1
|
Kakoulidis P, Theotoki EI, Pantazopoulou VI, Vlachos IS, Emiris IZ, Stravopodis DJ, Anastasiadou E. Comparative structural insights and functional analysis for the distinct unbound states of Human AGO proteins. Sci Rep 2025; 15:9432. [PMID: 40108192 PMCID: PMC11923369 DOI: 10.1038/s41598-025-91849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The four human Argonaute (AGO) proteins, critical in RNA interference and gene regulation, exhibit high sequence and structural similarity but differ functionally. We investigated the underexplored structural relationships of these paralogs through microsecond-scale molecular dynamics simulations. Our findings reveal that AGO proteins adopt similar, yet unsynchronized, open-close states. We observed similar and unique local conformations, interdomain distances and intramolecular interactions. Conformational differences at GW182/ZSWIM8 interaction sites and in catalytic/pseudo-catalytic tetrads were minimal. Tetrads display conserved movements, interacting with distant miRNA binding residues. We pinpointed long common protein subsequences with consistent molecular movement but varying solvent accessibility per AGO. We observed diverse conformational patterns at the post-transcriptional sites of the AGOs, except for AGO4. By combining simulation data with large datasets of experimental structures and AlphaFold's predictions, we identified proteins with genomic and proteomic similarities. Some of the identified proteins operate in the mitosis pathway, sharing mitosis-related interactors and miRNA targets. Additionally, we suggest that AGOs interact with a mitosis initiator, zinc ion, by predicting potential binding sites and detecting structurally similar proteins with the same function. These findings further advance our understanding for the human AGO protein family and their role in central cellular processes.
Collapse
Affiliation(s)
- Panos Kakoulidis
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122, Athens, Greece.
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 11527, Athens, Greece.
| | - Eleni I Theotoki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 11527, Athens, Greece
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Vasiliki I Pantazopoulou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Ioannis S Vlachos
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Dana BuildingBoston, MA, 02215, USA
| | - Ioannis Z Emiris
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122, Athens, Greece
- ATHENA Research Center, Aigialias & Chalepa, 15125, Marousi, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou St, 11527, Athens, Greece
- Department of Health Science, Higher Colleges of Technology (HCT), Academic City Campus, 17155, Dubai, United Arab Emirates
| |
Collapse
|
2
|
Salman Hameed M, Ren Y, Tuda M, Basit A, Urooj N. Role of Argonaute proteins in RNAi pathway in Plutella xylostella: A review. Gene 2024; 903:148195. [PMID: 38295911 DOI: 10.1016/j.gene.2024.148195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Argonaute (Ago) proteins act as key elements in RNA interference (RNAi) pathway, orchestrating the intricate machinery of gene regulation within eukaryotic cells. Within the RNAi pathway, small RNA molecules, including microRNA (miRNA), small interfering RNA (siRNA), and PIWI-interacting RNA (piRNA), collaborate with Ago family member proteins such as Ago1, Ago2, and Ago3 to form the RNA-induced silencing complex (RISC). This RISC complex, in turn, either cleaves the target mRNA or inhibits the process of protein translation. The precise contributions of Ago proteins have been well-established in numerous animals and plants, although they still remain unclear in some insect species. This review aims to shed light on the specific roles played by Ago proteins within the RNAi mechanism in a destructive lepidopteran pest, the diamondback moth (Plutella xylostella). Furthermore, we explore the potential of double-stranded RNA (dsRNA)-mediated RNAi as a robust genetic tool in pest management strategies. Through an in-depth examination of Ago proteins and dsRNA-mediated RNAi, this review seeks to contribute to our understanding of innovative approaches for controlling this pest and potentially other insect species of agricultural significance.
Collapse
Affiliation(s)
- Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Yanliang Ren
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Midori Tuda
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Abdul Basit
- Institute of Entomology, Guizhou University Guiyang 550025, Guizhou China
| | - Nida Urooj
- Department of Business Administrative, Bahaudin Zakriya University, Multan, Pakistan
| |
Collapse
|
3
|
Yu T, Liu T, Wang Y, Zhao X, Zhang W. Effect of Cas9 Protein on the Seed-Target Base Pair of the sgRNA/DNA Hybrid Duplex. J Phys Chem B 2023. [PMID: 37243666 DOI: 10.1021/acs.jpcb.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/CRISPR-associated protein (Cas9) has been widely used for gene editing. Not all guide RNAs can cleave the DNA efficiently remains a major challenge to CRISPR/Cas9-mediated genome engineering. Therefore, understanding how the Cas9 complex successfully and efficiently identifies specific functional targets through base-pairing has great implications for such applications. The 10-nt seed sequence at the 3' end of the guide RNA is critical to target recognition and cleavage. Here, through stretching molecular dynamics simulation, we studied the thermodynamics and kinetics of the binding-dissociation process of the seed base and the target DNA base with the Cas9 protein. The results showed that in the presence of Cas9 protein, the enthalpy change and entropy change in binding-dissociation of the seed base with the target are smaller than those without the Cas9 protein. The reduction of entropy penalty upon association with the protein resulted from the pre-organization of the seed base in an A-form helix, and the reduction of enthalpy change was due to the electrostatic attraction of the positively charged channel with the negative target DNA. The binding barrier coming from the entropy loss and the dissociation barrier resulting from the destruction of the base pair in the presence of Cas9 protein were lower than those without protein, which indicates that the seed region is crucial for efficiently searching the correct target by accelerating the binding rate and dissociating fast from the wrong target.
