1
|
Mouton S, Mougel A, Ustyantsev K, Dissous C, Melnyk O, Berezikov E, Vicogne J. Optimized protocols for RNA interference in Macrostomum lignano. G3 (BETHESDA, MD.) 2024; 14:jkae037. [PMID: 38421640 PMCID: PMC11075559 DOI: 10.1093/g3journal/jkae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Macrostomum lignano, a marine free-living flatworm, has emerged as a potent invertebrate model in developmental biology for studying stem cells, germline, and regeneration processes. In recent years, many tools have been developed to manipulate this worm and to facilitate genetic modification. RNA interference is currently the most accessible and direct technique to investigate gene functions. It is obtained by soaking worms in artificial seawater containing dsRNA targeting the gene of interest. Although easy to perform, the original protocol calls for daily exchange of dsRNA solutions, usually until phenotypes are observed, which is both time- and cost-consuming. In this work, we have evaluated alternative dsRNA delivery techniques, such as electroporation and osmotic shock, to facilitate the experiments with improved time and cost efficiency. During our investigation to optimize RNAi, we demonstrated that, in the absence of diatoms, regular single soaking in artificial seawater containing dsRNA directly produced in bacteria or synthesized in vitro is, in most cases, sufficient to induce a potent gene knockdown for several days with a single soaking step. Therefore, this new and highly simplified method allows a very significant reduction of dsRNA consumption and lab work. In addition, it enables performing experiments on a larger number of worms at minimal cost.
Collapse
Affiliation(s)
- Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9700AD, The Netherlands
| | - Alexandra Mougel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Kirill Ustyantsev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9700AD, The Netherlands
| | - Colette Dissous
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen 9700AD, The Netherlands
| | - Jérôme Vicogne
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
2
|
Allikka Parambil S, Li D, Zelko M, Poulet A, van Wolfswinkel J. piRNA generation is associated with the pioneer round of translation in stem cells. Nucleic Acids Res 2024; 52:2590-2608. [PMID: 38142432 PMCID: PMC10954484 DOI: 10.1093/nar/gkad1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023] Open
Abstract
Much insight has been gained on how stem cells maintain genomic integrity, but less attention has been paid to how they maintain their transcriptome. Here, we report that the PIWI protein SMEDWI-1 plays a role in the filtering of dysfunctional transcripts from the transcriptome of planarian stem cells. SMEDWI-1 accomplishes this through association with the ribosomes during the pioneer round of translation, and processing of poorly translated transcripts into piRNAs. This results in the removal of such transcripts from the cytoplasmic pool and at the same time creates a dynamic pool of small RNAs for post-transcriptional surveillance through the piRNA pathway. Loss of SMEDWI-1 results in elevated levels of several non-coding transcripts, including rRNAs, snRNAs and pseudogene mRNAs, while reducing levels of several coding transcripts. In the absence of SMEDWI-1, stem cell colonies are delayed in their expansion and a higher fraction of descendants exit the stem cell state, indicating that this transcriptomic sanitation mediated by SMEDWI-1 is essential to maintain stem cell health. This study presents a new model for the function of PIWI proteins in stem cell maintenance, that complements their role in transposon repression, and proposes a new biogenesis pathway for piRNAs in stem cells.
