1
|
Hotinger JA, Gallagher AH, May AE. Phage-Related Ribosomal Proteases (Prps): Discovery, Bioinformatics, and Structural Analysis. Antibiotics (Basel) 2022; 11:antibiotics11081109. [PMID: 36009978 PMCID: PMC9405229 DOI: 10.3390/antibiotics11081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Many new antimicrobials are analogs of existing drugs, sharing the same targets and mechanisms of action. New antibiotic targets are critically needed to combat the growing threat of antimicrobial-resistant bacteria. Phage-related ribosomal proteases (Prps) are a recently structurally characterized antibiotic target found in pathogens such as Staphylococcus aureus, Clostridioides difficile, and Streptococcus pneumoniae. These bacteria encode an N-terminal extension on their ribosomal protein L27 that is not present in other bacteria. The cleavage of this N-terminal extension from L27 by Prp is necessary to create a functional ribosome. Thus, Prp inhibition may serve as an alternative to direct binding and inhibition of the ribosome. This bioinformatic and structural analysis covers the discovery, function, and structural characteristics of known Prps. This information will be helpful in future endeavors to design selective therapeutics targeting the Prps of important pathogens.
Collapse
|
2
|
Agirrezabala X, Samatova E, Macher M, Liutkute M, Maiti M, Gil-Carton D, Novacek J, Valle M, Rodnina MV. A switch from α-helical to β-strand conformation during co-translational protein folding. EMBO J 2022; 41:e109175. [PMID: 34994471 PMCID: PMC8844987 DOI: 10.15252/embj.2021109175] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
Cellular proteins begin to fold as they emerge from the ribosome. The folding landscape of nascent chains is not only shaped by their amino acid sequence but also by the interactions with the ribosome. Here, we combine biophysical methods with cryo‐EM structure determination to show that folding of a β‐barrel protein begins with formation of a dynamic α‐helix inside the ribosome. As the growing peptide reaches the end of the tunnel, the N‐terminal part of the nascent chain refolds to a β‐hairpin structure that remains dynamic until its release from the ribosome. Contacts with the ribosome and structure of the peptidyl transferase center depend on nascent chain conformation. These results indicate that proteins may start out as α‐helices inside the tunnel and switch into their native folds only as they emerge from the ribosome. Moreover, the correlation of nascent chain conformations with reorientation of key residues of the ribosomal peptidyl‐transferase center suggest that protein folding could modulate ribosome activity.
Collapse
Affiliation(s)
| | - Ekaterina Samatova
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Meline Macher
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Marija Liutkute
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Manisankar Maiti
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - David Gil-Carton
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jiri Novacek
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Mikel Valle
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| |
Collapse
|
3
|
Tirumalai MR, Rivas M, Tran Q, Fox GE. The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 2021; 85:e0010421. [PMID: 34756086 PMCID: PMC8579967 DOI: 10.1128/mmbr.00104-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In his 2001 article, "Translation: in retrospect and prospect," the late Carl Woese made a prescient observation that there was a need for the then-current view of translation to be "reformulated to become an all-embracing perspective about which 21st century Biology can develop" (RNA 7:1055-1067, 2001, https://doi.org/10.1017/s1355838201010615). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made. Particularly attractive is a model in which the ribosome may facilitate an ∼180° rotation of the CCA end of the tRNA from the A-site to the P-site while the acceptor stem of the tRNA would then undergo a translation from the A-site to the P-site. However, the central question of how the ribosome originated remains unresolved. Along the path from a primitive RNA world or an RNA-peptide world to a proto-ribosome world, the advent of the peptidyl transferase activity would have been a seminal event. This functionality is now housed within a local region of the large-subunit (LSU) rRNA, namely, the peptidyl transferase center (PTC). The PTC is responsible for peptide bond formation during protein synthesis and