1
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Semicoordinated allelic-bursting shape dynamic random monoallelic expression in pregastrulation embryos. iScience 2021; 24:102954. [PMID: 34458702 PMCID: PMC8379509 DOI: 10.1016/j.isci.2021.102954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
Recently, allele-specific single-cell RNA-seq analysis has demonstrated widespread dynamic random monoallelic expression of autosomal genes (aRME) in different cell types. However, the prevalence of dynamic aRME during pregastrulation remains unknown. Here, we show that dynamic aRME is widespread in different lineages of pregastrulation embryos. Additionally, the origin of dynamic aRME remains elusive. It is believed that independent transcriptional bursting from each allele leads to dynamic aRME. Here, we show that allelic burst is not perfectly independent; instead it happens in a semicoordinated fashion. Importantly, we show that semicoordinated allelic bursting of genes, particularly with low burst frequency, leads to frequent asynchronous allelic bursting, thereby contributing to dynamic aRME. Furthermore, we found that coordination of allelic bursting is lineage specific and genes regulating the development have a higher degree of coordination. Altogether, our study provides significant insights into the prevalence and origin of dynamic aRME and their developmental relevance during early development. Dynamic aRME is widespread in different lineages of pregastrulation embryos Semicoordinated bursting of genes with low burst frequency leads to dynamic aRME Degree of coordination of allelic bursting is lineage specific Developmental genes have higher degree of coordination of allelic bursting
Collapse
|
3
|
Gregg C. Starvation and Climate Change—How to Constrain Cancer Cell Epigenetic Diversity and Adaptability to Enhance Treatment Efficacy. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.693781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Advanced metastatic cancer is currently not curable and the major barrier to eliminating the disease in patients is the resistance of subpopulations of tumor cells to drug treatments. These resistant subpopulations can arise stochastically among the billions of tumor cells in a patient or emerge over time during therapy due to adaptive mechanisms and the selective pressures of drug therapies. Epigenetic mechanisms play important roles in tumor cell diversity and adaptability, and are regulated by metabolic pathways. Here, I discuss knowledge from ecology, evolution, infectious disease, species extinction, metabolism and epigenetics to synthesize a roadmap to a clinically feasible approach to help homogenize tumor cells and, in combination with drug treatments, drive their extinction. Specifically, cycles of starvation and hyperthermia could help synchronize tumor cells and constrain epigenetic diversity and adaptability by limiting substrates and impairing the activity of chromatin modifying enzymes. Hyperthermia could also help prevent cancer cells from entering dangerous hibernation-like states. I propose steps to a treatment paradigm to help drive cancer extinction that builds on the successes of fasting, hyperthermia and immunotherapy and is achievable in patients. Finally, I highlight the many unknowns, opportunities for discovery and that stochastic gene and allele level epigenetic mechanisms pose a major barrier to cancer extinction that warrants deeper investigation.
Collapse
|
4
|
Genome-wide analysis of allele-specific expression of genes in the model diatom Phaeodactylum tricornutum. Sci Rep 2021; 11:2954. [PMID: 33536552 PMCID: PMC7859220 DOI: 10.1038/s41598-021-82529-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/15/2021] [Indexed: 01/04/2023] Open
Abstract
Recent advances in next generation sequencing technologies have allowed the discovery of widespread autosomal allele-specific expression (aASE) in mammals and plants with potential phenotypic effects. Extensive numbers of genes with allele-specific expression have been described in the diatom Fragilariopsis cylindrus in association with adaptation to external cues, as well as in Fistulifera solaris in the context of natural hybridization. However, the role of aASE and its extent in diatoms remain elusive. In this study, we investigate allele-specific expression in the model diatom Phaeodactylum tricornutum by the re-analysis of previously published whole genome RNA sequencing data and polymorphism calling. We found that 22% of P. tricornutum genes show moderate bias in allelic expression while 1% show nearly complete monoallelic expression. Biallelic expression associates with genes encoding components of protein metabolism while moderately biased genes associate with functions in catabolism and protein transport. We validated candidate genes by pyrosequencing and found that moderate biases in allelic expression were less stable than monoallelically expressed genes that showed consistent bias upon experimental validations at the population level and in subcloning experiments. Our approach provides the basis for the analysis of aASE in P. tricornutum and could be routinely implemented to test for variations in allele expression under different environmental conditions.
