1
|
Koob T, Döpp S, Schwalbe H. 1H, 13C, 15N and 31P chemical shift assignment of the first stem-loop Guanidine-II riboswitch from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:53-58. [PMID: 39890743 DOI: 10.1007/s12104-025-10217-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
A comprehensive understanding of RNA-based gene regulation is a fundamental aspect for the development of innovative therapeutic options in medicine and for a more targeted response to environmental problems. Within the different mechanisms of RNA-based gene regulation, riboswitches are particularly interesting as they change their structure in response to the interaction with a low molecular weight ligand, often a well-known metabolite. Four distinct classes of riboswitches recognize the very small guanidinium cation. We are focused on the Guanidine-II riboswitch with the mini-ykkC motif. We report here the assignment of the 1H, 13C, 15N and 31P chemical shifts of the 23 nucleotide-long sequence of the first stem-loop of the Guanidine-II riboswitch aptamer from Escherichia coli. Despite its small size, the assignment of the NMR signals of this RNA proved to be challenging as it has symmetrical base pairs and palindromic character.
Collapse
Affiliation(s)
- Tatjana Koob
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 7, 60438, Frankfurt/M, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 9, 60438, Frankfurt/M, Germany
| | - Silas Döpp
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 7, 60438, Frankfurt/M, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 9, 60438, Frankfurt/M, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 7, 60438, Frankfurt/M, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max‑von‑Laue‑Str. 9, 60438, Frankfurt/M, Germany.
| |
Collapse
|
2
|
Steuer J, Sinn M, Eble F, Rütschlin S, Böttcher T, Hartig JS, Peter C. Cooperative binding of bivalent ligands yields new insights into the guanidine-II riboswitch. NAR Genom Bioinform 2024; 6:lqae132. [PMID: 39323654 PMCID: PMC11423145 DOI: 10.1093/nargab/lqae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Riboswitches are involved in regulating the gene expression in bacteria. They are located within the untranslated regions of bacterial messenger RNA and function as switches by adjusting their shape, depending on the presence or absence of specific ligands. To decipher the fundamental aspects of bacterial gene control, it is therefore important to understand the mechanisms that underlie these conformational switches. To this end, a combination of an experimental binding study, molecular simulations and machine learning has been employed to obtain insights into the conformational changes and structural dynamics of the guanidine-II riboswitch. By exploiting the design of a bivalent ligand, we were able to study ligand binding in the aptamer dimer at the molecular level. Spontaneous ligand-binding events, which are usually difficult to simulate, were observed and the contributing factors are described. These findings were further confirmed by in vivo experiments, where the cooperative binding effects of the bivalent ligands resulted in increased binding affinity compared to the native guanidinium ligand. Beyond ligand binding itself, the simulations revealed a novel, ligand-dependent base-stacking interaction outside of the binding pocket that stabilizes the riboswitch.
Collapse
Affiliation(s)
- Jakob Steuer
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Malte Sinn
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Franziska Eble
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Sina Rütschlin
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Böttcher
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
3
|
Singh K, Reddy G. Excited States of apo-Guanidine-III Riboswitch Contribute to Guanidinium Binding through Both Conformational and Induced-Fit Mechanisms. J Chem Theory Comput 2024; 20:421-435. [PMID: 38134376 DOI: 10.1021/acs.jctc.3c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Riboswitches are mRNA segments that regulate gene expression through conformational changes driven by their cognate ligand binding. The ykkC motif forms a riboswitch class that selectively senses a guanidinium ion (Gdm+) and regulates the downstream expression of proteins which aid in the efflux of excess Gdm+ from the cells. The aptamer domain (AD) of the guanidine-III riboswitch forms an H-type pseudoknot with a triple helical domain that binds a Gdm+. We studied the binding of Gdm+ to the AD of the guanidine (ykkC)-III riboswitch using computer simulations to probe the specificity of the riboswitch to Gdm+ binding. We show that Gdm+ binding is a fast process occurring on the nanosecond time scale, with minimal conformational changes to the AD. Using machine learning and Markov-state models, we identified the excited conformational states of the AD, which have a high Gdm+ binding propensity, making the Gdm+ binding landscape complex exhibiting both conformational selection and induced-fit mechanisms. The proposed apo-AD excited states and their role in the ligand-sensing mechanism are amenable to experimental verification. Further, targeting these excited-state conformations in discovering new antibiotics can be explored.
