1
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
2
|
Downie Ruiz Velasco A, Parsons A, Heatley M, Martin AG, Smart A, Shah N, Jopling C. MicroRNA biogenesis is broadly disrupted by inhibition of the splicing factor SF3B1. Nucleic Acids Res 2024; 52:9210-9229. [PMID: 38884273 PMCID: PMC11347158 DOI: 10.1093/nar/gkae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
In animals, microRNA (miRNA) biogenesis begins with cotranscriptional cleavage of the primary (pri-)miRNA by the Microprocessor complex. Cotranscriptional splicing has been shown to influence Microprocessor cleavage when miRNAs are hosted in introns of protein-coding pri-miRNAs, but the impact of splicing on production of miRNAs hosted in long non-coding (lnc)RNAs is largely unknown. Here, we investigated the role of splicing in the biogenesis of miR-122, an lncRNA-hosted, highly expressed, medically important, liver-specific miRNA. We found that splicing inhibition by the SF3B1 inhibitor pladienolide B (PlaB) led to strong and rapid reduction in transcription of endogenous, but not plasmid-encoded, pri-miR-122, resulting in reduced production of mature miR-122. To allow detection of rapid changes in miRNA biogenesis despite the high stability of mature miRNAs, we used SLAMseq to globally quantify the effects of short-term splicing inhibition on miRNA synthesis. We observed an overall decrease in biogenesis of mature miRNAs following PlaB treatment. Surprisingly, miRNAs hosted in exons and introns were similarly affected. Together, this study provides new insights into the emerging role of splicing in transcription, demonstrating novel biological importance in promotion of miR-122 biogenesis from an lncRNA, and shows that SF3B1 is important for global miRNA biogenesis.
Collapse
Affiliation(s)
| | - Aimee L Parsons
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Matthew C Heatley
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Athena R G Martin
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alfredo D Smart
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Niraj Shah
- The Digital Research Service, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
3
|
Farberov L, Weissglas-Volkov D, Shapira G, Zoabi Y, Schiff C, Kloeckener-Gruissem B, Neidhardt J, Shomron N. mRNA splicing is modulated by intronic microRNAs. iScience 2023; 26:107723. [PMID: 37692287 PMCID: PMC10492213 DOI: 10.1016/j.isci.2023.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/06/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Splicing of transcripts is catalyzed by the spliceosome, a mega-complex consisting of hundreds of proteins and five snRNAs, which employs direct interactions. When U1 snRNA forms high-affinity binding, namely more than eight base pairs, with the 5'SS, the result is usually a suppressing effect on the splicing activity. This likely occurs due to the inefficient unwinding of U1/5'SS base-pairing or other regulatory obstructions. Here, we show in vitro and in patient-derived cell lines that pre-microRNAs can modulate the splicing reaction by interacting with U1 snRNA. This leads to reduced binding affinity to the 5'SS, and hence promotes the inclusion of exons containing 5'SS, despite sequence-based high affinity to U1. Application of the mechanism resulted in correction of the splicing defect in the disease-causing VCAN gene from an individual with Wagner syndrome. This pre-miRNA/U1 interaction can regulate the expression of alternatively spliced exons, thus extending the scope of mechanisms regulating splicing.
Collapse
Affiliation(s)
- Luba Farberov
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Weissglas-Volkov
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Guy Shapira
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Yazeed Zoabi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Chen Schiff
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
- Department of Biology, ETHZ, Zurich, Switzerland
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Germany
- Research Center Neurosensory Science, University Oldenburg, Germany
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Vuillier F, Li Z, Black I, Cruciani M, Rubino E, Michel F, Pellegrini S. IFN-I inducible miR-3614-5p targets ADAR1 isoforms and fine tunes innate immune activation. Front Immunol 2022; 13:939907. [PMID: 35935998 PMCID: PMC9354889 DOI: 10.3389/fimmu.2022.939907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of innate immune responses is essential for maintenance of immune homeostasis and development of an appropriate immunity against microbial infection. We show here that miR-3614-5p, product of the TRIM25 host gene, is induced by type I interferon (IFN-I) in several human non-immune and immune cell types, in particular in primary myeloid cells. Studies in HeLa cells showed that miR-3614-5p represses both p110 and p150 ADAR1 and reduces constitutive and IFN-induced A-to-I RNA editing. In line with this, activation of innate sensors and expression of IFN-β and the pro-inflammatory IL-6 are promoted. MiR-3614-5p directly targets ADAR1 transcripts by binding to one specific site in the 3’UTR. Moreover, we could show that endogenous miR-3614-5p is associated with Ago2 and targets ADAR1 in IFN-stimulated cells. Overall, we propose that, by reducing ADAR1, IFN-I-induced miR-3614-5p contributes to lowering the activation threshold of innate sensors. Our findings provide new insights into the role of miR-3614-5p, placing it as a potential fine tuner of dsRNA metabolism, cell homeostasis and innate immunity.