Collapse
Affiliation(s)
- Sudheesh Allikka Parambil
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Center for RNA science and medicine, Yale School of Medicine, New Haven. CT 06511, USA
| | - Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Center for RNA science and medicine, Yale School of Medicine, New Haven. CT 06511, USA
| | - Michael Zelko
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Center for RNA science and medicine, Yale School of Medicine, New Haven. CT 06511, USA
| | - Axel Poulet
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Center for RNA science and medicine, Yale School of Medicine, New Haven. CT 06511, USA
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Center for RNA science and medicine, Yale School of Medicine, New Haven. CT 06511, USA
| |
Collapse
|
3
|
Ma Y, He J, Sieber M, von Frieling J, Bruchhaus I, Baines JF, Bickmeyer U, Roeder T. The microbiome of the marine flatworm Macrostomum lignano provides fitness advantages and exhibits circadian rhythmicity. Commun Biol 2023; 6:289. [PMID: 36934156 PMCID: PMC10024726 DOI: 10.1038/s42003-023-04671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The close association between animals and their associated microbiota is usually beneficial for both partners. Here, we used a simple marine model invertebrate, the flatworm Macrostomum lignano, to characterize the host-microbiota interaction in detail. This analysis revealed that the different developmental stages each harbor a specific microbiota. Studies with gnotobiotic animals clarified the physiological significance of the microbiota. While no fitness benefits were mediated by the microbiota when food was freely available, animals with microbiota showed significantly increased fitness with a reduced food supply. The microbiota of M. lignano shows circadian rhythmicity, affecting both the total bacterial load and the behavior of specific taxa. Moreover, the presence of the worm influences the composition of the bacterial consortia in the environment. In summary, the Macrostomum-microbiota system described here can serve as a general model for host-microbe interactions in marine invertebrates.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Jinru He
- Kiel University, Zoological Institute, Cell and Developmental Biology, Kiel, Germany
| | - Michael Sieber
- Max-Planck Institute for Evolutionary Biology, Dept. Evolutionary Theory, Plön, Germany
| | - Jakob von Frieling
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John F Baines
- Kiel University, Medical Faculty, Institute for Experimental Medicine, Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, Group Evolutionary Medicine, Plön, Germany
| | - Ulf Bickmeyer
- Alfred-Wegener-Institute, Biosciences, Ecological Chemistry, Bremerhaven, Germany
| | - Thomas Roeder
- Kiel University, Zoological Institute, Molecular Physiology, Kiel, Germany.
- German Center for Lung Research (DZL), Airway Research Center North, Kiel, Germany.
| |
Collapse
|
4
|
Biryukov M, Dmitrieva A, Vavilova V, Ustyantsev K, Bazarova E, Sukhikh I, Berezikov E, Blinov A. Mlig-SKP1 Gene Is Required for Spermatogenesis in the Flatworm Macrostomum lignano. Int J Mol Sci 2022; 23:ijms232315110. [PMID: 36499445 PMCID: PMC9740662 DOI: 10.3390/ijms232315110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
In a free-living flatworm, Macrostomum lignano, an S-phase kinase-associated protein 1 (SKP1) homologous gene was identified as enriched in proliferating cells, suggesting that it can function in the regulation of stem cells or germline cells since these are the only two types of proliferating cells in flatworms. SKP1 is a conserved protein that plays a role in ubiquitination processes as a part of the Skp1-Cullin 1-F-box (SCF) ubiquitin ligase complex. However, the exact role of Mlig-SKP1 in M. lignano was not established. Here, we demonstrate that Mlig-SKP1 is neither involved in stem cell regulation during homeostasis, nor in regeneration, but is required for spermatogenesis. Mlig-SKP1(RNAi) animals have increased testes size and decreased fertility as a result of the aberrant maturation of sperm cells. Our findings reinforce the role of ubiquitination pathways in germ cell regulation and demonstrate the conserved role of SKP1 in spermatogenesis.
Collapse
Affiliation(s)
- Mikhail Biryukov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Anastasia Dmitrieva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Valeriya Vavilova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Kirill Ustyantsev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9700AD Groningen, The Netherlands
| | - Erzhena Bazarova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Igor Sukhikh
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9700AD Groningen, The Netherlands
| | - Alexandr Blinov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
5
|
Angileri KM, Bagia NA, Feschotte C. Transposon control as a checkpoint for tissue regeneration. Development 2022; 149:dev191957. [PMID: 36440631 PMCID: PMC10655923 DOI: 10.1242/dev.191957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
Tissue regeneration requires precise temporal control of cellular processes such as inflammatory signaling, chromatin remodeling and proliferation. The combination of these processes forms a unique microenvironment permissive to the expression, and potential mobilization of, transposable elements (TEs). Here, we develop the hypothesis that TE activation creates a barrier to tissue repair that must be overcome to achieve successful regeneration. We discuss how uncontrolled TE activity may impede tissue restoration and review mechanisms by which TE activity may be controlled during regeneration. We posit that the diversification and co-evolution of TEs and host control mechanisms may contribute to the wide variation in regenerative competency across tissues and species.