Collapse
Affiliation(s)
- Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| |
Collapse
|
4
|
Fuks C, Falkner S, Schwierz N, Hengesbach M. Combining Coarse-Grained Simulations and Single Molecule Analysis Reveals a Three-State Folding Model of the Guanidine-II Riboswitch. Front Mol Biosci 2022; 9:826505. [PMID: 35573739 PMCID: PMC9094411 DOI: 10.3389/fmolb.2022.826505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Riboswitch RNAs regulate gene expression by conformational changes induced by environmental conditions and specific ligand binding. The guanidine-II riboswitch is proposed to bind the small molecule guanidinium and to subsequently form a kissing loop interaction between the P1 and P2 hairpins. While an interaction was shown for isolated hairpins in crystallization and electron paramagnetic resonance experiments, an intrastrand kissing loop formation has not been demonstrated. Here, we report the first evidence of this interaction in cis in a ligand and Mg2+ dependent manner. Using single-molecule FRET spectroscopy and detailed structural information from coarse-grained simulations, we observe and characterize three interconvertible states representing an open and kissing loop conformation as well as a novel Mg2+ dependent state for the guanidine-II riboswitch from E. coli. The results further substantiate the proposed switching mechanism and provide detailed insight into the regulation mechanism for the guanidine-II riboswitch class. Combining single molecule experiments and coarse-grained simulations therefore provides a promising perspective in resolving the conformational changes induced by environmental conditions and to yield molecular insights into RNA regulation.
Collapse
Affiliation(s)
- Christin Fuks
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Falkner
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Computational and Soft Matter Physics, University of Vienna, Vienna, VIA, Austria
| | - Nadine Schwierz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Steuer J, Kukharenko O, Riedmiller K, Hartig JS, Peter C. Guanidine-II aptamer conformations and ligand binding modes through the lens of molecular simulation. Nucleic Acids Res 2021; 49:7954-7965. [PMID: 34233001 PMCID: PMC8373139 DOI: 10.1093/nar/gkab592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022] Open
Abstract
Regulation of gene expression via riboswitches is a widespread mechanism in bacteria. Here, we investigate ligand binding of a member of the guanidine sensing riboswitch family, the guanidine-II riboswitch (Gd-II). It consists of two stem–loops forming a dimer upon ligand binding. Using extensive molecular dynamics simulations we have identified conformational states corresponding to ligand-bound and unbound states in a monomeric stem–loop of Gd-II and studied the selectivity of this binding. To characterize these states and ligand-dependent conformational changes we applied a combination of dimensionality reduction, clustering, and feature selection methods. In absence of a ligand, the shape of the binding pocket alternates between the conformation observed in presence of guanidinium and a collapsed conformation, which is associated with a deformation of the dimerization interface. Furthermore, the structural features responsible for the ability to discriminate against closely related analogs of guanidine are resolved. Based on these insights, we propose a mechanism that couples ligand binding to aptamer dimerization in the Gd-II system, demonstrating the value of computational methods in the field of nucleic acids research.
Collapse
Affiliation(s)
- Jakob Steuer
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Oleksandra Kukharenko
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.,Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Kai Riedmiller
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Wilt HM, Yu P, Tan K, Wang YX, Stagno JR. Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation. J Struct Biol 2021; 213:107703. [PMID: 33571639 DOI: 10.1016/j.jsb.2021.107703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Effective gene regulation by the tetrahydrofolate riboswitch depends not only on ligand affinity but also on the kinetics of ligand association, which involves two cooperative binding sites. We have determined a 1.9-Å resolution crystal structure of the ligand-free THF riboswitch aptamer. The pseudoknot binding site 'unwinds' in the absence of ligand, whereby the adjacent helical domains (P1, P2, and P3) become disjointed, resulting in rotation and misalignment of the gene-regulatory P1 helix with respect to P3. In contrast, the second binding site at the three-way junction, which is the first to fold, is structurally conserved between apo and holo forms. This suggests a kinetic role for this site, in which binding of the first ligand molecule to the stably folded three-way junction promotes formation of the regulatory pseudoknot site and subsequent binding of the second molecule. As such, these findings provide a molecular basis for both conformational switching and kinetic control.
