1
|
Nghe P. A stepwise emergence of evolution in the RNA world. FEBS Lett 2025. [PMID: 40353364 DOI: 10.1002/1873-3468.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 05/14/2025]
Abstract
Building on experimental evidence and replicator theories, I propose a 3-stage scenario for a transition from autocatalysis into template-based replication of RNA, providing a pathway for the origin of life. In stage 1, self-reproduction occurs via autocatalysis using oligomer substrates, replicator viability relies on substrate-specificity, and heritable variations are mediated by structural interactions. In stage 2, autocatalysis coexists with the templated ligation of external substrates. This dual mode of reproduction combined with limited diffusion avoids the error catastrophe. In stage 3, template-based replication takes over and uses substrates of decreasing size, made possible by enhanced catalytic properties and compartmentalization. Structural complexity, catalytic efficiency, metabolic efficiency, and cellularization all evolve gradually and interdependently, ultimately leading to evolutionary processes similar to extant biology. Impact statement This perspective proposes a testable stepwise scenario for the emergence of evolution in an RNA origin of life. It shows how evolution could appear in a gradual manner, thanks to catalytic feedback among random mixtures of molecules. It highlights possible couplings between the different facets of molecular self-organization, which could bootstrap life.
Collapse
Affiliation(s)
- Philippe Nghe
- Laboratoire Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, ESPCI - Paris Sciences Lettres University, France
| |
Collapse
|
2
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
3
|
Jia X, Zhang SJ, Zhou L, Szostak J. Constraints on the emergence of RNA through non-templated primer extension with mixtures of potentially prebiotic nucleotides. Nucleic Acids Res 2024; 52:5451-5464. [PMID: 38726871 PMCID: PMC11162797 DOI: 10.1093/nar/gkae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
The emergence of RNA on the early Earth is likely to have been influenced by chemical and physical processes that acted to filter out various alternative nucleic acids. For example, UV photostability is thought to have favored the survival of the canonical nucleotides. In a recent proposal for the prebiotic synthesis of the building blocks of RNA, ribonucleotides share a common pathway with arabino- and threo-nucleotides. We have therefore investigated non-templated primer extension with 2-aminoimidazole-activated forms of these alternative nucleotides to see if the synthesis of the first oligonucleotides might have been biased in favor of RNA. We show that non-templated primer extension occurs predominantly through 5'-5' imidazolium-bridged dinucleotides, echoing the mechanism of template-directed primer extension. Ribo- and arabino-nucleotides exhibited comparable rates and yields of non-templated primer extension, whereas threo-nucleotides showed lower reactivity. Competition experiments confirmed the bias against the incorporation of threo-nucleotides. The incorporation of an arabino-nucleotide at the end of the primer acts as a chain terminator and blocks subsequent extension. These biases, coupled with potentially selective prebiotic synthesis, and the templated copying that is known to favour the incorporation of ribonucleotides, provide a plausible model for the effective exclusion of arabino- and threo-nucleotides from primordial oligonucleotides.
Collapse
Affiliation(s)
- Xiwen Jia
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Stephanie J Zhang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Lijun Zhou
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Zorc SA, Roy RN. Origin & influence of autocatalytic reaction networks at the advent of the RNA world. RNA Biol 2024; 21:78-92. [PMID: 39358873 PMCID: PMC11451275 DOI: 10.1080/15476286.2024.2405757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Research on the origin of life investigates the transition from abiotic chemistry to the emergence of biology, with the 'RNA world hypothesis' as the leading theory. RNA's dual role in storage and catalysis suggests its importance in this narrative. The discovery of natural ribozymes emphasizes RNA's catalytic capabilities in prebiotic environments, supporting the plausibility of an RNA world and prompting exploration of precellular evolution. Collective autocatalytic sets (CASs) mark a crucial milestone in this transition, fostering complexity through autocatalysis. While modern biology emphasizes sequence-specific polymerases, remnants of CASs persist in primary metabolism highlighting their significance. Autocatalysis, driven by CASs, promotes complexity through mutually interdependent catalytic sets. Yet, the transition from ribonucleotides to complex RNA oligomers remains puzzling. Questions persist about the genesis of the first self-replicating RNA molecule, RNA's stability in prebiotic conditions, and the shift to complex molecular reproduction. This review delves into diverse facets of the RNA world's emergence, addressing critical bottlenecks and scientific advances. Integrating insights from simulation and in vitro evolution research, we illuminate the multistep biogenesis of catalytic RNA from the abiotic world. Through this exploration, we aim to elucidate the journey from the primordial soup to the dawn of life, emphasizing the interplay between chemistry and biology in understanding life's origins.
