1
|
Chen Q, Chen Y, Zheng Q. The RNA-binding protein LSM family regulating reproductive development via different RNA metabolism. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167808. [PMID: 40139411 DOI: 10.1016/j.bbadis.2025.167808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
The LSM (Like-Sm) protein family, characterized by highly conserved LSM domains, is integral to ribonucleic acid (RNA) metabolism. Ubiquitously present in both eukaryotes and select prokaryotes, these proteins bind to RNA molecules with high specificity through their LSM domains. They can also form ring-shaped complexes with other proteins, thereby facilitating various fundamental cellular processes such as mRNA degradation, splicing, and ribosome biogenesis. LSM proteins play crucial roles in gametogenesis, early embryonic development, sex determination, gonadal maturation, and reproductive system formation. In pathological conditions, the absence of LSM14B leads to arrest of oocytes at mid-meiosis, downregulation of LSM4 expression is associated with abnormal spermatogenesis, and aberrant expression of LSM1 protein is linked to the occurrence and progression of breast cancer. This review focuses on the recent advances in the functional research of LSM proteins in reproduction.
Collapse
Affiliation(s)
- Qin Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Ying Chen
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China
| | - Qingliang Zheng
- Prenatal Diagnosis Center, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen 518033, PR China.
| |
Collapse
|
2
|
Steensma AK, Kaste JAM, Heo J, Orr DJ, Sung CL, Shachar-Hill Y, Walker BJ. Modeling with uncertainty quantification reveals the essentials of a non-canonical algal carbon-concentrating mechanism. PLANT PHYSIOLOGY 2025; 197:kiae629. [PMID: 39656810 PMCID: PMC11836721 DOI: 10.1093/plphys/kiae629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
The thermoacidophilic red alga Cyanidioschyzon merolae survives its challenging environment likely in part by operating a carbon-concentrating mechanism (CCM). Here, we demonstrated that C. merolae's cellular affinity for CO2 is stronger than the affinity of its rubisco for CO2. This finding provided additional evidence that C. merolae operates a CCM while lacking the structures and functions characteristic of CCMs in other organisms. To test how such a CCM could function, we created a mathematical compartmental model of a simple CCM, distinct from those we have seen previously described in detail. The results of our modeling supported the feasibility of this proposed minimal and non-canonical CCM in C. merolae. To facilitate the robust modeling of this process, we measured and incorporated physiological and enzymatic parameters into the model. Additionally, we trained a surrogate machine-learning model to emulate the mechanistic model and characterized the effects of model parameters on key outputs. This parameter exploration enabled us to identify model features that influenced whether the model met the experimentally derived criteria for functional carbon concentration and efficient energy usage. Such parameters included cytosolic pH, bicarbonate pumping cost and kinetics, cell radius, carboxylation velocity, number of thylakoid membranes, and CO2 membrane permeability. Our exploration thus suggested that a non-canonical CCM could exist in C. merolae and illuminated the essential features generally necessary for CCMs to function.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University—Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Joshua A M Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Junoh Heo
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Douglas J Orr
- Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Chih-Li Sung
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University—Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA (NEW YORK, N.Y.) 2023; 29:531-550. [PMID: 36737103 PMCID: PMC10158995 DOI: 10.1261/rna.079273.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 05/06/2023]
Abstract
Premessenger RNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex that assembles in a highly regulated process on each intronic substrate. Most studies of splicing and spliceosomes have been carried out in human or S. cerevisiae model systems. There exists, however, a large diversity of spliceosomes, particularly in organisms with reduced genomes, that suggests a means of analyzing the essential elements of spliceosome assembly and regulation. In this review, we characterize changes in spliceosome composition across phyla, describing those that are most frequently observed and highlighting an analysis of the reduced spliceosome of the red alga Cyanidioschyzon merolae We used homology modeling to predict what effect splicing protein loss would have on the spliceosome, based on currently available cryo-EM structures. We observe strongly correlated loss of proteins that function in the same process, for example, in interacting with the U1 snRNP (which is absent in C. merolae), regulation of Brr2, or coupling transcription and splicing. Based on our observations, we predict splicing in C. merolae to be inefficient, inaccurate, and post-transcriptional, consistent with the apparent trend toward its elimination in this lineage. This work highlights the striking flexibility of the splicing pathway and the spliceosome when viewed in the context of eukaryotic diversity.
