1
|
Abdel-Fattah WR, Carlsson M, Hu GZ, Singh A, Vergara A, Aslam R, Ronne H, Björklund S. Growth-regulated co-occupancy of Mediator and Lsm3 at intronic ribosomal protein genes. Nucleic Acids Res 2024; 52:6220-6233. [PMID: 38613396 PMCID: PMC11194063 DOI: 10.1093/nar/gkae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Mediator is a well-known transcriptional co-regulator and serves as an adaptor between gene-specific regulatory proteins and RNA polymerase II. Studies on the chromatin-bound form of Mediator revealed interactions with additional protein complexes involved in various transcription-related processes, such as the Lsm2-8 complex that is part of the spliceosomal U6 small nuclear ribonucleoprotein complex. Here, we employ Chromatin Immunoprecipitation sequencing (ChIP-seq) of chromatin associated with the Lsm3 protein and the Med1 or Med15 Mediator subunits. We identify 86 genes co-occupied by both Lsm3 and Mediator, of which 73 were intron-containing ribosomal protein genes. In logarithmically growing cells, Mediator primarily binds to their promoter regions but also shows a second, less pronounced occupancy at their 3'-exons. During the late exponential phase, we observe a near-complete transition of Mediator from these promoters to a position in their 3'-ends, overlapping the Lsm3 binding sites ∼250 bp downstream of their last intron-exon boundaries. Using an unbiased RNA sequencing approach, we show that transition of Mediator from promoters to the last exon of these genes correlates to reduction of both their messenger RNA levels and splicing ratios, indicating that the Mediator and Lsm complexes cooperate to control growth-regulated expression of intron-containing ribosomal protein genes at the levels of transcription and splicing.
Collapse
Affiliation(s)
- Wael R Abdel-Fattah
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Mattias Carlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden
| | - Guo-Zhen Hu
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden
| | - Ajeet Singh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Alexander Vergara
- Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Rameen Aslam
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Hans Ronne
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, SE-750 07 Uppsala, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
2
|
Li H, Ju Y, Liu WW, Ma YY, Ye H, Li N. Phase Separation of Purified Human LSM4 Protein. Mol Biol 2023. [DOI: 10.1134/s0026893323010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Lipinski KA, Chi J, Chen X, Hoskins AA, Brow DA. Yeast U6 snRNA made by RNA polymerase II is less stable but functional. RNA (NEW YORK, N.Y.) 2022; 28:1606-1620. [PMID: 36195346 PMCID: PMC9670810 DOI: 10.1261/rna.079328.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
U6 small nuclear (sn)RNA is the shortest and most conserved snRNA in the spliceosome and forms a substantial portion of its active site. Unlike the other four spliceosomal snRNAs, which are synthesized by RNA polymerase (RNAP) II, U6 is made by RNAP III. To determine if some aspect of U6 function is incompatible with synthesis by RNAP II, we created a U6 snRNA gene with RNAP II promoter and terminator sequences. This "U6-II" gene is functional as the sole source of U6 snRNA in yeast, but its transcript is much less stable than U6 snRNA made by RNAP III. Addition of the U4 snRNA Sm protein binding site to U6-II increased its stability and led to formation of U6-II•Sm complexes. We conclude that synthesis of U6 snRNA by RNAP III is not required for its function and that U6 snRNPs containing the Sm complex can form in vivo. The ability to synthesize U6 snRNA with RNAP II relaxes sequence restraints imposed by intragenic RNAP III promoter and terminator elements and allows facile control of U6 levels via regulators of RNAP II transcription.
Collapse
Affiliation(s)
- Karli A Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jing Chi
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | - Xin Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aaron A Hoskins
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| |
Collapse
|
4
|
Sun X, Zhang J, Xiao C, Ge Z. Expression profile and prognostic values of LSM family in skin cutaneous melanoma. BMC Med Genomics 2022; 15:238. [DOI: 10.1186/s12920-022-01395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
The like-Smith (LSM) family is a group of RNA-binding proteins involved in RNA metabolism. However, their involvement in tumors, particularly skin cutaneous melanoma (SKCM), is not fully understood. In this study, we focused on the expression profiles and prognostic values of the LSM family in SKCM.
Methods
Raw data were downloaded from The Cancer Genome Atlas. The expression profile and prognostic value of LSM genes in SKCM were explored using the GEPIA, cBioPortal, and HPA databases. Protein–protein and gene–gene interaction analyses were performed using STRING and GeneMANIA. Enrichment and Cox regression analysis were conducted using R software. The TISIDB database was used to explore the relationship between LSMs and immunomodulators. Receiver operating characteristic curves and nomogram models were constructed to validate prognostic values.
Results
mRNA and protein expression levels of LSM2, LSM4, and LSM12 were significantly elevated in SKCM. The upregulated mRNA expression of LSM2 (p = 0.0013) and LSM4 (p = 0.0043) was significantly correlated with poor overall survival in patients with SKCM, whereas only LSM2 (p = 0.049) overexpression was markedly associated with worse disease-free survival. LSM2 overexpression was an independent risk factor (p = 0.013) and was confirmed to have a high prognostic value in SKCM using the receiver operating characteristic curve (AUC = 0.942) and nomogram models. All LSM genes were identified as genomic mutations, whereas alteration of LSM2 (p = 0.0153) significantly affected the overall survival in patients with SKCM. Significant correlations were observed between LSM family expression, immune cell infiltration, and immunomodulator. Furthermore, function and pathway enrichment analysis showed that the LSM family was mainly RNA binding proteins and involved in RNA splicing and degradation.