Collapse
Affiliation(s)
- Françoise Vuillier
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Zhi Li
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Iain Black
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Melania Cruciani
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Erminia Rubino
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Frédérique Michel
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Sandra Pellegrini
- Cytokine Signaling Unit, Department of Immunology, Institut Pasteur, Paris, France
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
- *Correspondence: Sandra Pellegrini,
| |
Collapse
|
5
|
Supadmanaba IGP, Mantini G, Randazzo O, Capula M, Muller IB, Cascioferro S, Diana P, Peters GJ, Giovannetti E. Interrelationship between miRNA and splicing factors in pancreatic ductal adenocarcinoma. Epigenetics 2022; 17:381-404. [PMID: 34057028 PMCID: PMC8993068 DOI: 10.1080/15592294.2021.1916697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of diagnosis at late stage and inherent/acquired chemoresistance. Recent advances in genomic profiling and biology of this disease have not yet been translated to a relevant improvement in terms of disease management and patient's survival. However, new possibilities for treatment may emerge from studies on key epigenetic factors. Deregulation of microRNA (miRNA) dependent gene expression and mRNA splicing are epigenetic processes that modulate the protein repertoire at the transcriptional level. These processes affect all aspects of PDAC pathogenesis and have great potential to unravel new therapeutic targets and/or biomarkers. Remarkably, several studies showed that they actually interact with each other in influencing PDAC progression. Some splicing factors directly interact with specific miRNAs and either facilitate or inhibit their expression, such as Rbfox2, which cleaves the well-known oncogenic miRNA miR-21. Conversely, miR-15a-5p and miR-25-3p significantly downregulate the splicing factor hnRNPA1 which acts also as a tumour suppressor gene and is involved in processing of miR-18a, which in turn, is a negative regulator of KRAS expression. Therefore, this review describes the interaction between splicing and miRNA, as well as bioinformatic tools to explore the effect of splicing modulation towards miRNA profiles, in order to exploit this interplay for the development of innovative treatments. Targeting aberrant splicing and deregulated miRNA, alone or in combination, may hopefully provide novel therapeutic approaches to fight the complex biology and the common treatment recalcitrance of PDAC.
Collapse
Affiliation(s)
- I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Mjriam Capula
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Ittai B. Muller
- Department of Clinical Chemistry, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università Degli Studi Di Palermo, Palermo, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUMC), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| |
Collapse
|
6
|
Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines 2021; 9:biomedicines9091268. [PMID: 34572454 PMCID: PMC8465124 DOI: 10.3390/biomedicines9091268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Introns span only a quarter of the human genome, yet they host around 60% of all known microRNAs. Emerging evidence indicates the adaptive advantage of microRNAs residing within introns is attributed to their complex co-regulation with transcription and alternative splicing of their host genes. Intronic microRNAs are often co-expressed with their host genes, thereby providing functional synergism or antagonism that is exploited or decoupled in cancer. Additionally, intronic microRNA biogenesis and the alternative splicing of host transcript are co-regulated and intertwined. The importance of intronic microRNAs is under-recognized in relation to the pathogenesis of cancer.