Collapse
Affiliation(s)
- Stephen A. Zorc
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Raktim N. Roy
- Department of pathology and laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Ueda K, Mizuuchi R, Ichihashi N. Emergence of linkage between cooperative RNA replicators encoding replication and metabolic enzymes through experimental evolution. PLoS Genet 2023; 19:e1010471. [PMID: 37540715 PMCID: PMC10431678 DOI: 10.1371/journal.pgen.1010471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/16/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
The integration of individually replicating genes into a primitive chromosome is a key evolutionary transition in the development of life, allowing the simultaneous inheritance of genes. However, how this transition occurred is unclear because the extended size of primitive chromosomes replicate slower than unlinked genes. Theoretical studies have suggested that a primitive chromosome can evolve in the presence of cell-like compartments, as the physical linkage prevents the stochastic loss of essential genes upon division, but experimental support for this is lacking. Here, we demonstrate the evolution of a chromosome-like RNA from two cooperative RNA replicators encoding replication and metabolic enzymes. Through their long-term replication in cell-like compartments, linked RNAs emerged with the two cooperative RNAs connected end-to-end. The linked RNAs had different mutation patterns than the two unlinked RNAs, suggesting that they were maintained as partially distinct lineages in the population. Our results provide experimental evidence supporting the plausibility of the evolution of a primitive chromosome from unlinked gene fragments, an important step in the emergence of complex biological systems.
Collapse
Affiliation(s)
- Kensuke Ueda
- Department of Life Science, Graduate School of Arts and Science, the University of Tokyo, Meguro, Tokyo, Japan
| | - Ryo Mizuuchi
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- JST, FOREST, Kawaguchi, Saitama, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, the University of Tokyo, Meguro, Tokyo, Japan
- Komaba Institute for Science, the University of Tokyo, Meguro, Tokyo, Japan
- Universal Biology Institute, the University of Tokyo, Meguro, Tokyo, Japan
| |
Collapse
|
6
|
Mizuuchi R, Ichihashi N. Minimal RNA self-reproduction discovered from a random pool of oligomers. Chem Sci 2023; 14:7656-7664. [PMID: 37476714 PMCID: PMC10355099 DOI: 10.1039/d3sc01940c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/18/2023] [Indexed: 07/22/2023] Open
Abstract
The emergence of RNA self-reproduction from prebiotic components would have been crucial in developing a genetic system during the origins of life. However, all known self-reproducing RNA molecules are complex ribozymes, and how they could have arisen from abiotic materials remains unclear. Therefore, it has been proposed that the first self-reproducing RNA may have been short oligomers that assemble their components as templates. Here, we sought such minimal RNA self-reproduction in prebiotically accessible short random RNA pools that undergo spontaneous ligation and recombination. By examining enriched RNA families with common motifs, we identified a 20-nucleotide (nt) RNA variant that self-reproduces via template-directed ligation of two 10 nt oligonucleotides. The RNA oligomer contains a 2'-5' phosphodiester bond, which typically forms during prebiotically plausible RNA synthesis. This non-canonical linkage helps prevent the formation of inactive complexes between self-complementary oligomers while decreasing the ligation efficiency. The system appears to possess an autocatalytic property consistent with exponential self-reproduction despite the limitation of forming a ternary complex of the template and two substrates, similar to the behavior of a much larger ligase ribozyme. Such a minimal, ribozyme-independent RNA self-reproduction may represent the first step in the emergence of an RNA-based genetic system from primordial components. Simultaneously, our examination of random RNA pools highlights the likelihood that complex species interactions were necessary to initiate RNA reproduction.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University Shinjuku Tokyo 162-8480 Japan
- JST, FOREST Kawaguchi Saitama 332-0012 Japan
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo Meguro Tokyo 153-8902 Japan
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo Meguro Tokyo 153-8902 Japan
- Universal Biology Institute, The University of Tokyo Meguro Tokyo 153-8902 Japan
| |
Collapse
|
7
|
Pavlinova P, Lambert CN, Malaterre C, Nghe P. Abiogenesis through gradual evolution of autocatalysis into template-based replication. FEBS Lett 2023; 597:344-379. [PMID: 36203246 DOI: 10.1002/1873-3468.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