is usually considered to be the oldest part of the modern ribosome. What is frequently overlooked is that by examining the origins of the PTC itself, one is likely going back even further in time. In this regard, it has been proposed that the modern PTC originated from the association of two smaller RNAs that were once independent and now comprise a pseudosymmetric region in the modern PTC. Could such an association have survived? Recent studies have shown that the extant PTC is largely depleted of ribosomal protein interactions. It is other elements like metallic ion coordination and nonstandard base/base interactions that would have had to stabilize the association of RNAs. Here, we present a detailed review of the literature focused on the nature of the extant PTC and its proposed ancestor, the proto-ribosome.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Fukushima K, Esaki H. Theoretical Study of the Mechanism of Ribosomal Peptide Bond Formation Using the ONIOM Method. Chem Pharm Bull (Tokyo) 2021; 69:734-740. [PMID: 34334517 DOI: 10.1248/cpb.c21-00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide bond formation in living cells occurs at the peptidyl transferase center (PTC) of the large ribosomal subunit and involves the transfer of the peptidyl group from peptidyl-tRNA to aminoacyl-tRNA. Despite numerous kinetic and theoretical studies, many details of this reaction -such as whether it proceeds via a stepwise or concerted mechanism- remain unclear. In this study, we calculated the geometry and energy of the transition states and intermediates in peptide bond formation in the PTC environment using the ONIOM (our own n-layered integrated molecular orbital and molecular mechanics) method. The calculations indicated that the energy of the transition states of stepwise mechanisms are lower than those of concerted mechanisms and suggested that the reaction involves a neutral tetrahedral intermediate that is stabilized through the hydrogen-bonding network in the PTC environment. The results will lead to a better understanding of the mechanism of peptidyl transfer reaction, and resolve fundamental questions of the steps and molecular intermediates involved in peptide bond formation in the ribosome.
Collapse
|
5
|
D Amino Acids Highlight the Catalytic Power of the Ribosome. Cell Chem Biol 2019; 26:1639-1641. [PMID: 31680066 DOI: 10.1016/j.chembiol.2019.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
The possible mechanism(s) by which ribosomes make peptide bonds during protein synthesis have been explored for decades. Yet, there is no agreement on how the catalytic site, the peptidyl transferase center (PTC), promotes this reaction. Here, we discuss the results of recent investigations of translation with D amino acids that provide fresh insights into that longstanding question.
Collapse
|
6
|
Kazemi M, Socan J, Himo F, Åqvist J. Mechanistic alternatives for peptide bond formation on the ribosome. Nucleic Acids Res 2019; 46:5345-5354. [PMID: 29746669 PMCID: PMC6009655 DOI: 10.1093/nar/gky367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/26/2018] [Indexed: 02/04/2023] Open
Abstract
The peptidyl transfer reaction on the large ribosomal subunit depends on the protonation state of the amine nucleophile and exhibits a large kinetic solvent isotope effect (KSIE ∼8). In contrast, the related peptidyl-tRNA hydrolysis reaction involved in termination shows a KSIE of ∼4 and a pH-rate profile indicative of base catalysis. It is, however, unclear why these reactions should proceed with different mechanisms, as the experimental data suggests. One explanation is that two competing mechanisms may be operational in the peptidyl transferase center (PTC). Herein, we explored this possibility by re-examining the previously proposed proton shuttle mechanism and testing the feasibility of general base catalysis also for peptide bond formation. We employed a large cluster model of the active site and different reaction mechanisms were evaluated by density functional theory calculations. In these calculations, the proton shuttle and general base mechanisms both yield activation energies comparable to the experimental values. However, only the proton shuttle mechanism is found to be consistent with the experimentally observed pH-rate profile and the KSIE. This suggests that the PTC promotes the proton shuttle mechanism for peptide bond formation, while prohibiting general base catalysis, although the detailed mechanism by which general base catalysis is excluded remains unclear.
