1
|
Dippe M, Davari MD, Weigel B, Heinke R, Vogt T, Wessjohann LA. Altering the Regiospecificity of a Catechol
O
‐methyltransferase through Rational Design: Vanilloid vs. Isovanilloid Motifs in the B‐ring of Flavonoids. ChemCatChem 2022. [DOI: 10.1002/cctc.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martin Dippe
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Benjamin Weigel
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Ramona Heinke
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Thomas Vogt
- Department of Cell and Metabolic Biology Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry Leibniz-Institute of Plant Biochemistry Weinberg 3 D-06120 Halle Germany
| |
Collapse
|
2
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
3
|
Urbonavičius J, Tauraitė D. Biochemical Pathways Leading to the Formation of Wyosine Derivatives in tRNA of Archaea. Biomolecules 2020; 10:E1627. [PMID: 33276555 PMCID: PMC7761594 DOI: 10.3390/biom10121627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023] Open
Abstract
Tricyclic wyosine derivatives are present at position 37 in tRNAPhe of both eukaryotes and archaea. In eukaryotes, five different enzymes are needed to form a final product, wybutosine (yW). In archaea, 4-demethylwyosine (imG-14) is an intermediate for the formation of three different wyosine derivatives, yW-72, imG, and mimG. In this review, current knowledge regarding the archaeal enzymes involved in this process and their reaction mechanisms are summarized. The experiments aimed to elucidate missing steps in biosynthesis pathways leading to the formation of wyosine derivatives are suggested. In addition, the chemical synthesis pathways of archaeal wyosine nucleosides are discussed, and the scheme for the formation of yW-86 and yW-72 is proposed. Recent data demonstrating that wyosine derivatives are present in the other tRNA species than those specific for phenylalanine are discussed.
Collapse
Affiliation(s)
- Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania;
| | | |
Collapse
|
4
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
5
|
Koh CS, Sarin LP. Transfer RNA modification and infection – Implications for pathogenicity and host responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:419-432. [DOI: 10.1016/j.bbagrm.2018.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/04/2018] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
|
6
|
Wu J, Jia Q, Wu S, Zeng H, Sun Y, Wang C, Ge R, Xie W. The crystal structure of the Pyrococcus abyssi mono-functional methyltransferase PaTrm5b. Biochem Biophys Res Commun 2017; 493:240-245. [PMID: 28911863 DOI: 10.1016/j.bbrc.2017.09.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 01/08/2023]
Abstract
The wyosine hypermodification found exclusively at G37 of tRNAPhe in eukaryotes and archaea is a very complicated process involving multiple steps and enzymes, and the derivatives are essential for the maintenance of the reading frame during translation. In the archaea Pyrococcus abyssi, two key enzymes from the Trm5 family, named PaTrm5a and PaTrm5b respectively, start the process by forming N1-methylated guanosine (m1G37). In addition, PaTrm5a catalyzes the further methylation of C7 on 4-demethylwyosine (imG-14) to produce isowyosine (imG2) at the same position. The structural basis of the distinct methylation capacities and possible conformational changes during catalysis displayed by the Trm5 enzymes are poorly studied. Here we report the 3.3 Å crystal structure of the mono-functional PaTrm5b, which shares 32% sequence identity with PaTrm5a. Interestingly, structural superposition reveals that the PaTrm5b protein exhibits an extended conformation similar to that of tRNA-bound Trm5b from Methanococcus jannaschii (MjTrm5b), but quite different from the open conformation of apo-PaTrm5a or well folded apo-MjTrm5b reported previously. Truncation of the N-terminal D1 domain leads to reduced tRNA binding as well as the methyltransfer activity of PaTrm5b. The differential positioning of the D1 domains from three reported Trm5 structures were rationalized, which could be attributable to the dissimilar inter-domain interactions and crystal packing patterns. This study expands our understanding on the methylation mechanism of the Trm5 enzymes and wyosine hypermodification.
Collapse
Affiliation(s)
- Jialiang Wu
- School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Qian Jia
- School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Saibin Wu
- School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Hui Zeng
- School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Yujie Sun
- School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Caiyan Wang
- School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China
| | - Ruiguang Ge
- School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China.
| | - Wei Xie
- School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong 510275, People's Republic of China.
| |
Collapse
|