Collapse
|
7
|
Sen R, Fallmann J, Walter MEMT, Stadler PF. Are spliced ncRNA host genes distinct classes of lncRNAs? Theory Biosci 2020; 139:349-359. [PMID: 33219910 PMCID: PMC7719101 DOI: 10.1007/s12064-020-00330-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022]
Abstract
Many small nucleolar RNAs and many of the hairpin precursors of miRNAs are processed from long non-protein-coding host genes. In contrast to their highly conserved and heavily structured payload, the host genes feature poorly conserved sequences. Nevertheless, there is mounting evidence that the host genes have biological functions beyond their primary task of carrying a ncRNA as payload. So far, no connections between the function of the host genes and the function of their payloads have been reported. Here we investigate whether there is evidence for an association of host gene function or mechanisms with the type of payload. To assess this hypothesis we test whether the miRNA host genes (MIRHGs), snoRNA host genes (SNHGs), and other lncRNA host genes can be distinguished based on sequence and/or structure features unrelated to their payload. A positive answer would imply a functional and mechanistic correlation between host genes and their payload, provided the classification does not depend on the presence and type of the payload. A negative answer would indicate that to the extent that secondary functions are acquired, they are not strongly constrained by the prior, primary function of the payload. We find that the three classes can be distinguished reliably when the classifier is allowed to extract features from the payloads. They become virtually indistinguishable, however, as soon as only sequence and structure of parts of the host gene distal from the snoRNAs or miRNA payload is used for classification. This indicates that the functions of MIRHGs and SNHGs are largely independent of the functions of their payloads. Furthermore, there is no evidence that the MIRHGs and SNHGs form coherent classes of long non-coding RNAs distinguished by features other than their payloads.
Collapse
Affiliation(s)
- Rituparno Sen
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Maria Emília M. T. Walter
- Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília, Brasília, Brazil
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Wien, Austria
- Facultad de Ciencias, Universidad National de Colombia, Sede Bogotá, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501 Mexico
| |
Collapse
|
8
|
Sun Q, Hao Q, Lin YC, Song YJ, Bangru S, Arif W, Tripathi V, Zhang Y, Cho JH, Freier SM, Jenkins LM, Ma J, Yoon JH, Kalsotra A, Lal A, Prasanth SG, Prasanth KV. Antagonism between splicing and microprocessor complex dictates the serum-induced processing of lnc- MIRHG for efficient cell cycle reentry. RNA (NEW YORK, N.Y.) 2020; 26:1603-1620. [PMID: 32675111 PMCID: PMC7566567 DOI: 10.1261/rna.075309.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Waqar Arif
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Vidisha Tripathi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yang Zhang
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Susan M Freier
- Ionis Pharmaceuticals Inc., Carlsbad, California 92008, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Jian Ma
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
9
|
Sun Q, Song YJ, Prasanth KV. One locus with two roles: microRNA-independent functions of microRNA-host-gene locus-encoded long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1625. [PMID: 32945142 PMCID: PMC7965793 DOI: 10.1002/wrna.1625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are RNA transcripts longer than 200 nucleotides that do not code for proteins. LncRNAs play crucial regulatory roles in several biological processes via diverse mechanisms and their aberrant expression is associated with various diseases. LncRNA genes are further subcategorized based on their relative organization in the genome. MicroRNA (miRNA)-host-gene-derived lncRNAs (lnc-MIRHGs) refer to lncRNAs whose genes also harbor miRNAs. There exists crosstalk between the processing of lnc-MIRHGs and the biogenesis of the encoded miRNAs. Although the functions of the encoded miRNAs are usually well understood, whether those lnc-MIRHGs play independent functions are not fully elucidated. Here, we review our current understanding of lnc-MIRHGs, including their biogenesis, function, and mechanism of action, with a focus on discussing the miRNA-independent functions of lnc-MIRHGs, including their involvement in cancer. Our current understanding of lnc-MIRHGs strongly indicates that this class of lncRNAs could play important roles in basic cellular events as well as in diseases. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Huang X, Li S, Liu X, Huang S, Li S, Zhuo M. Analysis of conserved miRNAs in cynomolgus macaque genome using small RNA sequencing and homology searching. PeerJ 2020; 8:e9347. [PMID: 32728489 PMCID: PMC7357559 DOI: 10.7717/peerj.9347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/21/2020] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators that fine-tune diverse cellular activities. Cynomolgus macaques (Macaca fascicularis) are used extensively in biomedical and pharmaceutical research; however, substantially fewer miRNAs have been identified in this species than in humans. Consequently, we investigated conserved miRNA profiles in cynomolgus macaques by homology searching and small RNA sequencing. In total, 1,455 high-confidence miRNA gene loci were identified, 408 of which were also confirmed by RNA sequencing, including 73 new miRNA loci reported in cynomolgus macaques for the first time. Comparing miRNA expression with age, we found a positive correlation between sequence conservation and expression levels during miRNA evolution. Additionally, we found that the miRNA gene locations in cynomolgus macaque genome were very flexible. Most were embedded in intergenic spaces or introns and clustered together. Several miRNAs were found in certain gene locations, including 64 exon-resident miRNAs, six splice-site-overlapping miRNAs (SO-miRNAs), and two pairs of distinct mirror miRNAs. We also identified 78 miRNA clusters, 68 of which were conserved in the human genome, including 10 large miRNA clusters predicted to regulate diverse developmental and cellular processes in cynomolgus macaque. Thus, this study not only expands the number of identified miRNAs in cynomolgus macaques but also provides clues for future research on the differences in miRNA repertoire between macaques and humans.