Collapse
|
5
|
Preferential transcription of the mutated allele in NPM1 mutated acute myeloid leukaemia. Sci Rep 2020; 10:17695. [PMID: 33077765 PMCID: PMC7572395 DOI: 10.1038/s41598-020-73782-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/15/2020] [Indexed: 12/01/2022] Open
Abstract
Nucleophosmin is commonly both over-expressed and mutated in acute myeloid leukemia (AML). NPM1 mutations are always heterozygous. In addition, NPM1 has a number of different splice variants with the major variant encoded by exons 1–9 and 11–12 (NPM1.1). Further variants include NPM1.2 which lacks exons 8 and 10 and NPM1.3 which comprises exons 1–10 (and so lacks the region of sequence mutated in AML). In this study we quantified the expression of these three variants in 108 AML patient samples with and without NPM1 mutations and also assessed the level of expression from the wild-type and mutant alleles in variants NPM1.1 and NPM1.2. The results show that NPM1.1 is the most commonly expressed variant, however transcripts from wild-type and mutated alleles do not occur at equal levels, with a significant bias toward the mutated allele. Considering the involvement of mutant nucleophosmin in the progression and maintenance of AML, a bias towards mutated transcripts could have a significant impact on disease maintenance.
Collapse
|
6
|
Kravitz SN, Gregg C. New subtypes of allele-specific epigenetic effects: implications for brain development, function and disease. Curr Opin Neurobiol 2019; 59:69-78. [PMID: 31153086 PMCID: PMC7476552 DOI: 10.1016/j.conb.2019.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 01/15/2023]
Abstract
Typically, it is assumed that the maternal and paternal alleles for most genes are equally expressed. Known exceptions include canonical imprinted genes, random X-chromosome inactivation, olfactory receptors and clustered protocadherins. Here, we highlight recent studies showing that allele-specific expression is frequent in the genome and involves subtypes of epigenetic allelic effects that differ in terms of heritability, clonality and stability over time. Different forms of epigenetic allele regulation could have different roles in brain development, function, and disease. An emerging area involves understanding allelic effects in a cell-type and developmental stage-specific manner and determining how these effects influence the impact of genetic variants and mutations on the brain. A deeper understanding of epigenetics at the allele and cellular level in the brain could help clarify the mechanisms underlying phenotypic variance.
Collapse
Affiliation(s)
- Stephanie N Kravitz
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Christopher Gregg
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84132-3401, USA.
| |
Collapse
|
7
|
Reinius B, Sandberg R. Reply to 'High prevalence of clonal monoallelic expression'. Nat Genet 2019; 50:1199-1200. [PMID: 30082784 DOI: 10.1038/s41588-018-0189-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Björn Reinius
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
8
|
Jensen KP, Lieberman R, Kranzler HR, Gelernter J, Clinton K, Covault J. Alcohol-responsive genes identified in human iPSC-derived neural cultures. Transl Psychiatry 2019; 9:96. [PMID: 30862775 PMCID: PMC6414668 DOI: 10.1038/s41398-019-0426-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 01/04/2023] Open
Abstract
Alcohol use contributes to numerous diseases and injuries. The nervous system is affected by alcohol in diverse ways, though the molecular mechanisms of these effects are not clearly understood. Using human-induced pluripotent stem cells (iPSCs), we developed a neural cell culture model to identify the mechanisms of alcohol's effects. iPSCs were generated from fibroblasts and differentiated into forebrain neural cells cultures that were treated with 50 mM alcohol or sham conditions (same media lacking alcohol) for 7 days. We analyzed gene expression using total RNA sequencing (RNA-seq) for 34 samples derived from 10 subjects and for 10 samples from 5 subjects in an independent experiment that had intermittent exposure to the same dose of alcohol. We also analyzed genetic effects on gene expression and conducted a weighted correlation network analysis. We found that differentiated neural cell cultures have the capacity to recapitulate gene regulatory effects previously observed in specific primary neural tissues and identified 226 genes that were differentially expressed (FDR < 0.1) after alcohol treatment. The effects on expression included decreases in INSIG1 and LDLR, two genes involved in cholesterol homeostasis. We also identified a module of 58 co-expressed genes that were uniformly decreased following alcohol exposure. The majority of these effects were supported in independent alcohol exposure experiments. Enrichment analysis linked the alcohol responsive genes to cell cycle, notch signaling, and cholesterol biosynthesis pathways, which are disrupted in several neurological disorders. Our findings suggest that there is convergence between these disorders and the effects of alcohol exposure.