Conclusion
Expression profiles and prognostic values of LSM in SKCM were inconsistent. Among the LSM family, only LSM2 may serve as a potential poor prognosticator and immunotherapeutic target of SKCM.
Collapse
|
5
|
Xiao R, Yuan Y, Xia H, Ge Q, Chen L, Zhu F, Xu J, Wang X, Fan Y, Wang Q, Yang Y, Chen K. Comparative transcriptome and proteome reveal synergistic functions of differentially expressed genes and proteins implicated in an over-dominant silkworm heterosis of increased silk yield. INSECT MOLECULAR BIOLOGY 2022; 31:551-567. [PMID: 35445454 DOI: 10.1111/imb.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
We previously observed an over-dominant silkworm heterosis of increased yield in a cross of Bombyx mori nuclear polyhydrosis virus-resistant strain NB with a susceptible strain 306. In the present study, we found that heterosis also exists in crosses of NB with other susceptible strains, indicating it is a more general phenomenon. We performed comparative transcriptome and proteome and identified 1624 differentially expressed genes (DEGs) and 298 differentially expressed proteins (DEPs) in silk glands between parents and F1 hybrids, of which 24 DEGs/DEPs showed consistent expression at mRNA and protein levels revealed by Venn joint analysis. Their expressions are completely non-additive, mainly transgressive and under low-parent, suggesting recombination of parental genomes may be the major genetic mechanism for the heterosis. GO and KEGG analyses revealed that they may function in generally similar but distinctive aspects of metabolisms and processes with signal transduction and translation being most affected. Notably, they may not only up-regulate biosynthesis and transport of silk proteins but also down-regulate other unrelated processes, synergistically and globally remodelling the silk gland to increase yield and cause the heterosis. Our findings contribute insights into the understanding of silkworm heterosis and silk gland development and provide targets for transgenic manipulation to further increase the silk yield.
Collapse
Affiliation(s)
- Rui Xiao
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Yuan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qi Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xueqi Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yixuan Fan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
6
|
Liu J, Gu L, Zhang D, Li W. Determining the Prognostic Value of Spliceosome-Related Genes in Hepatocellular Carcinoma Patients. Front Mol Biosci 2022; 9:759792. [PMID: 35281269 PMCID: PMC8907852 DOI: 10.3389/fmolb.2022.759792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The spliceosome plays an important role in mRNA alternative splicing and is aberrantly expressed in several tumors. However, the potential roles of spliceosome-related genes in the progression of hepatocellular carcinoma (HCC) remain poorly understood. Materials and Methods: Patient data were acquired from public databases. Expression differences and survival analyses were used to assess the importance of spliceosome-related genes in HCC prognosis. To explore the potential regulatory mechanisms of these genes, a protein-protein interaction network was constructed and screened using univariate and multivariate Cox regression and random forest analyses. This was used to create a five-gene prognostic model. The prognostic value and predictive power of the five-gene signature were assessed using the Kaplan-Meier and time-dependent receiver operating characteristic analyses in the training set. These results were further validated in an independent external set. To facilitate clinical application, a nomogram was prepared to predict the overall survival of HCC patients. The relative expression of five genes was detected using real-time quantitative polymerase chain reaction. Results: The analysis revealed that LSM1-7, SNRPB, SNRPD1-3, SNRPE, SNRPF, SNRPG, and SNRPN could be used as prognostic biomarkers in HCC patients. Moreover, the five-gene risk model could clearly distinguish between the high-and low-risk groups. Furthermore, the risk model was associated with the tumor mutation burden, immune cell infiltration of CD8+ T cells, natural killer T cells, M2 macrophages, and immune checkpoint inhibitors, which also demonstrated the predictive efficacy of this risk model in HCC immunotherapy. Conclusion: Spliceosome-related genes and the five-gene signature could serve as novel prognostic biomarkers for HCC patients, aiding clinical patient monitoring and follow-up.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Medical Research Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Liming Gu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
- Department of Microbiology and Immunology, Center of Pathogen Biology and Immunology, Shantou University Medical College, Shantou, China
| | - Dangui Zhang
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenli Li
- Reproductive Medicine Center, Yue Bei People’s Hospital, Shantou University Medical College, Shaoguan, China
| |
Collapse
|
7
|
Fando MS, Mikhaylina AO, Lekontseva NV, Tishchenko SV, Nikulin AD. Structure and RNA-Binding Properties of Lsm Protein from Halobacterium salinarum. BIOCHEMISTRY (MOSCOW) 2021; 86:833-842. [PMID: 34284708 DOI: 10.1134/s000629792107004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure and the RNA-binding properties of the Lsm protein from Halobacterium salinarum have been determined. A distinctive feature of this protein is the presence of a short L4 loop connecting the β3 and β4 strands. Since bacterial Lsm proteins (also called Hfq proteins) have a short L4 loop and form hexamers, whereas archaeal Lsm proteins (SmAP) have a long L4 loop and form heptamers, it has been suggested that the length of the L4 loop may affect the quaternary structure of Lsm proteins. Moreover, the L4 loop covers the region of SmAP corresponding to one of the RNA-binding sites in Hfq, and thus can affect the RNA-binding properties of the protein. Our results show that the SmAP from H. salinarum forms heptamers and possesses the same RNA-binding properties as homologous proteins with the long L4 loop. Therefore, the length of the L4 does not govern the number of monomers in the protein particles and does not affect the RNA-binding properties of Lsm proteins.
Collapse
Affiliation(s)
- Maria S Fando
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alisa O Mikhaylina
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nataliya V Lekontseva
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Svetlana V Tishchenko
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey D Nikulin
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|