1
|
Kaur M, Arya H, Sharma A, Singh G, Kumar GS, Barnwal RP. Computational insight into crucial interaction between Pcf11 and Ydh1 for pre-mRNA 3'-end processing. J Biomol Struct Dyn 2024:1-15. [PMID: 39660558 DOI: 10.1080/07391102.2024.2438355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/24/2024] [Indexed: 12/12/2024]
Abstract
Pre-mRNA processing in eukaryotes involves capping, splicing, cleavage, and polyadenylation. Various proteins regulating this key transcriptional event in humans share considerable homology with Saccharomyces cerevisiae proteins. Among these proteins, Pcf11 is a crucial component of the yeast CF IA sub-unit, and Ydh1 is part of the CPF sub-unit. Both these proteins have a significant role during the pre-mRNA processing of the nascent transcription. Our in silico analysis highlights probable interaction between residues of Pcf11-Ydh1 and their role in mRNA processing events. These outcomes provide evidence for direct interaction between the domain from residues 116 to 204 of Pcf11 (Pcf11116-204) with the N-terminal region of Ydh1 (residues 1-246; Ydh11-246). Molecular docking and MD simulations shed light on the structure and dynamics of the protein-protein complex that includes binding affinity and binding interface of Pcf11 and Ydh1 interaction. These outcomes would pave the way to further design in vitro and in vivo studies to determine the function of the Pcf11116-204 domain, which has not been previously analyzed; this would also facilitate deciphering the crucial role of Ydh1 and Pcf11 in assembling the cleavage and polyadenylation complex for executing co-transcriptional processing to generate mature mRNA.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Hemant Arya
- Integrative Structural Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ganesan Senthil Kumar
- Integrative Structural Biology Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
2
|
Kaur M, Agrawal P, Singh G, Kumar GS, Barnwal RP. Deciphering significant interaction between Clp1 (CF IA) and Ssu72 (CPF) in pre-mRNA processing via in silico approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 39522172 DOI: 10.1080/07391102.2024.2426757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/15/2024] [Indexed: 11/16/2024]
Abstract
The cleavage and polyadenylation step are indispensable for pre-mRNA processing in eukaryotes. Defective 3'- end maturation of precursor mRNA has catastrophic effects, leading to several diseases in humans. This processing is orchestrated by a complex machinery comprising more than 20 proteins in Saccharomyces cerevisiae. Endonucleolytic cleavage followed by the addition of poly(A) tail at the 3'-end of the precursor mRNA requires CPF, CF IA and CF IB proteins. Clp1, a protein factor of the CF IA sub-unit is indispensable for the functioning of this machinery. Based on in silico analysis including molecular docking via different docking servers and molecular dynamics (MD) simulations, the current study provides key evidence of the Clp1 N-terminal (1-100 amino acids) domain's interaction with Ssu72. MD simulations consolidate this binding between Clp1 and Ssu72. Our study presents strong evidence of a model where Clp1 (CF IA) associates with Ssu72 (CPF) and both the proteins are vital for tethering the complex for mediating cleavage and polyadenylation reaction during the key events of pre-mRNA 3'-end processing. These findings may pave the way to decipher the individual roles of Clp1 and Ssu72 during pre-mRNA maturation.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Prakhar Agrawal
- Integrative Structural Biology Laboratory, National Institute of Immunology, New Delhi, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ganesan Senthil Kumar
- Integrative Structural Biology Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
3
|
Yang Y, Zhang S, Xu L, Pan Y, Xuan Y, Kai Y, Chen X. Structural insights into the recognition of purine-pyrimidine dinucleotide repeats by zinc finger protein ZBTB43. FEBS J 2024; 291:5002-5014. [PMID: 39344089 DOI: 10.1111/febs.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Purine-pyrimidine repeats (PPRs) can form left-handed Z-form DNA and induce DNA double-strand breaks (DSBs), posing a risk for genomic rearrangements and cancer. The zinc finger (ZF) and BTB domain-containing protein 43 (ZBTB43) is a transcription factor containing two Cys2-His2 (C2H2) and one C3H1 zinc fingers and plays a crucial role in maintaining genomic and epigenomic integrity by converting mutagenic Z-form PPRs to the B-form in prospermatogonia. Despite its importance, the molecular mechanism underlying the recognition of PPRs by ZBTB43 remains elusive. In this study, we determined the X-ray crystal structure of the ZBTB43 ZF1-3 in complex with the B-form DNA containing the CA repeats sequence. The structure reveals that ZF1 and ZF2 primarily recognize the CACA sequence through specific hydrogen-bonding and van der Waals contacts via a quadruple center involving Arg389, Met411, His413, and His414. These interactions were further validated by fluorescence-based DNA-binding assays using mutated ZBTB43 variants. Our structural investigation provides valuable insights into the recognition mechanism of PPRs by ZBTB43 and suggests a potential role for ZBTB43 in the transformation of Z-DNA to B-DNA, contributing to the maintenance of genomic stability.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Anhui University, Hefei, China
