1
|
Saarikettu J, Lehmusvaara S, Pesu M, Junttila I, Partanen J, Sipilä P, Poutanen M, Yang J, Haikarainen T, Silvennoinen O. The RNA-binding protein Snd1/Tudor-SN regulates hypoxia-responsive gene expression. FASEB Bioadv 2023; 5:183-198. [PMID: 37151849 PMCID: PMC10158624 DOI: 10.1096/fba.2022-00115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Snd1 is an evolutionarily conserved RNA-binding protein implicated in several regulatory processes in gene expression including activation of transcription, mRNA splicing, and microRNA decay. Here, we have investigated the outcome of Snd1 gene deletion in the mouse. The knockout mice are viable showing no gross abnormalities apart from decreased fertility, organ and body size, and decreased number of myeloid cells concomitant with decreased expression of granule protein genes. Deletion of Snd1 affected the expression of relatively small number of genes in spleen and liver. However, mRNA expression changes in the knockout mouse liver showed high similarity to expression profile in adaptation to hypoxia. MicroRNA expression in liver showed upregulation of the hypoxia-induced microRNAs miR-96 and -182. Similar to Snd1 deletion, mimics of miR-96/182 enhanced hypoxia-responsive reporter activity. To further elucidate the function of SND1, BioID biotin proximity ligation assay was performed in HEK-293T cells to identify interacting proteins. Over 50% of the identified interactors were RNA-binding proteins, including stress granule proteins. Taken together, our results show that in normal growth conditions, Snd1 is not a critical factor for mRNA transcription in the mouse, and describe a function for Snd1 in hypoxia adaptation through negatively regulating hypoxia-related miRNAs and hypoxia-induced transcription consistent with a role as stress response regulator.
Collapse
Affiliation(s)
- Juha Saarikettu
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
| | - Saara Lehmusvaara
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Marko Pesu
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Fimlab LaboratoriesTampere University HospitalTampereFinland
| | - Ilkka Junttila
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Fimlab LaboratoriesTampere University HospitalTampereFinland
- Northern Finland Laboratory Centre (NordLab)OuluFinland
- Research Unit of BiomedicineUniversity of OuluOuluFinland
| | - Juha Partanen
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Jie Yang
- Department of ImmunologyTianjin Medical UniversityTianjinP.R. China
| | - Teemu Haikarainen
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Olli Silvennoinen
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life SciencesUniversity of HelsinkiHelsinkiFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Fimlab LaboratoriesTampere University HospitalTampereFinland
| |
Collapse
|
2
|
Huang C, Sun L, Xiao C, You W, Sun L, Wang S, Zhang Z, Liu S. Circular RNA METTL9 contributes to neuroinflammation following traumatic brain injury by complexing with astrocytic SND1. J Neuroinflammation 2023; 20:39. [PMID: 36803376 PMCID: PMC9936775 DOI: 10.1186/s12974-023-02716-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are highly enriched in the central nervous system and have been implicated in neurodegenerative diseases. However, whether and how circRNAs contribute to the pathological processes induced by traumatic brain injury (TBI) has not been fully elucidated. METHODS We conducted a high-throughput RNA sequencing screen for well-conserved, differentially expressed circRNAs in the cortex of rats subjected to experimental TBI. Circular RNA METTL9 (circMETTL9) was ultimately identified as upregulated post-TBI and further characterized by RT-PCR and agarose gel electrophoresis, Sanger sequencing, and RNase R treatment. To examine potential involvement of circMETTL9 in neurodegeneration and loss of function following TBI, circMETTL9 expression in cortex was knocked-down by microinjection of a shcircMETTL9 adeno-associated virus. Neurological functions were evaluated in control, TBI, and TBI-KD rats using a modified neurological severity score, cognitive function using the Morris water maze test, and nerve cell apoptosis rate by TUNEL staining. Pull-down assays and mass spectrometry were conducted to identify circMETTL9-binding proteins. Co-localization of circMETTL9 and SND1 in astrocytes was examined by fluorescence in situ hybridization and immunofluorescence double staining. Changes in the expression levels of chemokines and SND1 were estimated by quantitative PCR and western blotting. RESULTS CircMETTL9 was significantly upregulated and peaked at 7 d in the cerebral cortex of TBI model rats, and it was abundantly expressed in astrocytes. We found that circMETTL9 knockdown significantly attenuated neurological dysfunction, cognitive impairment, and nerve cell apoptosis induced by TBI. CircMETTL9 directly bound to and increased the expression of SND1 in astrocytes, leading to the upregulation of CCL2, CXCL1, CCL3, CXCL3, and CXCL10, and ultimately to enhanced neuroinflammation. CONCLUSION Altogether, we are the first to propose that circMETTL9 is a master regulator of neuroinflammation following TBI, and thus a major contributor to neurodegeneration and neurological dysfunction.