Collapse
Affiliation(s)
- Masoud Kazemi
- Department of Cell and Molecular Biology, Box 596, Uppsala University, BMC, SE-751 24 Uppsala, Sweden.,Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jaka Socan
- Department of Cell and Molecular Biology, Box 596, Uppsala University, BMC, SE-751 24 Uppsala, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Box 596, Uppsala University, BMC, SE-751 24 Uppsala, Sweden
| |
Collapse
|
7
|
Ribosomal protein eL42 contributes to the catalytic activity of the yeast ribosome at the elongation step of translation. Biochimie 2018; 158:20-33. [PMID: 30550856 DOI: 10.1016/j.biochi.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022]
Abstract
The GGQ minidomain of the ribosomal protein eL42 was previously shown to contact the CCA-arm of P-site bound tRNA in human ribosome, indicating a possible involvement of the protein in the catalytic activity. Here, using Schizosaccharomyces pombe (S. pombe) cells, we demonstrate that the GGQ minidomain and neighboring region of eL42 is critical for the ribosomal function. Mutant eL42 proteins containing amino acid substitutions within or adjacent to the GGQ minidomain failed to complement the function of wild-type eL42, and expression of the mutant eL42 proteins led to severe growth defects. These results suggest that the mutations in eL42 interfere with the ribosomal function in vivo. Furthermore, we show that some of the mutations associated with the conserved GGQ region lead to reduced activities in the poly(Phe) synthesis and/or in the peptidyl transferase reaction with respect to puromycin, as compared with those of the wild-type ribosomes. A pK value of 6.95 was measured for the side chain of Lys-55/Arg-55, which is considerably less than that of a Lys or Arg residue. Altogether, our findings suggest that eL42 contributes to the 80S ribosome's peptidyl transferase activity by promoting the course of the elongation cycle.
Collapse
|
8
|
Abstract
This review summarizes our current understanding of translation in prokaryotes, focusing on the mechanistic and structural aspects of each phase of translation: initiation, elongation, termination, and ribosome recycling. The assembly of the initiation complex provides multiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon-anticodon interaction during the decoding phase of elongation results in major conformational changes of the small ribosomal subunit and shapes the reaction pathway of guanosine triphosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond formation, but requires the help of elongation factor P (EF-P) when two or more consecutive Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA) and mRNA movements during translocation helps to place the available structures of translocation intermediates onto the time axis of the reaction pathway. The nascent protein begins to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribosome. When a stop codon is reached at the end of the coding sequence, the ribosome, assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby releasing the nascent protein. Following termination, the ribosome is dissociated into subunits and recycled into another round of initiation. At each step of translation, the ribosome undergoes dynamic fluctuations between different conformation states. The aim of this article is to show the link between ribosome structure, dynamics, and function.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| |
Collapse
|
9
|
Zhang X, Ma Y, Ye G. Morphological Observation and Comparative Transcriptomic Analysis of Clostridium perfringens Biofilm and Planktonic Cells. Curr Microbiol 2018; 75:1182-1189. [PMID: 29752494 DOI: 10.1007/s00284-018-1507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/07/2018] [Indexed: 11/30/2022]
Abstract
Bacterial biofilms can enhance survival in adverse environments and promote infection. However, little is known about biofilm formation by Clostridium perfringens. To better characterize this process, we used SEM to observe the surfaces of C. perfringens biofilms after 12, 24, 48, and 72 h of incubation. Biofilm cells appeared to be encased in a dense matrix material, and the total biomass of the biofilm increased with incubation time. To gain insight into the differentially expressed genes (DEGs) between biofilm and planktonic cells, we carried out comparative transcriptomic analysis using RNA sequencing. In total, 91 genes were significantly differentially expressed, with 40 being up-regulated and 51 down-regulated. In particular, genes encoding sortase, ribosomal proteins, and ATP synthase were up-regulated in biofilms, while genes coding for clostripain and phospholipase C were down-regulated. To validate the RNA sequencing results, qRT-PCR analysis was performed using five randomly selected DEGs. Results showed that all five genes were up-regulated, which was in accordance with the RNA sequencing results. To examine the functional differences, the DEGs were characterized by GO and KEGG pathway enrichment analyses. Results showed that the up-regulated genes were divided into 32 significantly enriched GO terms, with "macromolecular complex" being the most common. Oxidative phosphorylation was the only significantly enriched pathway, suggesting that ATP is required for biofilm stability. This study provides valuable insights into the morphology and transcriptional regulation of C. perfringens during biofilm formation, and will be useful for understanding and developing biofilm-based processes.