Collapse
Affiliation(s)
- Krista M. Angileri
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Nornubari A. Bagia
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| |
Collapse
|
6
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
7
|
Tsuji J, Thomson T, Brown C, Ghosh S, Theurkauf WE, Weng Z, Schwartz LM. Somatic piRNAs and Transposons are Differentially Expressed Coincident with Skeletal Muscle Atrophy and Programmed Cell Death. Front Genet 2022; 12:775369. [PMID: 35003216 PMCID: PMC8730325 DOI: 10.3389/fgene.2021.775369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/30/2021] [Indexed: 12/02/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, ∼27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5’ uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.
Collapse
Affiliation(s)
- Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Travis Thomson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Christine Brown
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| | - Subhanita Ghosh
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Schwartz
- Department of Biology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
8
|
Huang S, Yoshitake K, Asakawa S. A Review of Discovery Profiling of PIWI-Interacting RNAs and Their Diverse Functions in Metazoans. Int J Mol Sci 2021; 22:ijms222011166. [PMID: 34681826 PMCID: PMC8538981 DOI: 10.3390/ijms222011166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs (sncRNAs) that perform crucial biological functions in metazoans and defend against transposable elements (TEs) in germ lines. Recently, ubiquitously expressed piRNAs were discovered in soma and germ lines using small RNA sequencing (sRNA-seq) in humans and animals, providing new insights into the diverse functions of piRNAs. However, the role of piRNAs has not yet been fully elucidated, and sRNA-seq studies continue to reveal different piRNA activities in the genome. In this review, we summarize a set of simplified processes for piRNA analysis in order to provide a useful guide for researchers to perform piRNA research suitable for their study objectives. These processes can help expand the functional research on piRNAs from previously reported sRNA-seq results in metazoans. Ubiquitously expressed piRNAs have been discovered in the soma and germ lines in Annelida, Cnidaria, Echinodermata, Crustacea, Arthropoda, and Mollusca, but they are limited to germ lines in Chordata. The roles of piRNAs in TE silencing, gene expression regulation, epigenetic regulation, embryonic development, immune response, and associated diseases will continue to be discovered via sRNA-seq.
Collapse
Affiliation(s)
- Songqian Huang
- Correspondence: (S.H.); (S.A.); Tel.: +81-3-5841-5296 (S.A.); Fax: +81-3-5841-8166 (S.A.)
| | | | - Shuichi Asakawa
- Correspondence: (S.H.); (S.A.); Tel.: +81-3-5841-5296 (S.A.); Fax: +81-3-5841-8166 (S.A.)
| |
Collapse
|
9
|
Fontenla S, Rinaldi G, Tort JF. Lost and Found: Piwi and Argonaute Pathways in Flatworms. Front Cell Infect Microbiol 2021; 11:653695. [PMID: 34123869 PMCID: PMC8191739 DOI: 10.3389/fcimb.2021.653695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Platyhelminthes comprise one of the major phyla of invertebrate animals, inhabiting a wide range of ecosystems, and one of the most successful in adapting to parasitic life. Small non-coding RNAs have been implicated in regulating complex developmental transitions in model parasitic species. Notably, parasitic flatworms have lost Piwi RNA pathways but gained a novel Argonaute gene. Herein, we analyzed, contrasted and compared the conservation of small RNA pathways among several free-living species (a paraphyletic group traditionally known as ‘turbellarians’) and parasitic species (organized in the monophyletic clade Neodermata) to disentangle possible adaptations during the transition to parasitism. Our findings showed that complete miRNA and RNAi pathways are present in all analyzed free-living flatworms. Remarkably, whilst all ‘turbellarians’ have Piwi proteins, these were lost in parasitic Neodermantans. Moreover, two clusters of Piwi class Argonaute genes are present in all ‘turbellarians’. Interestingly, we identified a divergent Piwi class Argonaute in free living flatworms exclusively, which we named ‘Fliwi’. In addition, other key proteins of the Piwi pathways were conserved in ‘turbellarians’, while none of them were detected in Neodermatans. Besides Piwi and the canonical Argonaute proteins, a flatworm-specific class of Argonautes (FL-Ago) was identified in the analyzed species confirming its ancestrallity to all Platyhelminthes. Remarkably, this clade was expanded in parasitic Neodermatans, but not in free-living species. These phyla-specific Argonautes showed lower sequence conservation