Collapse
Affiliation(s)
- Xia Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shijia Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoming Liu
- Guangzhou Tulip Information Technologies Ltd., Guangzhou, Guangdong, China
| | - Shuting Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Corona-Gomez JA, Garcia-Lopez IJ, Stadler PF, Fernandez-Valverde SL. Splicing conservation signals in plant long noncoding RNAs. RNA (NEW YORK, N.Y.) 2020; 26:784-793. [PMID: 32241834 PMCID: PMC7297117 DOI: 10.1261/rna.074393.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/28/2020] [Indexed: 05/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently emerged as prominent regulators of gene expression in eukaryotes. LncRNAs often drive the modification and maintenance of gene activation or gene silencing states via chromatin conformation rearrangements. In plants, lncRNAs have been shown to participate in gene regulation, and are essential to processes such as vernalization and photomorphogenesis. Despite their prominent functions, only over a dozen lncRNAs have been experimentally and functionally characterized. Similar to its animal counterparts, the rates of sequence divergence are much higher in plant lncRNAs than in protein coding mRNAs, making it difficult to identify lncRNA conservation using traditional sequence comparison methods. Beyond this, little is known about the evolutionary patterns of lncRNAs in plants. Here, we characterized the splicing conservation of lncRNAs in Brassicaceae. We generated a whole-genome alignment of 16 Brassica species and used it to identify synthenic lncRNA orthologs. Using a scoring system trained on transcriptomes from A. thaliana and B. oleracea, we identified splice sites across the whole alignment and measured their conservation. Our analysis revealed that 17.9% (112/627) of all intergenic lncRNAs display splicing conservation in at least one exon, an estimate that is substantially higher than previous estimates of lncRNA conservation in this group. Our findings agree with similar studies in vertebrates, demonstrating that splicing conservation can be evidence of stabilizing selection. We provide conclusive evidence for the existence of evolutionary deeply conserved lncRNAs in plants and describe a generally applicable computational workflow to identify functional lncRNAs in plants.
Collapse
Affiliation(s)
| | | | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University Leipzig, D-04107 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University Leipzig, D-04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, 11001 Sede Bogotá, Colombia
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | | |
Collapse
|
12
|
Human Cancer-Associated Mutations of SF3B1 Lead to a Splicing Modification of Its Own RNA. Cancers (Basel) 2020; 12:cancers12030652. [PMID: 32168916 PMCID: PMC7139785 DOI: 10.3390/cancers12030652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Deregulation of pre-mRNA splicing is observed in many cancers and hematological malignancies. Genes encoding splicing factors are frequently mutated in myelodysplastic syndromes, in which SF3B1 mutations are the most frequent. SF3B1 is an essential component of the U2 small nuclear ribonucleoprotein particle that interacts with branch point sequences close to the 3’ splice site during pre-mRNA splicing. SF3B1 mutations mostly lead to substitutions at restricted sites in the highly conserved HEAT domain, causing a modification of its function. We found that SF3B1 was aberrantly spliced in various neoplasms carrying an SF3B1 mutation, by exploring publicly available RNA sequencing raw data. We aimed to characterize this novel SF3B1 transcript, which is expected to encode a protein with an insertion of eight amino acids in the H3 repeat of the HEAT domain. We investigated the splicing proficiency of this SF3B1 protein isoform, in association with the most frequent mutation (K700E), through functional complementation assays in two myeloid cell lines stably expressing distinct SF3B1 variants. The yeast Schizosaccharomyces pombe was also used as an alternative model. Insertion of these eight amino acids in wild-type or mutant SF3B1 (K700E) abolished SF3B1 essential function, highlighting the crucial role of the H3 repeat in the splicing function of SF3B1.
Collapse
|