Collapse
Affiliation(s)
- Corbin S Black
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada H3A 0C7
| | - Thomas A Whelan
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Erin L Garside
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Naomi M Fast
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Stephen D Rader
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
4
|
Wong DK, Grisdale CJ, Slat VA, Rader SD, Fast NM. The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae. J Eukaryot Microbiol 2023; 70:e12927. [PMID: 35662328 DOI: 10.1111/jeu.12927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Cyanidiales are a group of mostly thermophilic and acidophilic red algae that thrive near volcanic vents. Despite their phylogenetic relationship, the reduced genomes of Cyanidioschyzon merolae and Galdieria sulphuraria are strikingly different with respect to pre-mRNA splicing, a ubiquitous eukaryotic feature. Introns are rare and spliceosomal machinery is extremely reduced in C. merolae, in contrast to G. sulphuraria. Previous studies also revealed divergent spliceosomes in the mesophilic red alga Porphyridium purpureum and the red algal derived plastid of Guillardia theta (Cryptophyta), along with unusually high levels of unspliced transcripts. To further examine the evolution of splicing in red algae, we compared C. merolae and G. sulphuraria, investigating splicing levels, intron position, intron sequence features, and the composition of the spliceosome. In addition to identifying 11 additional introns in C. merolae, our transcriptomic analysis also revealed typical eukaryotic splicing in G. sulphuraria, whereas most transcripts in C. merolae remain unspliced. The distribution of intron positions within their host genes was examined to provide insight into patterns of intron loss in red algae. We observed increasing variability of 5' splice sites and branch donor regions with increasing intron richness. We also found these relationships to be connected to reductions in and losses of corresponding parts of the spliceosome. Our findings highlight patterns of intron and spliceosome evolution in related red algae under the pressures of genome reduction.
Collapse
Affiliation(s)
- Donald K Wong
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Cameron J Grisdale
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Viktor A Slat
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Naomi M Fast
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Schärfen L, Zigackova D, Reimer KA, Stark MR, Slat VA, Francoeur NJ, Wells ML, Zhou L, Blackshear PJ, Neugebauer KM, Rader SD. Identification of Alternative Polyadenylation in Cyanidioschyzon merolae Through Long-Read Sequencing of mRNA. Front Genet 2022; 12:818697. [PMID: 35154260 PMCID: PMC8831791 DOI: 10.3389/fgene.2021.818697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
Alternative polyadenylation (APA) is widespread among metazoans and has been shown to have important impacts on mRNA stability and protein expression. Beyond a handful of well-studied organisms, however, its existence and consequences have not been well investigated. We therefore turned to the deep-branching red alga, Cyanidioschyzon merolae, to study the biology of polyadenylation in an organism highly diverged from humans and yeast. C. merolae is an acidothermophilic alga that lives in volcanic hot springs. It has a highly reduced genome (16.5 Mbp) and has lost all but 27 of its introns and much of its splicing machinery, suggesting that it has been under substantial pressure to simplify its RNA processing pathways. We used long-read sequencing to assess the key features of C. merolae mRNAs, including splicing status and polyadenylation cleavage site (PAS) usage. Splicing appears to be less efficient in C. merolae compared with yeast, flies, and mammalian cells. A high proportion of transcripts (63%) have at least two distinct PAS's, and 34% appear to utilize three or more sites. The apparent polyadenylation signal UAAA is used in more than 90% of cases, in cells grown in both rich media or limiting nitrogen. Our documentation of APA for the first time in this non-model organism highlights its conservation and likely biological importance of this regulatory step in gene expression.