Collapse
Affiliation(s)
- Kevin P. Jensen
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511 USA ,0000 0004 0419 3073grid.281208.1VA Connecticut Healthcare System, West Haven, CT 06516 USA
| | - Richard Lieberman
- 0000000419370394grid.208078.5Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030–1410 USA
| | - Henry R. Kranzler
- 0000 0004 1936 8972grid.25879.31Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104 USA ,VISN4 MIRECC, Crescenz VAMC, Philadelphia, PA 19104 USA
| | - Joel Gelernter
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511 USA ,0000 0004 0419 3073grid.281208.1VA Connecticut Healthcare System, West Haven, CT 06516 USA
| | - Kaitlin Clinton
- 0000000419370394grid.208078.5Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030–1410 USA
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, 06030-1410, USA. .,Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
9
|
Montag J, Syring M, Rose J, Weber AL, Ernstberger P, Mayer AK, Becker E, Keyser B, Dos Remedios C, Perrot A, van der Velden J, Francino A, Navarro-Lopez F, Ho CY, Brenner B, Kraft T. Intrinsic MYH7 expression regulation contributes to tissue level allelic imbalance in hypertrophic cardiomyopathy. J Muscle Res Cell Motil 2017; 38:291-302. [PMID: 29101517 PMCID: PMC5742120 DOI: 10.1007/s10974-017-9486-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/28/2017] [Indexed: 11/29/2022]
Abstract
HCM, the most common inherited cardiac disease, is mainly caused by mutations in sarcomeric genes. More than a third of the patients are heterozygous for mutations in the MYH7 gene encoding for the β-myosin heavy chain. In HCM-patients, expression of the mutant and the wildtype allele can be unequal, thus leading to fractions of mutant and wildtype mRNA and protein which deviate from 1:1. This so-called allelic imbalance was detected in whole tissue samples but also in individual cells. There is evidence that the severity of HCM not only depends on the functional effect of the mutation itself, but also on the fraction of mutant protein in the myocardial tissue. Allelic imbalance has been shown to occur in a broad range of genes. Therefore, we aimed to examine whether the MYH7-alleles are intrinsically expressed imbalanced or whether the allelic imbalance is solely associated with the disease. We compared the expression of MYH7-alleles in non-HCM donors and in HCM-patients with different MYH7-missense mutations. In the HCM-patients, we identified imbalanced as well as equal expression of both alleles. Also at the protein level, allelic imbalance was determined. Most interestingly, we also discovered allelic imbalance and balance in non-HCM donors. Our findings therefore strongly indicate that apart from mutation-specific mechanisms, also non-HCM associated allelic-mRNA expression regulation may account for the allelic imbalance of the MYH7 gene in HCM-patients. Since the relative amount of mutant mRNA and protein or the extent of allelic imbalance has been associated with the severity of HCM, individual analysis of the MYH7-allelic expression may provide valuable information for the prognosis of each patient.
Collapse
Affiliation(s)
- Judith Montag
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany.
| | - Mandy Syring
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Julia Rose
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Anna-Lena Weber
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Pia Ernstberger
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Anne-Kathrin Mayer
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Edgar Becker
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Britta Keyser
- Institute of Human Genetics, Hannover Medical School, Hanover, Germany
| | | | - Andreas Perrot
- Experimental and Clinical Research Center, Charité-University Clinic Berlin, Berlin, Germany
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University, Amsterdam, The Netherlands
| | - Antonio Francino
- Hospital Clinic/IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | | | - Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|