compared to other Argonaute proteins, suggesting that they might have been subjected to high evolutionary rates. However, key residues involved in the interaction with the small RNA and mRNA cleavage in the canonical Argonautes were more conserved in the FL-Agos than in the Piwi Argonautes. Whether this is related to specialized functions and adaptations to parasitism in Neodermatans remains unclear. In conclusion, differences detected in gene conservation, sequence and structure of the Argonaute family suggest tentative biological and evolutionary diversifications that are unique to Platyhelminthes. The remarkable divergencies in the small RNA pathways between free-living and parasitic flatworms indicate that they may have been involved in the adaptation to parasitism of Neodermatans.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | | | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| |
Collapse
|
10
|
Sun ZH, Wei JL, Cui ZP, Han YL, Zhang J, Song J, Chang YQ. Identification and functional characterization of piwi1 gene in sea cucumber, Apostichopus japonicas. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110536. [PMID: 33212209 DOI: 10.1016/j.cbpb.2020.110536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/04/2023]
Abstract
The sea cucumber (Apostichopus japonicus) is an economically important mariculture species in Asia. However, the genetic breeding of sea cucumbers is difficult because the sexes cannot be identified by appearance. Therefore, studies on sex-related genes are helpful in revealing the mechanisms of sex determination and differentiation in sea cucumbers. P-element induced wimpy testis (piwi) is a germ cell marker involved in gametogenesis in vertebrates; however, the expression pattern and function during gametogenesis remain unclear in sea cucumbers. In this study, we identified a piwi homolog gene in A. japonicus (Ajpiwi1) and investigated its expression pattern, and function. Ajpiwi1 is a maternal factor and is ubiquitously expressed in adult tissues, including the ovary and testis. Ajpiwi1 expression is strong in early oocytes, spermatocytes, and spermatogonia; weak in mature oocytes; and undetected in spermatids and intra-gonadal somatic cells. The knockdown of Ajpiwi1 by RNA interference (RNAi) led to the downregulation of other conserved sex-related genes such as dmrt1, foxl2, and germ cell-less. Therefore, Ajpiwi1 might play a critical role during gametogenesis in A. japonicus. This study creates new possibilities for studying sex-related gene functions in the sea cucumber and builds a gene function research platform based on RNAi for the first time.
Collapse
Affiliation(s)
- Zhi-Hui Sun
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jin-Liang Wei
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Zhou-Ping Cui
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Ya-Lun Han
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jian Zhang
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jian Song
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Ya-Qing Chang
- Key Laboratory of Mariculture& Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
11
|
Kim IV, Riedelbauch S, Kuhn CD. The piRNA pathway in planarian flatworms: new model, new insights. Biol Chem 2020; 401:1123-1141. [DOI: 10.1515/hsz-2019-0445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
AbstractPIWI-interacting RNAs (piRNAs) are small regulatory RNAs that associate with members of the PIWI clade of the Argonaute superfamily of proteins. piRNAs are predominantly found in animal gonads. There they silence transposable elements (TEs), regulate gene expression and participate in DNA methylation, thus orchestrating proper germline development. Furthermore, PIWI proteins are also indispensable for the maintenance and differentiation capabilities of pluripotent stem cells in free-living invertebrate species with regenerative potential. Thus, PIWI proteins and piRNAs seem to constitute an essential molecular feature of somatic pluripotent stem cells and the germline. In keeping with this hypothesis, both PIWI proteins and piRNAs are enriched in neoblasts, the adult stem cells of planarian flatworms, and their presence is a prerequisite for the proper regeneration and perpetual tissue homeostasis of these animals. The piRNA pathway is required to maintain the unique biology of planarians because, in analogy to the animal germline, planarian piRNAs silence TEs and ensure stable genome inheritance. Moreover, planarian piRNAs also contribute to the degradation of numerous protein-coding transcripts, a function that may be critical for neoblast differentiation. This review gives an overview of the planarian piRNA pathway and of its crucial function in neoblast biology.