Collapse
Affiliation(s)
- Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Kirsten A. Reimer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Martha R. Stark
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Viktor A. Slat
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Nancy J. Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Melissa L. Wells
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Perry J. Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, United States
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Stephen D. Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
6
|
Miyagishima SY, Tanaka K. The Unicellular Red Alga Cyanidioschyzon merolae-The Simplest Model of a Photosynthetic Eukaryote. PLANT & CELL PHYSIOLOGY 2021; 62:926-941. [PMID: 33836072 PMCID: PMC8504449 DOI: 10.1093/pcp/pcab052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 05/13/2023]
Abstract
Several species of unicellular eukaryotic algae exhibit relatively simple genomic and cellular architecture. Laboratory cultures of these algae grow faster than plants and often provide homogeneous cellular populations exposed to an almost equal environment. These characteristics are ideal for conducting experiments at the cellular and subcellular levels. Many microalgal lineages have recently become genetically tractable, which have started to evoke new streams of studies. Among such algae, the unicellular red alga Cyanidioschyzon merolae is the simplest organism; it possesses the minimum number of membranous organelles, only 4,775 protein-coding genes in the nucleus, and its cell cycle progression can be highly synchronized with the diel cycle. These properties facilitate diverse omics analyses of cellular proliferation and structural analyses of the intracellular relationship among organelles. C. merolae cells lack a rigid cell wall and are thus relatively easily disrupted, facilitating biochemical analyses. Multiple chromosomal loci can be edited by highly efficient homologous recombination. The procedures for the inducible/repressive expression of a transgene or an endogenous gene in the nucleus and for chloroplast genome modification have also been developed. Here, we summarize the features and experimental techniques of C. merolae and provide examples of studies using this alga. From these studies, it is clear that C. merolae-either alone or in comparative and combinatory studies with other photosynthetic organisms-can provide significant insights into the biology of photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| | - Kan Tanaka
- * Corresponding authors: Shin-Ya Miyagishima, E-mail: ; Fax, +81-55-981-9412; Kan Tanaka, E-mail:
| |
Collapse
|
7
|
Wong DK, Stark MS, Rader SD, Fast NM. Characterization of Pre-mRNA Splicing and Spliceosomal Machinery in Porphyridium purpureum and Evolutionary Implications for Red Algae. J Eukaryot Microbiol 2021; 68:e12844. [PMID: 33569840 DOI: 10.1111/jeu.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Pre-mRNA splicing is a highly conserved eukaryotic process, but our understanding of it is limited by a historical focus on well-studied organisms such as humans and yeast. There is considerable diversity in mechanisms and components of pre-mRNA splicing, especially in lineages that have evolved under the pressures of genome reduction. The ancestor of red algae is thought to have undergone genome reduction prior to the lineage's radiation, resulting in overall gene and intron loss in extant groups. Previous studies on the extremophilic red alga Cyanidioschyzon merolae revealed an intron-sparse genome with a highly reduced spliceosome. To determine whether these features applied to other red algae, we investigated multiple aspects of pre-mRNA splicing in the mesophilic red alga Porphyridium purpureum. Through strand-specific RNA-Seq, we observed high levels of intron retention across a large number of its introns, and nearly half of the transcripts for these genes are not spliced at all. We also discovered a relationship between variability of 5' splice site sequences and levels of splicing. To further investigate the connections between intron retention and splicing machinery, we bioinformatically assembled the P. purpureum spliceosome, and biochemically verified the presence of snRNAs. While most other core spliceosomal components are present, our results suggest highly divergent or missing U1 snRNP proteins, despite the presence of an uncharacteristically long U1 snRNA. These unusual aspects highlight the diverse nature of pre-mRNA splicing that can be seen in lesser-studied eukaryotes, raising the importance of investigating fundamental eukaryotic processes outside of model organisms.
Collapse
Affiliation(s)
- Donald K Wong
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, BC, Canada
| | - Martha S Stark
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada
| | - Naomi M Fast
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, BC, Canada
| |
Collapse
|
8
|
Esteve-Bruna D, Carrasco-López C, Blanco-Touriñán N, Iserte J, Calleja-Cabrera J, Perea-Resa C, Úrbez C, Carrasco P, Yanovsky MJ, Blázquez MA, Salinas J, Alabadí D. Prefoldins contribute to maintaining the levels of the spliceosome LSM2-8 complex through Hsp90 in Arabidopsis. Nucleic Acids Res 2020; 48:6280-6293. [PMID: 32396196 PMCID: PMC7293050 DOI: 10.1093/nar/gkaa354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Although originally identified as the components of the complex aiding the cytosolic chaperonin CCT in the folding of actins and tubulins in the cytosol, prefoldins (PFDs) are emerging as novel regulators influencing gene expression in the nucleus. Work conducted mainly in yeast and animals showed that PFDs act as transcriptional regulators and participate in the nuclear proteostasis. To investigate new functions of PFDs, we performed a co-expression analysis in Arabidopsis thaliana. Results revealed co-expression between PFD and the Sm-like (LSM) genes, which encode the LSM2–8 spliceosome core complex, in this model organism. Here, we show that PFDs interact with and are required to maintain adequate levels of the LSM2–8 complex. Our data indicate that levels of the LSM8 protein, which defines and confers the functional specificity of the complex, are reduced in pfd mutants and in response to the Hsp90 inhibitor geldanamycin. We provide biochemical evidence showing that LSM8 is a client of Hsp90 and that PFD4 mediates the interaction between both proteins. Consistent with our results and with the role of the LSM2–8 complex in splicing through the stabilization of the U6 snRNA, pfd mutants showed reduced levels of this snRNA and altered pre-mRNA splicing patterns.