| | - Shuting Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Li Xu
- Shenzhen Medical Academy of Research and Translation (SMART), Institute of Bio-Architecture and Bio-Interactions (IBABI), China
| | - Yan Pan
- School of Life Sciences, Anhui University, Hefei, China
| | - Yumi Xuan
- Faculty of Pharmaceutical Sciences, Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanzhong Kai
- School of Life Sciences, Anhui University, Hefei, China
| | - Xuemin Chen
- School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
4
|
Graber JH, Hoskinson D, Liu H, Kaczmarek Michaels K, Benson PS, Maki NJ, Wilson CL, McGrath C, Puleo F, Pearson E, Kuehner JN, Moore C. Mutations in yeast Pcf11, a conserved protein essential for mRNA 3' end processing and transcription termination, elicit the Environmental Stress Response. Genetics 2024; 226:iyad199. [PMID: 37967370 PMCID: PMC10847720 DOI: 10.1093/genetics/iyad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
The Pcf11 protein is an essential subunit of the large complex that cleaves and polyadenylates eukaryotic mRNA precursor. It has also been functionally linked to gene-looping, termination of RNA Polymerase II (Pol II) transcripts, and mRNA export. We have examined a poorly characterized but conserved domain (amino acids 142-225) of the Saccharomyces cerevisiae Pcf11 and found that while it is not needed for mRNA 3' end processing or termination downstream of the poly(A) sites of protein-coding genes, its presence improves the interaction with Pol II and the use of transcription terminators near gene promoters. Analysis of genome-wide Pol II occupancy in cells with Pcf11 missing this region, as well as Pcf11 mutated in the Pol II CTD Interacting Domain, indicates that systematic changes in mRNA expression are mediated primarily at the level of transcription. Global expression analysis also shows that a general stress response, involving both activation and suppression of specific gene sets known to be regulated in response to a wide variety of stresses, is induced in the two pcf11 mutants, even though cells are grown in optimal conditions. The mutants also cause an unbalanced expression of cell wall-related genes that does not activate the Cell Wall Integrity pathway but is associated with strong caffeine sensitivity. Based on these findings, we propose that Pcf11 can modulate the expression level of specific functional groups of genes in ways that do not involve its well-characterized role in mRNA 3' end processing.
Collapse
Affiliation(s)
- Joel H Graber
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Derick Hoskinson
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Huiyun Liu
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Katarzyna Kaczmarek Michaels
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Peter S Benson
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Nathaniel J Maki
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | | | - Caleb McGrath
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Franco Puleo
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Erika Pearson
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jason N Kuehner
- Department of Biology, Emmanuel College, Boston, MA 02115, USA
| | - Claire Moore
- Department of Development, Molecular, and Chemical Biology and School of Graduate Biomedical Science, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
5
|
Rodríguez‐Molina JB, Turtola M. Birth of a poly(A) tail: mechanisms and control of mRNA polyadenylation. FEBS Open Bio 2023; 13:1140-1153. [PMID: 36416579 PMCID: PMC10315857 DOI: 10.1002/2211-5463.13528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
During their synthesis in the cell nucleus, most eukaryotic mRNAs undergo a two-step 3'-end processing reaction in which the pre-mRNA is cleaved and released from the transcribing RNA polymerase II and a polyadenosine (poly(A)) tail is added to the newly formed 3'-end. These biochemical reactions might appear simple at first sight (endonucleolytic RNA cleavage and synthesis of a homopolymeric tail), but their catalysis requires a multi-faceted enzymatic machinery, the cleavage and polyadenylation complex (CPAC), which is composed of more than 20 individual protein subunits. The activity of CPAC is further orchestrated by Poly(A) Binding Proteins (PABPs), which decorate the poly(A) tail during its synthesis and guide the mRNA through subsequent gene expression steps. Here, we review the structure, molecular mechanism, and regulation of eukaryotic mRNA 3'-end processing machineries with a focus on the polyadenylation step. We concentrate on the CPAC and PABPs from mammals and the budding yeast, Saccharomyces cerevisiae, because these systems are the best-characterized at present. Comparison of their functions provides valuable insights into the principles of mRNA 3'-end processing.