Collapse
Affiliation(s)
- Iana V. Kim
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Sebastian Riedelbauch
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Claus-D. Kuhn
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
12
|
Kashima M, Agata K, Shibata N. What is the role of PIWI family proteins in adult pluripotent stem cells? Insights from asexually reproducing animals, planarians. Dev Growth Differ 2020; 62:407-422. [PMID: 32621324 DOI: 10.1111/dgd.12688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Planarians have a remarkable regenerative ability owing to their adult pluripotent stem cells (aPSCs), which are called "neoblasts." Planarians maintain a considerable number of neoblasts throughout their adulthood to supply differentiated cells for the maintenance of tissue homeostasis and asexual reproduction (fission followed by regeneration). Thus, planarians serve as a good model to study the regulatory mechanisms of in vivo aPSCs. In asexually reproducing invertebrates, such as sponge, Hydra, and planaria, piwi family genes are the markers most commonly expressed in aPSCs. While piwi family genes are known as guardians against transposable elements in the germline cells of animals that only sexually propagate, their functions in the aPSC system have remained elusive. In this review, we introduce recent knowledge on the PIWI family proteins in the aPSC system in planarians and other organisms and discuss how PIWI family proteins contribute to the regulation of the aPSC system.
Collapse
Affiliation(s)
- Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara Chuo Ku, Japan
| | - Kiyokazu Agata
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Norito Shibata
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Tsuyama-City, Japan
| |
Collapse
|
13
|
Azlan A, Halim MA, Azzam G. Genome-wide identification and characterization of long intergenic noncoding RNAs in the regenerative flatworm Macrostomum lignano. Genomics 2019; 112:1273-1281. [PMID: 31381967 DOI: 10.1016/j.ygeno.2019.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023]
Abstract
The free-living flatworm Macrostoma lignano (M. lignano) is an emerging model organism for aging and regeneration research. Long intergenic non-coding RNAs (lincRNAs) have important roles in many biological processes such as aging, stem cell maintenance and differentiation. However, to date, there is no systematic identification of lincRNAs in M. lignano. By using public RNA-seq data, we identified a total of 2547 lincRNA transcripts in M. lignano genome. We discovered that M. lignano lincRNAs shared many characteristics with other species such as shorter in length, lower GC content, and lower in expression compared to protein-coding genes. Unlike protein-coding genes, M. lignano lincRNAs showed higher tendency to be expressed in temporal and region-specific fashion. Additionally, co-expression network analysis and functional enrichment suggest that M. lignano lincRNAs have potential roles in regeneration. This study will provide important resources and pave the way for investigations on non-coding genes involved in aging and regeneration.
Collapse
Affiliation(s)
- Azali Azlan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Mardani Abdul Halim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
14
|
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet 2018; 52:131-157. [PMID: 30476449 PMCID: PMC10784713 DOI: 10.1146/annurev-genet-120417-031441] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Martin H Fabry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| |
Collapse
|
15
|
Waldron FM, Stone GN, Obbard DJ. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet 2018; 14:e1007533. [PMID: 30059538 PMCID: PMC6085071 DOI: 10.1371/journal.pgen.1007533] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/09/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022] Open
Abstract
RNA interference (RNAi)-related pathways target viruses and transposable element (TE) transcripts in plants, fungi, and ecdysozoans (nematodes and arthropods), giving protection against infection and transmission. In each case, this produces abundant TE and virus-derived 20-30nt small RNAs, which provide a characteristic signature of RNAi-mediated defence. The broad phylogenetic distribution of the Argonaute and Dicer-family genes that mediate these pathways suggests that defensive RNAi is ancient, and probably shared by most animal (metazoan) phyla. Indeed, while vertebrates had been thought an exception, it has recently been argued that mammals also possess an antiviral RNAi pathway, although its immunological relevance is currently uncertain and the viral small RNAs (viRNAs) are not easily detectable. Here we use a metagenomic approach to test for the presence of viRNAs in five species from divergent animal phyla (Porifera, Cnidaria, Echinodermata, Mollusca, and Annelida), and in a brown alga-which represents an independent origin of multicellularity from plants, fungi, and animals. We use metagenomic RNA sequencing to identify around 80 virus-like contigs in these lineages, and small RNA sequencing to identify viRNAs derived from those viruses. We identified 21U small RNAs derived from an RNA virus in the brown alga, reminiscent of plant and fungal viRNAs, despite the deep divergence between these lineages. However, contrary to our expectations, we were unable to identify canonical (i.e. Drosophila- or nematode-like) viRNAs in any of the animals, despite the widespread presence of abundant micro-RNAs, and somatic transposon-derived piwi-interacting RNAs. We did identify a distinctive