Collapse
Affiliation(s)
- David Esteve-Bruna
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Cristian Carrasco-López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Javier Iserte
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWAE Buenos Aires, Argentina
| | - Julián Calleja-Cabrera
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Carlos Perea-Resa
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - Cristina Úrbez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Pedro Carrasco
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Spain
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, C1405BWAE Buenos Aires, Argentina
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas "Margarita Salas" (CSIC), 28040 Madrid, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), 46022 Valencia, Spain
| |
Collapse
|
9
|
Li X, Chen Y, Zhang S, Su L, Xu X, Chen X, Lai Z, Lin Y. Genome-wide identification and expression analyses of Sm genes reveal their involvement in early somatic embryogenesis in Dimocarpus longan Lour. PLoS One 2020; 15:e0230795. [PMID: 32243451 PMCID: PMC7122786 DOI: 10.1371/journal.pone.0230795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/08/2020] [Indexed: 01/25/2023] Open
Abstract
The Sm proteins are a conserved protein family with Sm motifs. The family includes Sm and Sm-like proteins, which play important roles in pre-mRNA splicing. Most research on the Sm proteins have been conducted in herbaceous plants, and less in woody plants such as Dimocarpus longan (longan). And the embryo development status significantly affects the quality and yield of longan. In this study, we conducted a genome-wide analysis of longan Sm genes (DlSm) to clarify their roles during somatic embryogenesis (SE) and identified 29 Sm genes. Phylogenetic analysis deduced longan Sm proteins clustered into 17 phylogenetic groups with the homologous Sm proteins of Arabidopsis thaliana. We also analyzed the gene structures, motif compositions, and conserved domains of the longan Sm proteins. The promoter sequences of the DlSm genes contained many light, endosperm development, hormone, and temperature response elements, which suggested their possible functions. In the non-embryogenic callus(NEC) and during early SE in longan, the alternative splicing(AS) events of DlSm genes indicated that these genes may influence SE development by changing gene structures and sequences. The kinetin(KT) hormone, and blue and white light treatments affected the differentiation and growth of longan embryonic callus(EC) probably by affecting the AS events of DlSm genes. Expression profiles showed the possible functional divergence among Sm genes, and different hormones and light qualities affected their expression levels. The expression trends of the DlSm genes determined by RNA sequencing as fragments per kilobase of exon model per million mapped reads (FPKM) and by real-time quantitative PCR(qRT-PCR) during early SE in longan showed that the expression of the DlSm genes was affected by the growth and differentiation of longan SE, and decreased as the somatic embryo differentiation progressed. The results will contributed to understanding the longan Sm gene family and provide a basis for future functional validation studies.