How life emerged from inanimate matter is one of the most intriguing questions posed to modern science. Central to this research are experimental attempts to build systems capable of Darwinian evolution. RNA catalysts (ribozymes) are a promising avenue, in line with the RNA world hypothesis whereby RNA pre-dated DNA and proteins. Since evolution in living organisms relies on template-based replication, the identification of a ribozyme capable of replicating itself (an RNA self-replicase) has been a major objective. However, no self-replicase has been identified to date. Alternatively, autocatalytic systems involving multiple RNA species capable of ligation and recombination may enable self-reproduction. However, it remains unclear how evolution could emerge in autocatalytic systems. In this review, we examine how experimentally feasible RNA reactions catalysed by ribozymes could implement the evolutionary properties of variation, heredity and reproduction, and ultimately allow for Darwinian evolution. We propose a gradual path for the emergence of evolution, initially supported by autocatalytic systems leading to the later appearance of RNA replicases.
Collapse
Affiliation(s)
- Polina Pavlinova
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Camille N Lambert
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Christophe Malaterre
- Laboratory of Philosophy of Science (LAPS) and Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST), Université du Québec à Montréal (UQAM), Canada
| | - Philippe Nghe
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| |
Collapse
|
8
|
Kriebisch CME, Bergmann AM, Boekhoven J. Fuel-Driven Dynamic Combinatorial Libraries. J Am Chem Soc 2021; 143:7719-7725. [PMID: 33978418 DOI: 10.1021/jacs.1c01616] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In dynamic combinatorial libraries, molecules react with each other reversibly to form intricate networks under thermodynamic control. In biological systems, chemical reaction networks operate under kinetic control by the transduction of chemical energy. We thus introduced the notion of energy transduction, via chemical reaction cycles, to a dynamic combinatorial library. In the library, monomers can be oligomerized, oligomers can be deoligomerized, and oligomers can recombine. Interestingly, we found that the dynamics of the library's components were dominated by transacylation, which is an equilibrium reaction. In contrast, the library's dynamics were dictated by fuel-driven activation, which is a nonequilibrium reaction. Finally, we found that self-assembly can play a large role in affecting the reaction's kinetics via feedback mechanisms. The interplay of the simultaneously operating reactions and feedback mechanisms can result in hysteresis effects in which the outcome of the competition for fuel depends on events that occurred in the past. In future work, we envision diversifying the library by modifying building blocks with catalytically active motifs and information-containing monomers.
Collapse
Affiliation(s)
- Christine M E Kriebisch
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany.,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748 Garching, Germany
| |
Collapse
|
9
|
Mizuuchi R, Ichihashi N. Primitive Compartmentalization for the Sustainable Replication of Genetic Molecules. Life (Basel) 2021; 11:life11030191. [PMID: 33670881 PMCID: PMC7997230 DOI: 10.3390/life11030191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023] Open
Abstract
Sustainable replication and evolution of genetic molecules such as RNA are likely requisites for the emergence of life; however, these processes are easily affected by the appearance of parasitic molecules that replicate by relying on the function of other molecules, while not contributing to their replication. A possible mechanism to repress parasite amplification is compartmentalization that segregates parasitic molecules and limits their access to functional genetic molecules. Although extent cells encapsulate genomes within lipid-based membranes, more primitive materials or simple geological processes could have provided compartmentalization on early Earth. In this review, we summarize the current understanding of the types and roles of primitive compartmentalization regarding sustainable replication of genetic molecules, especially from the perspective of the prevention of parasite replication. In addition, we also describe the ability of several environments to selectively accumulate longer genetic molecules, which could also have helped select functional genetic molecules rather than fast-replicating short parasitic molecules.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Correspondence: (R.M.); (N.I.)