group of small RNAs derived from RNA viruses in the mollusc. However, unlike ecdysozoan viRNAs, these had a piRNA-like length distribution but lacked key signatures of piRNA biogenesis. We also identified primary piRNAs derived from putatively endogenous copies of DNA viruses in the cnidarian and the echinoderm, and an endogenous RNA virus in the mollusc. The absence of canonical virus-derived small RNAs from our samples may suggest that the majority of animal phyla lack an antiviral RNAi response. Alternatively, these phyla could possess an antiviral RNAi response resembling that reported for vertebrates, with cryptic viRNAs not detectable through simple metagenomic sequencing of wild-type individuals. In either case, our findings show that the antiviral RNAi responses of arthropods and nematodes, which are highly divergent from each other and from that of plants and fungi, are also highly diverged from the most likely ancestral metazoan state.
Collapse
Affiliation(s)
- Fergal M. Waldron
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Darren J. Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
- Centre for Immunity Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Girardi E, Miesen P, Pennings B, Frangeul L, Saleh MC, van Rij RP. Histone-derived piRNA biogenesis depends on the ping-pong partners Piwi5 and Ago3 in Aedes aegypti. Nucleic Acids Res 2017; 45:4881-4892. [PMID: 28115625 PMCID: PMC5416884 DOI: 10.1093/nar/gkw1368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022] Open
Abstract
The piRNA pathway is of key importance in controlling transposable elements in most animal species. In the vector mosquito Aedes aegypti, the presence of eight PIWI proteins and the accumulation of viral piRNAs upon arbovirus infection suggest additional functions of the piRNA pathway beyond genome defense. To better understand the regulatory potential of this pathway, we analyzed in detail host-derived piRNAs in A. aegypti Aag2 cells. We show that a large repertoire of protein-coding genes and non-retroviral integrated RNA virus elements are processed into genic piRNAs by different combinations of PIWI proteins. Among these, we identify a class of genes that produces piRNAs from coding sequences in an Ago3- and Piwi5-dependent fashion. We demonstrate that the replication-dependent histone gene family is a genic source of ping-pong dependent piRNAs and that histone-derived piRNAs are dynamically expressed throughout the cell cycle, suggesting a role for the piRNA pathway in the regulation of histone gene expression. Moreover, our results establish the Aag2 cell line as an accessible experimental model to study gene-derived piRNAs.
Collapse
Affiliation(s)
- Erika Girardi
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Bas Pennings
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lionel Frangeul
- Institut Pasteur, Viruses and RNA interference, CNRS URM 3569, 75724 Paris Cedex 15, France
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA interference, CNRS URM 3569, 75724 Paris Cedex 15, France
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
17
|
Fontenla S, Rinaldi G, Smircich P, Tort JF. Conservation and diversification of small RNA pathways within flatworms. BMC Evol Biol 2017; 17:215. [PMID: 28893179 PMCID: PMC5594548 DOI: 10.1186/s12862-017-1061-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
Background Small non-coding RNAs, including miRNAs, and gene silencing mediated by RNA interference have been described in free-living and parasitic lineages of flatworms, but only few key factors of the small RNA pathways have been exhaustively investigated in a limited number of species. The availability of flatworm draft genomes and predicted proteomes allowed us to perform an extended survey of the genes involved in small non-coding RNA pathways in this phylum. Results Overall, findings show that the small non-coding RNA pathways are conserved in all the analyzed flatworm linages; however notable peculiarities were identified. While Piwi genes are amplified in free-living worms they are completely absent in all parasitic species. Remarkably all flatworms share a specific Argonaute family (FL-Ago) that has been independently amplified in different lineages. Other key factors such as Dicer are also duplicated, with Dicer-2 showing structural differences between trematodes, cestodes and free-living flatworms. Similarly, a very divergent GW182 Argonaute interacting protein was identified in all flatworm linages. Contrasting to this, genes involved in the amplification of the RNAi interfering signal were detected only in the ancestral free living species Macrostomum lignano. We here described all the putative small RNA pathways present in both free living and parasitic flatworm lineages. Conclusion These findings highlight innovations specifically evolved in platyhelminths presumably associated with novel mechanisms of gene expression regulation mediated by small RNA pathways that differ to what has been classically described in model organisms. Understanding these phylum-specific innovations and the differences between free living and parasitic species might provide clues to adaptations to parasitism, and would be relevant for gene-silencing technology development for parasitic flatworms that infect hundreds of million people worldwide. Electronic supplementary material The online version of this article (10.1186/s12862-017-1061-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay
| | - Gabriel Rinaldi
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.,Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.