Collapse
Affiliation(s)
| | - Matti Turtola
- Department of Life TechnologiesUniversity of TurkuFinland
| |
Collapse
|
6
|
A Comparison of Bonded and Nonbonded Zinc(II) Force Fields with NMR Data. Int J Mol Sci 2023; 24:ijms24065440. [PMID: 36982515 PMCID: PMC10055966 DOI: 10.3390/ijms24065440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Classical molecular dynamics (MD) simulations are widely used to inspect the behavior of zinc(II)-proteins at the atomic level, hence the need to properly model the zinc(II) ion and the interaction with its ligands. Different approaches have been developed to represent zinc(II) sites, with the bonded and nonbonded models being the most used. In the present work, we tested the well-known zinc AMBER force field (ZAFF) and a recently developed nonbonded force field (NBFF) to assess how accurately they reproduce the dynamic behavior of zinc(II)-proteins. For this, we selected as benchmark six zinc-fingers. This superfamily is extremely heterogenous in terms of architecture, binding mode, function, and reactivity. From repeated MD simulations, we computed the order parameter (S2) of all backbone N-H bond vectors in each system. These data were superimposed to heteronuclear Overhauser effect measurements taken by NMR spectroscopy. This provides a quantitative estimate of the accuracy of the FFs in reproducing protein dynamics, leveraging the information about the protein backbone mobility contained in the NMR data. The correlation between the MD-computed S2 and the experimental data indicated that both tested FFs reproduce well the dynamic behavior of zinc(II)-proteins, with comparable accuracy. Thus, along with ZAFF, NBFF represents a useful tool to simulate metalloproteins with the advantage of being extensible to diverse systems such as those bearing dinuclear metal sites.
Collapse
|
7
|
Al-Mansoob M, Ahmad SMS, Ouhtit A. PCF11, a Novel CD44-Downstream Transcriptional Target, Linking Its 3'-End Polyadenylation Function to Tumor Cell Metastasis. Front Oncol 2022; 12:878034. [PMID: 35756640 PMCID: PMC9214197 DOI: 10.3389/fonc.2022.878034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Breast Cancer (BC) is the most common and the major health issue in women worldwide. Metastasis, a multistep process, is the worst aspect of cancer and tumor cell invasion is the defining step. Tumor cell invasion requires cell adhesion molecules (CAMs), and alterations in CAMs is considered as an initiating event in metastasis. Among CAMs, CD44 is a large family of more than 100 isoform, and its precise function was initially controversial in BC. Therefore, we have previously established a (Tet)-off inducible expression system of CD44 in MCF-7 primary BC cell line, and showed that CD44 promoted BC invasion/metastasis both in vitro and in vivo. A microarray gene expression profiling revealed more than 200 CD44-downstream potential transcriptional target genes, mediating its role in BC cell invasion and metastasis. Among these CD44-target genes, the Pre-mRNA cleavage complex 2 protein (PCF11) was upregulated upon the activation of CD44 by its major ligand hyaluronan (HA); This prompted us to hypothesize PCF11 as a potential novel transcriptional target of CD44-promoted BC cell invasion and metastasis. A large body of evidence from the literature supports our hypothesis that CD44 might regulate PCF11 via MAPK/ERK pathway. This review aims to discuss these findings from the literature that support our hypothesis, and further provide possible mechanisms linking CD44-promoted cell invasion through regulation of its potential target PCF11.