Collapse
Affiliation(s)
- Ting Yu
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Taigang Liu
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, PR China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Yujie Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, PR China
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, PR China
| | - Xuanlin Zhao
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, PR China
| |
Collapse
|
4
|
Zhuang H, Ji D, Fan J, Li M, Tao R, Du K, Lu S, Chai Z, Fan X. Mechanistic Insights into the Protection Effect of Argonaute-RNA Complex on the HCV Genome. Biomolecules 2022; 12:1631. [PMID: 36358979 PMCID: PMC9687641 DOI: 10.3390/biom12111631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/14/2023] Open
Abstract
While host miRNA usually plays an antiviral role, the relentless tides of viral evolution have carved out a mechanism to recruit host miRNA as a viral protector. By complementing miR-122 at the 5' end of the genome, the hepatitis C virus (HCV) gene can form a complex with Argonaute 2 (Ago2) protein to protect the 5' end of HCV RNA from exonucleolytic attacks. Experiments showed that the disruption of the stem-loop 1(SL1) structure and the 9th nucleotide (T9) of HCV site 1 RNA could enhance the affinity of the Ago2 protein to the HCV site 1 RNA (target RNA). However, the underlying mechanism of how the conformation and dynamics of the Ago2: miRNA: target RNA complex is affected by the SL1 and T9 remains unclear. To address this, we performed large-scale molecular dynamics simulations on the AGO2-miRNA complex binding with the WT target, T9-abasic target and SL1-disruption target, respectively. The results revealed that the T9 and SL1 structures could induce the departing motion of the PAZ, PIWI and N domains, propping up the mouth of the central groove which accommodates the target RNA, causing the instability of the target RNA and disrupting the Ago2 binding. The coordinated motion among the PAZ, PIWI and N domains were also weakened by the T9 and SL1 structures. Moreover, we proposed a new model wherein the Ago2 protein could adopt a more constraint conformation with the proximity and more correlated motions of the PAZ, N and PIWI domains to protect the target RNA from dissociation. These findings reveal the mechanism of the Ago2-miRNA complex's protective effect on the HCV genome at the atomic level, which will offer guidance for the design of drugs to confront the protection effect and engineering of Ago2 as a gene-regulation tool.
Collapse
Affiliation(s)
- Haiming Zhuang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Dong Ji
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jigang Fan
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Mingyu Li
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Ran Tao
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zongtao Chai
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Hepatic Surgery, Shanghai Geriatric Cancer, Shanghai 201104, China
| | - Xiaohua Fan
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Wang Y, Liu T, Yu T, Tan ZJ, Zhang W. Salt effect on thermodynamics and kinetics of a single RNA base pair. RNA (NEW YORK, N.Y.) 2020; 26:470-480. [PMID: 31988191 PMCID: PMC7075264 DOI: 10.1261/rna.073882.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/11/2020] [Indexed: 05/09/2023]
Abstract
Due to the polyanionic nature of RNAs, the structural folding of RNAs are sensitive to solution salt conditions, while there is still lack of a deep understanding of the salt effect on the thermodynamics and kinetics of RNAs at a single base-pair level. In this work, the thermodynamic and the kinetic parameters for the base-pair AU closing/opening at different salt concentrations were calculated by 3-µsec all-atom molecular dynamics (MD) simulations at different temperatures. It was found that for the base-pair formation, the enthalpy change [Formula: see text] is nearly independent of salt concentration, while the entropy change [Formula: see text] exhibits a linear dependence on the logarithm of salt concentration, verifying the empirical assumption based on thermodynamic experiments. Our analyses revealed that such salt concentration dependence of the entropy change mainly results from the dependence of ion translational entropy change for the base pair closing/opening on salt concentration. Furthermore, the closing rate increases with the increasing of salt concentration, while the opening rate is nearly independent of salt concentration. Additionally, our analyses revealed that the free energy surface for describing the base-pair opening and closing dynamics becomes more rugged with the decrease of salt concentration.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
- Department of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, Henan, 466001, P.R. China
| | - Taigang Liu
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, P.R. China
| | - Ting Yu
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wenbing Zhang
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|