
When temperatures plummet below 0 °C, wood frogs (Rana sylvatica) can endure the freezing of up to ~ 65% of their body water in extracellular ice masses, displaying no measurable brain activity, no breathing, no movement, and a flat-lined heart. To aid survival, frogs retreat into a state of suspended animation characterized by global suppression of metabolic functions and reprioritization of energy usage to essential survival processes that is elicited, in part, by the regulatory controls of microRNAs. The present study is the first to investigate miRNA biogenesis and regulation in the brain of a freeze tolerant vertebrate. Indeed, proper brain function and adaptations to environmental stimuli play a crucial role in coordinating stress responses. Immunoblotting of miRNA biogenesis factors illustrated an overall reduction in the majority of these processing proteins suggesting a potential suppression of miRNA maturation over the freeze-thaw cycle. This was coupled with a large-scale RT-qPCR analysis of relative expression levels of 113 microRNA species in the brains of control, 24 h frozen, and 8 h thawed R. sylvatica. Of the 41 microRNAs differentially regulated during freezing and thawing, only two were significantly upregulated. Bioinformatic target enrichment of the downregulated miRNAs, performed at the low temperatures experienced during freezing and thawing, predicted their involvement in the potential activation of various neuroprotective processes such as synaptic signaling, intracellular signal transduction, and anoxia/ischemia injury protection. The predominantly downregulated microRNA fingerprint identified herein suggests a microRNA-mediated cryoprotective mechanism responsible for maintaining neuronal functions and facilitating successful whole brain freezing and thawing.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
50
|
Montazerian M, Yasari F, Aghaalikhani N. Ovarian extracellular MicroRNAs as the potential non-invasive biomarkers: An update. Biomed Pharmacother 2018; 106:1633-1640. [PMID: 30119239 DOI: 10.1016/j.biopha.2018.07.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/06/2023] Open
Abstract
Through the reproductive system, it has been realized that the microRNAs (miRNAs) have emerged as one of the principal post-transcriptional gene regulators of the diverse developmental processes. The ovary, as a dynamic organ, co-ordinates follicle recruitment, selection, and ovulation, in which miRNAs play the central role almost in its all functions. Deregulation of these developmental procedures in ovary could lead to the ovarian dysfunction, infertility, decrease in the assisted reproductive treatment (ART) outcome, and death in some patients with ovarian cancer. In recent years, detection of ovarian extracellular miRNAs in body fluids such as follicular fluid and serum/plasma has opened a new era in the biomarker discovery field. Here through the present review, different aspects of the potential and proposed involvement of the extracellular miRNAs in both physiologic and pathologic contexts of the ovary have been discussed. Moreover, the researchers have addressed the relevant findings, challenges, and issues which associated with the extracellular miRNAs in the ovarian microenvironments to provide the better insight into understanding the molecular mechanisms which were involved in the pathophysiologic conditions. Finally, a comprehensive survey of the gaps has been discussed to hopefully shed new light and perspective on the development of the novel diagnostic and therapeutic platforms in the clinic.
Collapse
Affiliation(s)
- Mojgan Montazerian
- Department of Midwifery, Dezful Branch Islamic Azad University, Dezful, Iran.
| | - Fahimeh Yasari
- Department of Midwifery, Dezful Branch Islamic Azad University, Dezful, Iran
| | - Nazi Aghaalikhani
- Department of Midwifery, Dezful Branch Islamic Azad University, Dezful, Iran
| |
Collapse
|