Collapse
Affiliation(s)
| | | | - Allal Ouhtit
- Biological Sciences Program, Department of Biological & Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
8
|
Architectural and functional details of CF IA proteins involved in yeast 3'-end pre-mRNA processing and its significance for eukaryotes: A concise review. Int J Biol Macromol 2021; 193:387-400. [PMID: 34699898 DOI: 10.1016/j.ijbiomac.2021.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
In eukaryotes, maturation of pre-mRNA relies on its precise 3'-end processing. This processing involves co-transcriptional steps regulated by sequence elements and other proteins. Although, it holds tremendous importance, defect in the processing machinery will result in erroneous pre-mRNA maturation leading to defective translation. Remarkably, more than 20 proteins in humans and yeast share homology and execute this processing. The defects in this processing are associated with various diseases in humans. We shed light on the CF IA subunit of yeast Saccharomyces cerevisiae that contains four proteins (Pcf11, Clp1, Rna14 and Rna15) involved in this processing. Structural details of various domains of CF IA and their roles during 3'-end processing, like cleavage and polyadenylation at 3'-UTR of pre-mRNA and other cellular events are explained. Further, the chronological development and important discoveries associated with 3'-end processing are summarized. Moreover, the mammalian homologues of yeast CF IA proteins, along with their key roles are described. This knowledge would be helpful for better comprehension of the mechanism associated with this marvel; thus opening up vast avenues in this area.
Collapse
|
9
|
Rautela I, Uniyal P, Thapliyal P, Chauhan N, Bhushan Sinha V, Dev Sharma M. An extensive review to facilitate understanding of CRISPR technology as a gene editing possibility for enhanced therapeutic applications. Gene 2021; 785:145615. [PMID: 33775851 DOI: 10.1016/j.gene.2021.145615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
CRISPR are the sequences in bacterial and archaeal genome which provide resistance against viral infections. They might be the natural part of bacterial genomes for providing protection against viruses like bacteriophages but science has successfully achieved their use in the benefit of man-kind by using them for the treatment of deadly diseases like cancer, AIDS or genetic disorders like sickle cell disease and Leber congenital amaurosis. CRISPR system is majorly divided into two classes i.e class I and class II, of which the class II CRISPR/Cas9 system performs site specific cleavage of DNA with a guide RNA Cas12 (Cpf1). With the new emerging discoveries it is being found that CRISPR not only works on double stranded DNA but can also be useful to induce any sort of site specific cleavage in RNA too by Cas13 earlier known as C2c2, which is a protein found in CRISPR system and has ability to cure viral infections in plants. CRISPR is being used in the field of gene manipulation and various animals models are available to serve this purpose with short lifespan, rapid reproducibility and lower maintenance cost. Many successful studies and experiments performed using CRISPR, reveals their potency and utility to bring revolution in the areas which were previously believed to be out of scope of science and medicine.
Collapse
Affiliation(s)
- Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248001, Uttarakhand, India
| | - Pooja Uniyal
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun 248001, Uttarakhand, India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar 246174, Uttarakhand, India
| | - Neha Chauhan
- Department of Medical Microbiology, College of Paramedical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun 248001, Uttarakhand, India
| | | | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun 248001, Uttarakhand, India.
| |
Collapse
|
10
|
Processing of coding and non-coding RNAs in plant development and environmental responses. Essays Biochem 2020; 64:931-945. [DOI: 10.1042/ebc20200029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Abstract
Precursor RNAs undergo extensive processing to become mature RNAs. RNA transcripts are subjected to 5′ capping, 3′-end processing, splicing, and modification; they also form dynamic secondary structures during co-transcriptional and post-transcriptional processing. Like coding RNAs, non-coding RNAs (ncRNAs) undergo extensive processing. For example, secondary small interfering RNA (siRNA) transcripts undergo RNA processing, followed by further cleavage to become mature siRNAs. Transcriptome studies have revealed roles for co-transcriptional and post-transcriptional RNA processing in the regulation of gene expression and the coordination of plant development and plant–environment interactions. In this review, we present the latest progress on RNA processing in gene expression and discuss phased siRNAs (phasiRNAs), a kind of germ cell-specific secondary small RNA (sRNA), focusing on their functions in plant development and environmental responses.