Collapse
Affiliation(s)
- Chunling Huang
- grid.440642.00000 0004 0644 5481Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Lulu Sun
- grid.440642.00000 0004 0644 5481Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Chenyang Xiao
- grid.440642.00000 0004 0644 5481Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Wenjun You
- grid.260483.b0000 0000 9530 8833Department of Geriatrics, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Li Sun
- grid.440642.00000 0004 0644 5481Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Siye Wang
- grid.440642.00000 0004 0644 5481Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Zhijun Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China. .,Department of Human Anatomy, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
3
|
Lukiw WJ. Fission Impossible: Stabilized miRNA-Based Analogs in Neurodegenerative Disease. Front Neurosci 2022; 16:875957. [PMID: 35592255 PMCID: PMC9111010 DOI: 10.3389/fnins.2022.875957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Science Center, New Orleans, LA, United States
- *Correspondence: Walter J. Lukiw
| |
Collapse
|
4
|
Bell RT, Wolf YI, Koonin EV. Modified base-binding EVE and DCD domains: striking diversity of genomic contexts in prokaryotes and predicted involvement in a variety of cellular processes. BMC Biol 2020; 18:159. [PMID: 33148243 PMCID: PMC7641849 DOI: 10.1186/s12915-020-00885-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND DNA and RNA of all cellular life forms and many viruses contain an expansive repertoire of modified bases. The modified bases play diverse biological roles that include both regulation of transcription and translation, and protection against restriction endonucleases and antibiotics. Modified bases are often recognized by dedicated protein domains. However, the elaborate networks of interactions and processes mediated by modified bases are far from being completely understood. RESULTS We present a comprehensive census and classification of EVE domains that belong to the PUA/ASCH domain superfamily and bind various modified bases in DNA and RNA. We employ the "guilt by association" approach to make functional inferences from comparative analysis of bacterial and archaeal genomes, based on the distribution and associations of EVE domains in (predicted) operons and functional networks of genes. Prokaryotes encode two classes of EVE domain proteins, slow-evolving and fast-evolving ones. Slow-evolving EVE domains in α-proteobacteria are embedded in conserved operons, potentially involved in coupling between translation and respiration, cytochrome c biogenesis in particular, via binding 5-methylcytosine in tRNAs. In β- and γ-proteobacteria, the conserved associations implicate the EVE domains in the coordination of cell division, biofilm formation, and global transcriptional regulation by non-coding 6S small RNAs, which are potentially modified and bound by the EVE domains. In eukaryotes, the EVE domain-containing THYN1-like proteins have been reported to inhibit PCD and regulate the cell cycle, potentially, via binding 5-methylcytosine and its derivatives in DNA and/or RNA. We hypothesize that the link between PCD and cytochrome c was inherited from the α-proteobacterial and proto-mitochondrial endosymbiont and, unexpectedly, could involve modified base recognition by EVE domains. Fast-evolving EVE domains are typically embedded in defense contexts, including toxin-antitoxin modules and type IV restriction systems, suggesting roles in the recognition of modified bases in invading DNA molecules and targeting them for restriction. We additionally identified EVE-like prokaryotic Development and Cell Death (DCD) domains that are also implicated in defense functions including PCD. This function was inherited by eukaryotes, but in animals, the DCD proteins apparently were displaced by the extended Tudor family proteins, whose partnership with Piwi-related Argonautes became the centerpiece of the Piwi-interacting RNA (piRNA) system. CONCLUSIONS Recognition of modified bases in DNA and RNA by EVE-like domains appears to be an important, but until now, under-appreciated, common denominator in a variety of processes including PCD, cell cycle control, antivirus immunity, stress response, and germline development in animals.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
5
|
Shamloo-Dashtpagerdi R, Lindlöf A, Aliakbari M, Pirasteh-Anosheh H. Plausible association between drought stress tolerance of barley (Hordeum vulgare L.) and programmed cell death via MC1 and TSN1 genes. PHYSIOLOGIA PLANTARUM 2020; 170:46-59. [PMID: 32246464 DOI: 10.1111/ppl.13102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Studying the drought-responsive transcriptome is of high interest as it can serve as a blueprint for stress adaptation strategies. Despite extensive studies in this area, there are still many details to be uncovered, such as the importance of each gene involved in the stress response as well as the relationship between these genes and the physiochemical processes governing stress tolerance. This study was designed to address such important details and to gain insights into molecular responses of barley (Hordeum vulgare L.) to drought stress. To that, we combined RNA-seq data analysis with field and greenhouse drought experiments in a systems biology approach. RNA-sequence analysis identified a total of 665 differentially expressed genes (DEGs) belonging to diverse functional categories. A gene network was derived from the DEGs, which comprised of a total of 131 nodes and 257 edges. Gene network topology analysis highlighted two programmed cell death (PCD) modulating genes, MC1 (metacaspase 1) and TSN1 (Tudor-SN 1), as important (hub) genes in the predicted network. Based on the field trial, a drought-tolerant and a drought-susceptible barley genotype was identified from eight tested cultivars. Identified genotypes exhibited different physiochemical characteristics, including proline content, chlorophyll concentration, percentage of electrolyte leakage and malondialdehyde content as well as expression profiles of MC1 and TSN1 genes. Machine learning and correspondence analysis revealed a significant relationship between drought tolerance and measured characteristics in the context of PCD. Our study provides new insights which bridge barley drought tolerance to PCD through MC1 and TSN1 pathway.