Collapse
Affiliation(s)
- Xue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuting Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liyao Su
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoping Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaohui Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
10
|
Hudson AJ, McWatters DC, Bowser BA, Moore AN, Larue GE, Roy SW, Russell AG. Patterns of conservation of spliceosomal intron structures and spliceosome divergence in representatives of the diplomonad and parabasalid lineages. BMC Evol Biol 2019; 19:162. [PMID: 31375061 PMCID: PMC6679479 DOI: 10.1186/s12862-019-1488-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
Background Two spliceosomal intron types co-exist in eukaryotic precursor mRNAs and are excised by distinct U2-dependent and U12-dependent spliceosomes. In the diplomonad Giardia lamblia, small nuclear (sn) RNAs show hybrid characteristics of U2- and U12-dependent spliceosomal snRNAs and 5 of 11 identified remaining spliceosomal introns are trans-spliced. It is unknown whether unusual intron and spliceosome features are conserved in other diplomonads. Results We have identified spliceosomal introns, snRNAs and proteins from two additional diplomonads for which genome information is currently available, Spironucleus vortens and Spironucleus salmonicida, as well as relatives, including 6 verified cis-spliceosomal introns in S. vortens. Intron splicing signals are mostly conserved between the Spironucleus species and G. lamblia. Similar to ‘long’ G. lamblia introns, RNA secondary structural potential is evident for ‘long’ (> 50 nt) Spironucleus introns as well as introns identified in the parabasalid Trichomonas vaginalis. Base pairing within these introns is predicted to constrain spatial distances between splice junctions to similar distances seen in the shorter and uniformly-sized introns in these organisms. We find that several remaining Spironucleus spliceosomal introns are ancient. We identified a candidate U2 snRNA from S. vortens, and U2 and U5 snRNAs in S. salmonicida; cumulatively, illustrating significant snRNA differences within some diplomonads. Finally, we studied spliceosomal protein complements and find protein sets in Giardia, Spironucleus and Trepomonas sp. PC1 highly- reduced but well conserved across the clade, with between 44 and 62 out of 174 studied spliceosomal proteins detectable. Comparison with more distant relatives revealed a highly nested pattern, with the more intron-rich fornicate Kipferlia bialata retaining 87 total proteins including nearly all those observed in the diplomonad representatives, and the oxymonad Monocercomonoides retaining 115 total proteins including nearly all those observed in K. bialata. Conclusions Comparisons in diplomonad representatives and species of other closely-related metamonad groups indicates similar patterns of intron structural conservation and spliceosomal protein composition but significant divergence of snRNA structure in genomically-reduced species. Relative to other eukaryotes, loss of evolutionarily-conserved snRNA domains and common sets of spliceosomal proteins point to a more streamlined splicing mechanism, where intron sequences and structures may be functionally compensating for the minimalization of spliceosome components. Electronic supplementary material The online version of this article (10.1186/s12862-019-1488-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew J Hudson
- Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada.,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - David C McWatters
- Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada.,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Bradley A Bowser
- Molecular Cell Biology, University of California-Merced, Merced, CA, USA
| | - Ashley N Moore
- Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada.,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Graham E Larue
- Molecular Cell Biology, University of California-Merced, Merced, CA, USA
| | - Scott W Roy
- Molecular Cell Biology, University of California-Merced, Merced, CA, USA.,Department of Biology, San Francisco State University, San Francisco, California, USA
| | - Anthony G Russell
- Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada. .,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
11
|
Vindry C, Weil D, Standart N. Pat1 RNA-binding proteins: Multitasking shuttling proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1557. [PMID: 31231973 DOI: 10.1002/wrna.1557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Post-transcriptional regulation of gene expression is largely achieved at the level of splicing in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be global, through the direct inhibition of central factors, such as the spliceosome, translation initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific sequences or particular features are regulated by RNA-binding factors which mobilize or impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-binding proteins, conserved from yeast to man, that enhance the removal of the 5' cap by the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational repression. Like Dcp1/2, other decapping coactivators, including DDX6 and Edc3, and translational repressor proteins, Pat1 proteins are enriched in cytoplasmic P-bodies, which have a principal role in mRNA storage. They also concentrate in nuclear Cajal-bodies and splicing speckles and in man, impact splice site choice in some pre-mRNAs. Pivotal to these functions is the association of Pat1 proteins with distinct heptameric Lsm complexes: the cytosolic Pat1/Lsm1-7 complex mediates mRNA decay and the nuclear Pat1/Lsm2-8 complex alternative splicing. This dual role of human Pat1b illustrates the power of paralogous complexes to impact distinct processes in separate compartments. The review highlights our recent findings that Pat1b mediates the decay of AU-rich mRNAs, which are particularly enriched in P-bodies, unlike the decapping activator DDX6, which acts on GC-rich mRNAs, that tend to be excluded from P-bodies, and discuss the implications for mRNA decay pathways. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNRNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Caroline Vindry
- Centre International de Recherche en Infectiologie, CIRI, Lyon, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie du Développement, Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|