Collapse
|
11
|
Butt BG, Scourfield EJ, Graham SC. Non-native fold of the putative VPS39 zinc finger domain. Wellcome Open Res 2020; 5:154. [PMID: 32724865 PMCID: PMC7384125 DOI: 10.12688/wellcomeopenres.16078.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 01/15/2023] Open
Abstract
Background: The multi-subunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is involved in regulating the fusion of late endosomes and autophagosomes with lysosomes in eukaryotes. The C-terminal regions of several HOPS components have been shown to be required for correct complex assembly, including the C-terminal really interesting new gene (RING) zinc finger domains of HOPS components VPS18 and VPS41. We sought to structurally characterise the putative C-terminal zinc finger domain of VPS39, which we hypothesised may be important for binding of VPS39 to cellular partners or to other HOPS components. Methods: We recombinantly expressed, purified and solved the crystal structure of the proposed zinc-binding region of VPS39. Results: In the structure, this region forms an anti-parallel β-hairpin that is incorporated into a homotetrameric eight-stranded β-barrel. However, the fold is stabilised by coordination of zinc ions by residues from the purification tag and an intramolecular disulphide bond between two predicted zinc ligands. Conclusions: We solved the structure of the VPS39 C-terminal domain adopting a non-native fold. Our work highlights the risk of non-native folds when purifying small zinc-containing domains with hexahistidine tags. However, the non-native structure we observe may have implications for rational protein design.
Collapse
Affiliation(s)
- Benjamin G Butt
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | | | - Stephen C Graham
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
12
|
Butt BG, Scourfield EJ, Graham SC. Non-native fold of the putative VPS39 zinc finger domain. Wellcome Open Res 2020; 5:154. [DOI: 10.12688/wellcomeopenres.16078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The multi-subunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is involved in regulating the fusion of late endosomes and autophagosomes with lysosomes in eukaryotes. The C-terminal regions of several HOPS components have been shown to be required for correct complex assembly, including the C-terminal really interesting new gene (RING) zinc finger domains of HOPS components VPS18 and VPS41. We sought to structurally characterise the putative C-terminal zinc finger domain of VPS39, which we hypothesised may be important for binding of VPS39 to cellular partners or to other HOPS components. Methods: We recombinantly expressed, purified and solved the crystal structure of the proposed zinc-binding region of VPS39. Results: In the structure, this region forms an anti-parallel β-hairpin that is incorporated into a homotetrameric eight-stranded β-barrel. However, the fold is stabilised by coordination of zinc ions by residues from the purification tag and an intramolecular disulphide bond between two predicted zinc ligands. Conclusions: We solved the structure of the VPS39 C-terminal domain adopting a non-native fold. Our work highlights the risk of non-native folds when purifying small zinc-containing domains with hexahistidine tags. However, the non-native structure we observe may have implications for rational protein design.
Collapse
|
13
|
Wang R, Zheng D, Wei L, Ding Q, Tian B. Regulation of Intronic Polyadenylation by PCF11 Impacts mRNA Expression of Long Genes. Cell Rep 2019; 26:2766-2778.e6. [PMID: 30840896 PMCID: PMC6428223 DOI: 10.1016/j.celrep.2019.02.049] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/16/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of cleavage and polyadenylation (CPA) affects gene expression and polyadenylation site (PAS) choice. Here, we report that the CPA and termination factor PCF11 modulates gene expression on the basis of gene size. Although downregulation of PCF11 leads to inhibition of short gene expression, long genes are upregulated because of suppressed intronic polyadenylation (IPA) enriched in large introns. We show that this regulatory scheme, named PCF11-mediated expression regulation through IPA (PEIPA), takes place in cell differentiation, during which downregulation of PCF11 is coupled with upregulation of long genes with functions in cell morphology, adhesion, and migration. PEIPA targets distinct gene sets in different cell contexts with similar rules. Furthermore, PCF11 is autoregulated through a conserved IPA site, the removal of which leads to global activation of PASs close to gene promotors. Therefore, PCF11 uses distinct mechanisms to regulate genes of different sizes, and its autoregulation maintains homeostasis of PAS usage in the cell.