Collapse
Affiliation(s)
| | | | - Massume Aliakbari
- Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran
| | - Hadi Pirasteh-Anosheh
- National Salinity Research Center, Agricultural Research, Education and Extension Organization, Yazd, Iran
| |
Collapse
|
6
|
Navarro-Imaz H, Ochoa B, García-Arcos I, Martínez MJ, Chico Y, Fresnedo O, Rueda Y. Molecular and cellular insights into the role of SND1 in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158589. [DOI: 10.1016/j.bbalip.2019.158589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
|
7
|
Identification of hemicatenane-specific binding proteins by fractionation of HeLa nuclei extracts. Biochem J 2020; 477:509-524. [PMID: 31930351 DOI: 10.1042/bcj20190855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022]
Abstract
DNA hemicatenanes (HCs) are four-way junctions in which one strand of a double-stranded helix is catenated with one strand of another double-stranded DNA. Frequently mentioned as DNA replication, recombination and repair intermediates, they have been proposed to participate in the spatial organization of chromosomes and in the regulation of gene expression. To explore potential roles of HCs in genome metabolism, we sought to purify proteins capable of binding specifically HCs by fractionating nuclear extracts from HeLa cells. This approach identified three RNA-binding proteins: the Tudor-staphylococcal nuclease domain 1 (SND1) protein and two proteins from the Drosophila behavior human splicing family, the paraspeckle protein component 1 and the splicing factor proline- and glutamine-rich protein. Since these proteins were partially pure after fractionation, truncated forms of these proteins were expressed in Escherichia coli and purified to near homogeneity. The specificity of their interaction with HCs was re-examined in vitro. The two truncated purified SND1 proteins exhibited specificity for HCs, opening the interesting possibility of a link between the basic transcription machinery and HC structures via SND1.
Collapse
|
8
|
Ochoa B, Chico Y, Martínez MJ. Insights Into SND1 Oncogene Promoter Regulation. Front Oncol 2018; 8:606. [PMID: 30619748 PMCID: PMC6297716 DOI: 10.3389/fonc.2018.00606] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
The staphylococcal nuclease and Tudor domain containing 1 gene (SND1), also known as Tudor-SN, TSN or p100, encodes an evolutionarily conserved protein with invariant domain composition. SND1 contains four repeated staphylococcal nuclease domains and a single Tudor domain, which confer it endonuclease activity and extraordinary capacity for interacting with nucleic acids, individual proteins and protein complexes. Originally described as a transcriptional coactivator, SND1 plays fundamental roles in the regulation of gene expression, including RNA splicing, interference, stability, and editing, as well as in the regulation of protein and lipid homeostasis. Recently, SND1 has gained attention as a potential disease biomarker due to its positive correlation with cancer progression and metastatic spread. Such functional diversity of SND1 marks this gene as interesting for further analysis in relation with the multiple levels of regulation of SND1 protein production. In this review, we summarize the SND1 genomic region and promoter architecture, the set of transcription factors that can bind the proximal promoter, and the evidence supporting transactivation of SND1 promoter by a number of signal transduction pathways operating in different cell types and conditions. Unraveling the mechanisms responsible for SND1 promoter regulation is of utmost interest to decipher the SND1 contribution in the realm of both normal and abnormal physiology.
Collapse
Affiliation(s)
| | | | - María José Martínez
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|