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Correspondence: (R.M.); (N.I.)
| |
Collapse
|
10
|
Hieronymus R, Müller S. Towards Higher Complexity in the RNA World: Hairpin Ribozyme Supported RNA Recombination. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robert Hieronymus
- Institute for Biochemistry University Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Sabine Müller
- Institute for Biochemistry University Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
11
|
Popović M, Ellingson AQ, Chu TP, Wei C, Pohorille A, Ditzler MA. In vitro selections with RNAs of variable length converge on a robust catalytic core. Nucleic Acids Res 2021; 49:674-683. [PMID: 33367725 PMCID: PMC7826250 DOI: 10.1093/nar/gkaa1238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
In vitro selection is a powerful tool that can be used to understand basic principles of molecular evolution. We used in vitro selection to understand how changes in length and the accumulation of point mutations enable the evolution of functional RNAs. Using RNA populations of various lengths, we performed a series of in vitro experiments to select for ribozymes with RNA ligase activity. We identified a core ribozyme structure that was robust to changes in RNA length, high levels of mutagenesis, and increased selection pressure. Elaboration on this core structure resulted in improved activity which we show is consistent with a larger trend among functional RNAs in which increasing motif size can lead to an exponential improvement in fitness. We conclude that elaboration on conserved core structures is a preferred mechanism in RNA evolution. This conclusion, drawn from selections of RNAs from random sequences, is consistent with proposed evolutionary histories of specific biological RNAs. More generally, our results indicate that modern RNA structures can be used to infer ancestral structures. Our observations also suggest a mechanism by which structural outcomes of early RNA evolution would be largely reproducible even though RNA fitness landscapes consist of disconnected clusters of functional sequences.
Collapse
Affiliation(s)
- Milena Popović
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA 98145, USA
| | | | - Theresa P Chu
- Blue Marble Space Institute of Science, Seattle, WA 98145, USA
| | - Chenyu Wei
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Andrew Pohorille
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mark A Ditzler
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
12
|
Lehman NE, Kauffman SA. Constraint Closure Drove Major Transitions in the Origins of Life. ENTROPY (BASEL, SWITZERLAND) 2021; 23:E105. [PMID: 33451001 PMCID: PMC7828513 DOI: 10.3390/e23010105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
Life is an epiphenomenon for which origins are of tremendous interest to explain. We provide a framework for doing so based on the thermodynamic concept of work cycles. These cycles can create their own closure events, and thereby provide a mechanism for engendering novelty. We note that three significant such events led to life as we know it on Earth: (1) the advent of collective autocatalytic sets (CASs) of small molecules; (2) the advent of CASs of reproducing informational polymers; and (3) the advent of CASs of polymerase replicases. Each step could occur only when the boundary conditions of the system fostered constraints that fundamentally changed the phase space. With the realization that these successive events are required for innovative forms of life, we may now be able to focus more clearly on the question of life's abundance in the universe.