Collapse
Affiliation(s)
- Haley M Wilt
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ping Yu
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
7
|
Salvail H, Balaji A, Yu D, Roth A, Breaker RR. Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria. Biochemistry 2020; 59:4654-4662. [PMID: 33236895 DOI: 10.1021/acs.biochem.0c00793] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An intriguing consequence of ongoing riboswitch discovery efforts is the occasional identification of metabolic or toxicity response pathways for unusual ligands. Recently, we reported the experimental validation of three distinct bacterial riboswitch classes that regulate gene expression in response to the selective binding of a guanidinium ion. These riboswitch classes, called guanidine-I, -II, and -III, regulate numerous genes whose protein products include previously misannotated guanidine exporters and enzymes that degrade guanidine via an initial carboxylation reaction. Guanidine is now recognized as the primal substrate of many multidrug efflux pumps that are important for bacterial resistance to certain antibiotics. Guanidine carboxylase enzymes had long been annotated as urea carboxylase enzymes but are now understood to participate in guanidine degradation. Herein, we report the existence of a fourth riboswitch class for this ligand, called guanidine-IV. Members of this class use a novel aptamer to selectively bind guanidine and use an unusual expression platform arrangement that is predicted to activate gene expression when ligand is present. The wide distribution of this abundant riboswitch class, coupled with the striking diversity of other guanidine-sensing RNAs, demonstrates that many bacterial species maintain sophisticated sensory and genetic mechanisms to avoid guanidine toxicity. This finding further highlights the mystery regarding the natural source of this nitrogen-rich chemical moiety.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Aparaajita Balaji
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Diane Yu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Adam Roth
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, United States
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, United States.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, United States
| |
Collapse
|
8
|
Wuebben C, Vicino MF, Mueller M, Schiemann O. Do the P1 and P2 hairpins of the Guanidine-II riboswitch interact? Nucleic Acids Res 2020; 48:10518-10526. [PMID: 32857846 PMCID: PMC7544219 DOI: 10.1093/nar/gkaa703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 01/09/2023] Open
Abstract
Riboswitches regulate genes by adopting different structures in responds to metabolite binding. The guanidine-II riboswitch is the smallest representative of the ykkC class with the mechanism of its function being centred on the idea that its two stem loops P1 and P2 form a kissing hairpin interaction upon binding of guanidinium (Gdm+). This mechanism is based on in-line probing experiments with the full-length riboswitch and crystal structures of the truncated stem loops P1 and P2. However, the crystal structures reveal only the formation of the homodimers P1 | P1 and P2 | P2 but not of the proposed heterodimer P1 | P2. Here, site-directed spin labeling (SDSL) in combination with Pulsed Electron–Electron Double Resonance (PELDOR or DEER) is used to study their structures in solution and how they change upon binding of Gdm+. It is found that both hairpins adopt different structures in solution and that binding of Gdm+ does indeed lead to the formation of the heterodimer but alongside the homodimers in a statistical 1:2:1 fashion. These results do thus support the proposed switching mechanism.
Collapse
Affiliation(s)
- Christine Wuebben
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Maria F Vicino
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Marcel Mueller
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| |
Collapse
|
9
|
Structural Insights into RNA Dimerization: Motifs, Interfaces and Functions. Molecules 2020; 25:molecules25122881. [PMID: 32585844 PMCID: PMC7357161 DOI: 10.3390/molecules25122881] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
In comparison with the pervasive use of protein dimers and multimers in all domains of life, functional RNA oligomers have so far rarely been observed in nature. Their diminished occurrence contrasts starkly with the robust intrinsic potential of RNA to multimerize through long-range base-pairing ("kissing") interactions, self-annealing of palindromic or complementary sequences, and stable tertiary contact motifs, such as the GNRA tetraloop-receptors. To explore the general mechanics of RNA dimerization, we performed a meta-analysis of a collection of exemplary RNA homodimer structures consisting of viral genomic elements, ribozymes, riboswitches, etc., encompassing both functional and fortuitous dimers. Globally, we found that domain-swapped dimers and antiparallel, head-to-tail arrangements are predominant architectural themes. Locally, we observed that the same structural motifs, interfaces and forces that enable tertiary RNA folding also drive their higher-order assemblies. These feature prominently long-range kissing loops, pseudoknots, reciprocal base intercalations and A-minor interactions. We postulate that the scarcity of functional RNA multimers and limited diversity in multimerization motifs may reflect evolutionary constraints imposed by host antiviral immune surveillance and stress sensing. A deepening mechanistic understanding of RNA multimerization is expected to facilitate investigations into RNA and RNP assemblies, condensates, and granules and enable their potential therapeutical targeting.
Collapse
|
10
|
Huang L, Wang J, Watkins AM, Das R, Lilley DMJ. Structure and ligand binding of the glutamine-II riboswitch. Nucleic Acids Res 2019; 47:7666-7675. [PMID: 31216023 PMCID: PMC6698751 DOI: 10.1093/nar/gkz539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
We have determined the structure of the glutamine-II riboswitch ligand binding domain using X-ray crystallography. The structure was solved using a novel combination of homology modeling and molecular replacement. The structure comprises three coaxial helical domains, the central one of which is a pseudoknot with partial triplex character. The major groove of this helix provides the binding site for L-glutamine, which is extensively hydrogen bonded to the RNA. Atomic mutation of the RNA at the ligand binding site leads to loss of binding shown by isothermal titration calorimetry, explaining the specificity of the riboswitch. A metal ion also plays an important role in ligand binding. This is directly bonded to a glutamine carboxylate oxygen atom, and its remaining inner-sphere water molecules make hydrogen bonding interactions with the RNA.
Collapse
Affiliation(s)
- Lin Huang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jia Wang
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Andrew M Watkins
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M J Lilley
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|