Collapse
Affiliation(s)
- Ruijia Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Lu Wei
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Qingbao Ding
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
14
|
Hill CH, Boreikaitė V, Kumar A, Casañal A, Kubík P, Degliesposti G, Maslen S, Mariani A, von Loeffelholz O, Girbig M, Skehel M, Passmore LA. Activation of the Endonuclease that Defines mRNA 3' Ends Requires Incorporation into an 8-Subunit Core Cleavage and Polyadenylation Factor Complex. Mol Cell 2019; 73:1217-1231.e11. [PMID: 30737185 PMCID: PMC6436931 DOI: 10.1016/j.molcel.2018.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023]
Abstract
Cleavage and polyadenylation factor (CPF/CPSF) is a multi-protein complex essential for formation of eukaryotic mRNA 3' ends. CPF cleaves pre-mRNAs at a specific site and adds a poly(A) tail. The cleavage reaction defines the 3' end of the mature mRNA, and thus the activity of the endonuclease is highly regulated. Here, we show that reconstitution of specific pre-mRNA cleavage with recombinant yeast proteins requires incorporation of the Ysh1 endonuclease into an eight-subunit "CPFcore" complex. Cleavage also requires the accessory cleavage factors IA and IB, which bind substrate pre-mRNAs and CPF, likely facilitating assembly of an active complex. Using X-ray crystallography, electron microscopy, and mass spectrometry, we determine the structure of Ysh1 bound to Mpe1 and the arrangement of subunits within CPFcore. Together, our data suggest that the active mRNA 3' end processing machinery is a dynamic assembly that is licensed to cleave only when all protein factors come together at the polyadenylation site.
Collapse
Affiliation(s)
- Chris H Hill
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Ana Casañal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Peter Kubík
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Ottilie von Loeffelholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, Université de Strasbourg, Strasbourg, France; Centre National de la Recherche Scientifique UMR 7104, Illkirch, Université de Strasbourg, Strasbourg, France; INSERM U964, Illkirch, Université de Strasbourg, Strasbourg, France
| | - Mathias Girbig
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
15
|
Schäfer P, Tüting C, Schönemann L, Kühn U, Treiber T, Treiber N, Ihling C, Graber A, Keller W, Meister G, Sinz A, Wahle E. Reconstitution of mammalian cleavage factor II involved in 3' processing of mRNA precursors. RNA (NEW YORK, N.Y.) 2018; 24:1721-1737. [PMID: 30139799 PMCID: PMC6239180 DOI: 10.1261/rna.068056.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
Cleavage factor II (CF II) is a poorly characterized component of the multiprotein complex catalyzing 3' cleavage and polyadenylation of mammalian mRNA precursors. We have reconstituted CF II as a heterodimer of hPcf11 and hClp1. The heterodimer is active in partially reconstituted cleavage reactions, whereas hClp1 by itself is not. Pcf11 moderately stimulates the RNA 5' kinase activity of hClp1; the kinase activity is dispensable for RNA cleavage. CF II binds RNA with nanomolar affinity. Binding is mediated mostly by the two zinc fingers in the C-terminal region of hPcf11. RNA is bound without pronounced sequence-specificity, but extended G-rich sequences appear to be preferred. We discuss the possibility that CF II contributes to the recognition of cleavage/polyadenylation substrates through interaction with G-rich far-downstream sequence elements.
Collapse
Affiliation(s)
- Peter Schäfer
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christian Tüting
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Lars Schönemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Thomas Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Ihling
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Anne Graber
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Walter Keller
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Gunter Meister
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
16
|
Guiro J, Murphy S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes. Open Biol 2018; 7:rsob.170073. [PMID: 28615474 PMCID: PMC5493778 DOI: 10.1098/rsob.170073] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
In addition to protein-coding genes, RNA polymerase II (pol II) transcribes numerous genes for non-coding RNAs, including the small-nuclear (sn)RNA genes. snRNAs are an important class of non-coding RNAs, several of which are involved in pre-mRNA splicing. The molecular mechanisms underlying expression of human pol II-transcribed snRNA genes are less well characterized than for protein-coding genes and there are important differences in expression of these two gene types. Here, we review the DNA features and proteins required for efficient transcription of snRNA genes and co-transcriptional 3′ end formation of the transcripts.