| |
Collapse
|
18
|
Abstract
Stem cell differentiation involves a delicate balance of gene expression and transposon repression. In this issue of Developmental Cell, Shibata et al. (2016) show that a PIWI protein expressed in planarian stem cells is inherited by their differentiating descendants to ensure regenerative capacity of the flatworm via transposon silencing.
Collapse
Affiliation(s)
- Marla E Tharp
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.
| |
Collapse
|
19
|
Grudniewska M, Mouton S, Simanov D, Beltman F, Grelling M, de Mulder K, Arindrarto W, Weissert PM, van der Elst S, Berezikov E. Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano. eLife 2016; 5. [PMID: 27997336 PMCID: PMC5173321 DOI: 10.7554/elife.20607] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome assembly and performed the first comprehensive characterization of gene expression in the proliferating cells of M. lignano, represented by somatic stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes, including Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a, confirmed their crucial role for the functionality of somatic neoblasts during homeostasis and regeneration. The generated M. lignano transcriptome assembly and gene expression signatures of somatic neoblasts and germline cells will be a valuable resource for future molecular studies in M. lignano. DOI:http://dx.doi.org/10.7554/eLife.20607.001
Collapse
Affiliation(s)
- Magda Grudniewska
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stijn Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Daniil Simanov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Frank Beltman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Margriet Grelling
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrien de Mulder
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wibowo Arindrarto
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Philipp M Weissert
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan van der Elst
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Neuhof M, Levin M, Rechavi O. Vertically- and horizontally-transmitted memories - the fading boundaries between regeneration and inheritance in planaria. Biol Open 2016; 5:1177-88. [PMID: 27565761 PMCID: PMC5051648 DOI: 10.1242/bio.020149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Weismann barrier postulates that genetic information passes only from the germline to the soma and not in reverse, thus providing an obstacle to the inheritance of acquired traits. Certain organisms such as planaria – flatworms that can reproduce through asymmetric fission – avoid the limitations of this barrier, thus blurring the distinction between the processes of inheritance and development. In this paper, we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria. Biased distribution of epigenetic effects in asymmetrically produced parts of a regenerating organism could increase variation and therefore affect the species' evolution. The maintenance and fixing of somatic experiences, encoded via stable biochemical or physiological states, may contribute to evolutionary processes in the absence of classically defined generations. We discuss different mechanisms that could induce asymmetry between the two organisms that eventually develop from the regenerating parts, including one particularly fascinating source – the potential capacity of the brain to produce long-lasting epigenetic changes. Summary: In this hypothesis paper we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria, an invertebrate model organism which challenges fundamental assumptions regarding reproduction.
Collapse
Affiliation(s)
- Moran Neuhof
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
(Neo)blast from the past: new insights into planarian stem cell lineages. Curr Opin Genet Dev 2016; 40:74-80. [PMID: 27379899 DOI: 10.1016/j.gde.2016.06.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Collectively, planarian stem cells (neoblasts) are totipotent and are required for tissue homeostasis and regeneration. Recent work has begun to test the long-standing question of whether all neoblasts have the same potential, or whether they actually represent molecularly distinct subpopulations with distinct tissue restriction. Here, we summarize the current state of the field in neoblast lineage organization. It is clear that at least some neoblasts are totipotent, whereas other neoblasts represent functionally distinct molecular subclasses with restricted potential. In addition to neoblast subclasses, tissue-specific progenitors have also been identified, though their ability to proliferate is largely unknown. Together, neoblast lineage development, subclasses, and cell hierarchies are becoming elucidated, showing the complex regulation required for proper tissue homeostasis and regeneration in planarians.