Collapse
Affiliation(s)
- Xiaofen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, No 251. Ningda Road, Chengbei District, Xining, Qinghai, 810016, China
| | - Yuhua Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, No 251. Ningda Road, Chengbei District, Xining, Qinghai, 810016, China
| | - Guisheng Ye
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, 810016, China.
- College of Agriculture and Animal Husbandry, Qinghai University, No 251. Ningda Road, Chengbei District, Xining, Qinghai, 810016, China.
| |
Collapse
|
10
|
Theoretical study of a proton wire mechanism for the peptide bond formation in the ribosome. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2066-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Aseev LV, Koledinskaya LS, Boni IV. Regulation of Ribosomal Protein Operons rplM-rpsI, rpmB-rpmG, and rplU-rpmA at the Transcriptional and Translational Levels. J Bacteriol 2016; 198:2494-502. [PMID: 27381917 PMCID: PMC4999927 DOI: 10.1128/jb.00187-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. IMPORTANCE It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
12
|
Arenz S, Bock LV, Graf M, Innis CA, Beckmann R, Grubmüller H, Vaiana AC, Wilson DN. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nat Commun 2016; 7:12026. [PMID: 27380950 PMCID: PMC4935803 DOI: 10.1038/ncomms12026] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022] Open
Abstract
Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.
Collapse
Affiliation(s)
- Stefan Arenz
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| | - Lars V. Bock
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37079, Germany
| | - Michael Graf
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| | - C. Axel Innis
- Institut Européen de Chimie et Biologie, University of Bordeaux, Pessac 33607, France
- INSERM U1212, Bordeaux 33076, France
- CNRS UMR7377, Bordeaux 33076, France
| | - Roland Beckmann
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
- Center for integrated Protein Science Munich, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37079, Germany
| | - Andrea C. Vaiana
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37079, Germany
| | - Daniel N. Wilson
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
- Center for integrated Protein Science Munich, University of Munich, Feodor-Lynenstrasse 25, Munich 81377, Germany
| |
Collapse
|
13
|
Protein Elongation, Co-translational Folding and Targeting. J Mol Biol 2016; 428:2165-85. [DOI: 10.1016/j.jmb.2016.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
|
14
|
Svidritskiy E, Madireddy R, Korostelev AA. Structural Basis for Translation Termination on a Pseudouridylated Stop Codon. J Mol Biol 2016; 428:2228-36. [PMID: 27107638 DOI: 10.1016/j.jmb.2016.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/27/2022]
Abstract
Pseudouridylation of messenger RNA emerges as an abundant modification involved in gene expression regulation. Pseudouridylation of stop codons in eukaryotic and bacterial cells results in stop-codon read through. The structural mechanism of this phenomenon is not known. Here we present a 3.1-Å crystal structure of Escherichia coli release factor 1 (RF1) bound to the 70S ribosome in response to the ΨAA codon. The structure reveals that recognition of a modified stop codon does not differ from that of a canonical stop codon. Our in vitro biochemical results support this finding by yielding nearly identical rates for peptide release from E. coli ribosomes programmed with pseudouridylated and canonical stop codons. The crystal structure also brings insight into E. coli RF1-specific interactions and suggests involvement of L27 in bacterial translation termination. Our results are consistent with a mechanism in which read through of a pseudouridylated stop codon in bacteria results from increased decoding by near-cognate tRNAs (miscoding) rather than from decreased efficiency of termination.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Rohini Madireddy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|