Collapse
Affiliation(s)
- Joana Guiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Guéguéniat J, Dupin AF, Stojko J, Beaurepaire L, Cianférani S, Mackereth CD, Minvielle-Sébastia L, Fribourg S. Distinct roles of Pcf11 zinc-binding domains in pre-mRNA 3'-end processing. Nucleic Acids Res 2017; 45:10115-10131. [PMID: 28973460 PMCID: PMC5737669 DOI: 10.1093/nar/gkx674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/21/2017] [Indexed: 01/23/2023] Open
Abstract
New transcripts generated by RNA polymerase II (RNAPII) are generally processed in order to form mature mRNAs. Two key processing steps include a precise cleavage within the 3′ end of the pre-mRNA, and the subsequent polymerization of adenosines to produce the poly(A) tail. In yeast, these two functions are performed by a large multi-subunit complex that includes the Cleavage Factor IA (CF IA). The four proteins Pcf11, Clp1, Rna14 and Rna15 constitute the yeast CF IA, and of these, Pcf11 is structurally the least characterized. Here, we provide evidence for the binding of two Zn2+ atoms to Pcf11, bound to separate zinc-binding domains located on each side of the Clp1 recognition region. Additional structural characterization of the second zinc-binding domain shows that it forms an unusual zinc finger fold. We further demonstrate that the two domains are not mandatory for CF IA assembly nor RNA polymerase II transcription termination, but are rather involved to different extents in the pre-mRNA 3′-end processing mechanism. Our data thus contribute to a more complete understanding of the architecture and function of Pcf11 and its role within the yeast CF IA complex.
Collapse
Affiliation(s)
- Julia Guéguéniat
- Université de Bordeaux, INSERM U1212, CNRS UMR5320, Bordeaux, France
| | - Adrien F Dupin
- Université de Bordeaux, INSERM U1212, CNRS UMR5320, Bordeaux, France
| | - Johan Stojko
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | | | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
18
|
VPS18 recruits VPS41 to the human HOPS complex via a RING-RING interaction. Biochem J 2017; 474:3615-3626. [PMID: 28931724 PMCID: PMC5651818 DOI: 10.1042/bcj20170588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
Abstract
Eukaryotic cells use conserved multisubunit membrane tethering complexes, including CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting), to control the fusion of endomembranes. These complexes have been extensively studied in yeast, but to date there have been far fewer studies of metazoan CORVET and HOPS. Both of these complexes comprise six subunits: a common four-subunit core and two unique subunits. Once assembled, these complexes function to recognise specific endosomal membrane markers and facilitate SNARE-mediated membrane fusion. CORVET promotes the homotypic fusion of early endosomes, while HOPS promotes the fusion of lysosomes to late endosomes and autophagosomes. Many of the subunits of both CORVET and HOPS contain putative C-terminal zinc-finger domains. Here, the contribution of these domains to the assembly of the human CORVET and HOPS complexes has been examined. Using biochemical techniques, we demonstrate that the zinc-containing RING (really interesting new gene) domains of human VPS18 and VPS41 interact directly to form a stable heterodimer. In cells, these RING domains are able to integrate into endogenous HOPS, showing that the VPS18 RING domain is required to recruit VPS41 to the core complex subunits. Importantly, this mechanism is not conserved throughout eukaryotes, as yeast Vps41 does not contain a C-terminal zinc-finger motif. The subunit analogous to VPS41 in human CORVET is VPS8, in which the RING domain has an additional C-terminal segment that is predicted to be disordered. Both the RING and disordered C-terminal domains are required for integration of VPS8 into endogenous CORVET complexes, suggesting that HOPS and CORVET recruit VPS41 and VPS8 via distinct molecular interactions.
Collapse
|