Collapse
|
22
|
Lengerer B, Hennebert E, Flammang P, Salvenmoser W, Ladurner P. Adhesive organ regeneration in Macrostomum lignano. BMC DEVELOPMENTAL BIOLOGY 2016; 16:20. [PMID: 27255153 PMCID: PMC4890501 DOI: 10.1186/s12861-016-0121-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Flatworms possess pluripotent stem cells that can give rise to all cell types, which allows them to restore lost body parts after injury or amputation. This makes flatworms excellent model systems for studying regeneration. In this study, we present the adhesive organs of a marine flatworm as a simple model system for organ regeneration. Macrostomum lignano has approximately 130 adhesive organs at the ventral side of its tail plate. One adhesive organ consists of three interacting cells: one adhesive gland cell, one releasing gland cell, and one modified epidermal cell, called an anchor cell. However, no specific markers for these cell types were available to study the regeneration of adhesive organs. RESULTS We tested 15 commercially available lectins for their ability to label adhesive organs and found one lectin (peanut agglutinin) to be specific to adhesive gland cells. We visualized the morphology of regenerating adhesive organs using lectin- and antibody staining as well as transmission electron microscopy. Our findings indicate that the two gland cells differentiate earlier than the connected anchor cells. Using EdU/lectin staining of partially amputated adhesive organs, we showed that their regeneration can proceed in two ways. First, adhesive gland cell bodies are able to survive partial amputation and reconnect with newly formed anchor cells. Second, adhesive gland cell bodies are cleared away, and the entire adhesive organ is build anew. CONCLUSION Our results provide the first insights into adhesive organ regeneration and describe ten new markers for differentiated cells and tissues in M. lignano. The position of adhesive organ cells within the blastema and their chronological differentiation have been shown for the first time. M. lignano can regenerate adhesive organs de novo but also replace individual anchor cells in an injured organ. Our findings contribute to a better understanding of organogenesis in flatworms and enable further molecular investigations of cell-fate decisions during regeneration.
Collapse
Affiliation(s)
- Birgit Lengerer
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Elise Hennebert
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000, Mons, Belgium
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000, Mons, Belgium
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics, Research Institute for Biosciences, University of Mons, 23 Place du Parc, 7000, Mons, Belgium
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria.
| |
Collapse
|
23
|
Wasik K, Gurtowski J, Zhou X, Ramos OM, Delás MJ, Battistoni G, El Demerdash O, Falciatori I, Vizoso DB, Smith AD, Ladurner P, Schärer L, McCombie WR, Hannon GJ, Schatz M. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc Natl Acad Sci U S A 2015; 112:12462-7. [PMID: 26392545 PMCID: PMC4603488 DOI: 10.1073/pnas.1516718112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The free-living flatworm, Macrostomum lignano has an impressive regenerative capacity. Following injury, it can regenerate almost an entirely new organism because of the presence of an abundant somatic stem cell population, the neoblasts. This set of unique properties makes many flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell-fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of M. lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ∼75% of its sequence being comprised of simple repeats and transposon sequences. This has made high-quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130× coverage by long sequencing reads from the Pacific Biosciences platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene-expression patterns during regeneration, examining pathways important to stem cell function.
Collapse
Affiliation(s)
- Kaja Wasik
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - James Gurtowski
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Xin Zhou
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Molecular and Cellular Biology Graduate Program, Stony Brook University, NY 11794
| | - Olivia Mendivil Ramos
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - M Joaquina Delás
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Giorgia Battistoni
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Osama El Demerdash
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ilaria Falciatori
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Dita B Vizoso
- Department of Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - Andrew D Smith
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Peter Ladurner
- Department of Evolutionary Biology, Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Lukas Schärer
- Department of Evolutionary Biology, Zoological Institute, University of Basel, 4051 Basel, Switzerland
| | - W Richard McCombie
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom;
| | - Michael Schatz
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724;
| |
Collapse
|