Collapse
Affiliation(s)
- Niles E. Lehman
- Edac Research, 1879 Camino Cruz Blanca, Santa Fe, NM 87505, USA;
| | | |
Collapse
|
13
|
Obianyor C, Newnam G, Clifton BE, Grover MA, Hud NV. Towards Efficient Nonenzymatic DNA Ligation: Comparing Key Parameters for Maximizing Ligation Rates and Yields with Carbodiimide Activation**. Chembiochem 2020; 21:3359-3370. [DOI: 10.1002/cbic.202000335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/21/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Chiamaka Obianyor
- Georgia Institute of Technology School of Chemical and Biomolecular Engineering Atlanta Georgia 30332-0400 USA
| | - Gary Newnam
- Georgia Institute of Technology, Chemistry and Biochemistry 311 Ferst Drive Atlanta Georgia 30332-0400 USA
| | - Bryce E. Clifton
- Georgia Institute of Technology, Chemistry and Biochemistry 311 Ferst Drive Atlanta Georgia 30332-0400 USA
| | - Martha A. Grover
- Georgia Institute of Technology School of Chemical and Biomolecular Engineering Atlanta Georgia 30332-0400 USA
| | - Nicholas V. Hud
- Georgia Institute of Technology, Chemistry and Biochemistry 311 Ferst Drive Atlanta Georgia 30332-0400 USA
| |
Collapse
|
14
|
The difficult case of an RNA-only origin of life. Emerg Top Life Sci 2019; 3:469-475. [PMID: 33523163 PMCID: PMC7289000 DOI: 10.1042/etls20190024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/17/2022]
Abstract
The RNA world hypothesis is probably the most extensively studied model for the emergence of life on Earth. Despite a large body of evidence supporting the idea that RNA is capable of kick-starting autocatalytic self-replication and thus initiating the emergence of life, seemingly insurmountable weaknesses in the theory have also been highlighted. These problems could be overcome by novel experimental approaches, including out-of-equilibrium environments, and the exploration of an early co-evolution of RNA and other key biomolecules such as peptides and DNA, which might be necessary to mitigate the shortcomings of RNA-only systems.
Collapse
|
15
|
Plebanek A, Larnerd C, Popović M, Wei C, Pohorille A, Ditzler MA. Big on Change, Small on Innovation: Evolutionary Consequences of RNA Sequence Duplication. J Mol Evol 2019; 87:240-253. [PMID: 31435687 PMCID: PMC6711949 DOI: 10.1007/s00239-019-09906-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 01/11/2023]
Abstract
The potential for biopolymers to evolve new structures has important consequences for their ability to optimize function and our attempts to reconstruct their evolutionary histories. Prior work with in vitro systems suggests that structural remodeling of RNA is difficult to achieve through the accumulation of point mutations or through recombination events. Sequence duplication may represent an alternative mechanism that can more readily lead to the evolution of new structures. Structural and sequence elements in many RNAs and proteins appear to be the products of duplication events, indicating that this mechanism plays a major role in molecular evolution. Despite the potential significance of this mechanism, little experimental data is available concerning the structural and evolutionary consequences of duplicating biopolymer sequences. To assess the structural consequences of sequence duplication on the evolution of RNA, we mutagenized an RNA sequence containing two copies of an ATP aptamer and subjected the resulting population to multiple in vitro evolution experiments. We identified multiple routes by which duplication, followed by the accumulation of functional point mutations, allowed our populations to sample two entirely different secondary structures. The two structures have no base pairs in common, but both structures contain two copies of the same ATP-binding motif. We do not observe the emergence of any other functional secondary structures beyond these two. Although this result suggests a limited capacity for duplication to support short-term functional innovation, major changes in secondary structure, like the one observed here, should be given careful consideration as they are likely to frustrate attempts to infer deep evolutionary histories of functional RNAs.
Collapse
Affiliation(s)
- Andrew Plebanek
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Caleb Larnerd
- NASA Internship Program, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Milena Popović
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA.,Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Blue Marble Space Institute of Science, Seattle, WA, 98145, USA
| | - Chenyu Wei
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, USA.,Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Andrew Pohorille
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, USA.,Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Mark A Ditzler
- Exobiology Branch, Space Science and Astrobiology Division, NASA Ames Research Center, Bldg N239 Mail Stop 239-4, Moffett Field, CA, 94035, USA. .,Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, CA, 94035, USA.
| |
Collapse
|
16
|
Pressman AD, Liu Z, Janzen E, Blanco C, Müller UF, Joyce GF, Pascal R, Chen IA. Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated Evolutionary Network for Self-Aminoacylating RNA. J Am Chem Soc 2019; 141:6213-6223. [PMID: 30912655 PMCID: PMC6548421 DOI: 10.1021/jacs.8b13298] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Molecular
evolution can be conceptualized as a walk over a “fitness
landscape”, or the function of fitness (e.g., catalytic activity)
over the space of all possible sequences. Understanding evolution
requires knowing the structure of the fitness landscape and identifying
the viable evolutionary pathways through the landscape. However, the
fitness landscape for any catalytic biomolecule is largely unknown.
The evolution of catalytic RNA is of special interest because RNA
is believed to have been foundational to early life. In particular,
an essential activity leading to the genetic code would be the reaction
of ribozymes with activated amino acids, such as 5(4H)-oxazolones, to form aminoacyl-RNA. Here we combine in vitro selection
with a massively parallel kinetic assay to map a fitness landscape
for self-aminoacylating RNA, with nearly complete coverage of sequence
space in a central 21-nucleotide region. The method (SCAPE: sequencing
to measure catalytic activity paired with in vitro evolution) shows
that the landscape contains three major ribozyme families (landscape
peaks). An analysis of evolutionary pathways shows that, while local
optimization within a ribozyme family would be possible, optimization
of activity over the entire landscape would be frustrated by large
valleys of low activity. The sequence motifs associated with each
peak represent different solutions to the problem of catalysis, so
the inability to traverse the landscape globally corresponds to an
inability to restructure the ribozyme without losing activity. The
frustrated nature of the evolutionary network suggests that chance
emergence of a ribozyme motif would be more important than optimization
by natural selection.
Collapse
Affiliation(s)
- Abe D Pressman
- Department of Chemistry and Biochemistry 9510 , University of California , Santa Barbara , California 93106 , United States.,Program in Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Cambridge CB2 0QH , U.K.,IBMM, CNRS, University of Montpellier, ENSCM , 34090 Montpellier , France
| | - Evan Janzen
- Department of Chemistry and Biochemistry 9510 , University of California , Santa Barbara , California 93106 , United States.,Program in Biomolecular Sciences and Engineering , University of California , Santa Barbara , California 93106 , United States
| | - Celia Blanco
- Department of Chemistry and Biochemistry 9510 , University of California , Santa Barbara , California 93106 , United States
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Gerald F Joyce
- Salk Institute for Biological Studies , La Jolla , California 92037 , United States
| | - Robert Pascal
- IBMM, CNRS, University of Montpellier, ENSCM , 34090 Montpellier , France
| | - Irene A Chen
- Department of Chemistry and Biochemistry 9510 , University of California , Santa Barbara , California 93106 , United States.,Program in Biomolecular Sciences and Engineering , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
17
|
Mizuuchi R, Lehman N. Limited Sequence Diversity Within a Population Supports Prebiotic RNA Reproduction. Life (Basel) 2019; 9:life9010020. [PMID: 30795529 PMCID: PMC6463154 DOI: 10.3390/life9010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
The origins of life require the emergence of informational polymers capable of reproduction. In the RNA world on the primordial Earth, reproducible RNA molecules would have arisen from a mixture of compositionally biased, poorly available, short RNA sequences in prebiotic environments. However, it remains unclear what level of sequence diversity within a small subset of population is required to initiate RNA reproduction by prebiotic mechanisms. Here, using a simulation for template-directed recombination and ligation, we explore the effect of sequence diversity in a given population for the onset of RNA reproduction. We show that RNA reproduction is improbable in low and high diversity of finite populations; however, it could robustly occur in an intermediate sequence diversity. The intermediate range broadens toward higher diversity as population size increases. We also found that emergent reproducible RNAs likely form autocatalytic networks and collectively reproduce by catalyzing the formation of each other, allowing the expansion of information capacity. These results highlight the potential of abiotic RNAs, neither abundant nor diverse, to kick-start autocatalytic reproduction through spontaneous network formation.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Department of Chemistry, Portland State University, Portland, OR 97207, USA.
| | - Niles Lehman
- Department of Chemistry, Portland State University, Portland, OR 97207, USA.
| |
Collapse
|