1
|
Li Y, Fischer P, Wang M, Zhou Q, Song A, Yuan R, Meng W, Chen FX, Lührmann R, Lau B, Hurt E, Cheng J. Structural insights into spliceosome fidelity: DHX35-GPATCH1- mediated rejection of aberrant splicing substrates. Cell Res 2025; 35:296-308. [PMID: 40016598 PMCID: PMC11958768 DOI: 10.1038/s41422-025-01084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
The spliceosome, a highly dynamic macromolecular assembly, catalyzes the precise removal of introns from pre-mRNAs. Recent studies have provided comprehensive structural insights into the step-wise assembly, catalytic splicing and final disassembly of the spliceosome. However, the molecular details of how the spliceosome recognizes and rejects suboptimal splicing substrates remained unclear. Here, we show cryo-electron microscopy structures of spliceosomal quality control complexes from a thermophilic eukaryote, Chaetomium thermophilum. The spliceosomes, henceforth termed B*Q, are stalled at a catalytically activated state but prior to the first splicing reaction due to an aberrant 5' splice site conformation. This state is recognized by G-patch protein GPATCH1, which is docked onto PRP8-EN and -RH domains and has recruited the cognate DHX35 helicase to its U2 snRNA substrate. In B*Q, DHX35 has dissociated the U2/branch site helix, while the disassembly helicase DHX15 is docked close to its U6 RNA 3'-end substrate. Our work thus provides mechanistic insights into the concerted action of two spliceosomal helicases in maintaining splicing fidelity by priming spliceosomes that are bound to aberrant splice substrates for disassembly.
Collapse
Affiliation(s)
- Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Paulina Fischer
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Mengjiao Wang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Qianxing Zhou
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Aixia Song
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Rui Yuan
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Wanyu Meng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Fei Xavier Chen
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Reinhard Lührmann
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Benjamin Lau
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Peng H, Peng W, Chen J, Hu K, Zhang Y, Ma Y, Jiang H. Profile of DHX37 gene defects in human genetic diseases: 46,XY disorders of sex development. Front Endocrinol (Lausanne) 2025; 16:1507749. [PMID: 40026690 PMCID: PMC11867910 DOI: 10.3389/fendo.2025.1507749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
The RNA helicase DHX37 gene is involved in ribosomal biological processes, and linked to human genetic diseases associated with 46,XY disorders of sex development (46,XY DSD) or neurodevelopment. Recently, relevant reports have primarily focused on 46,XY DSD. However, there is still a lack of overall understanding of the genetic characteristics, phenotype, etc. of the DHX37 gene in human genetic diseases, and its molecular mechanism is not fully understood. We searched literature databases and summarized and analyzed all the literature related to DHX37 to date, including case reports, cohort studies, and molecular mechanism studies, to comprehensively demonstrate the role of DHX37 in human genetic diseases. Sixty patients were reported to have DHX37-related 46,XY DSD, with p.R308Q, p.R674W variants being the two most common mutation hotspots, accounting for 36.67% and 11.67% of cases respectively. In DSD cohorts, DHX37 gene mutations have different detection frequencies (0.77%-45.45%), whereas in testicular regression syndrome and 46,XY gonadal dysgenesis cohorts, they have a high detection rate. The gonadal development and fertility of female (46,XX) carriers with DHX37 gene mutations are not affected; however, incomplete penetrance may be observed in males (46,XY). The treatments are primarily surgical intervention and hormone replacement therapy administered at appropriate times; however, the long-term prognosis remains unknown. Although the molecular mechanism of DHX37 mutation related 46,XY DSD is unclear, ribosome synthesis, cell cycle regulation, and the NF-κB and Wnt pathways may be affected. This review summarizes the profile of DHX37 defects in human genetic diseases.
Collapse
Affiliation(s)
- Huifang Peng
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | | | | | | | | | | | - Hongwei Jiang
- Henan Key Laboratory of Rare Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Wei Z, Zhao Y, Cai J, Xie Y. The Nucleolar Protein C1orf131 Is a Novel Gene Involved in the Progression of Lung Adenocarcinoma Cells through the AKT Signalling Pathway. Int J Mol Sci 2024; 25:6381. [PMID: 38928092 PMCID: PMC11203618 DOI: 10.3390/ijms25126381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is the most widespread cancer in the world, and its development is associated with complex biological mechanisms that are poorly understood. Here, we revealed a marked upregulation in the mRNA level of C1orf131 in LUAD samples compared to non-tumor tissue samples in The Cancer Genome Atlas (TCGA). Depletion of C1orf131 suppressed cell proliferation and growth, whereas it stimulated apoptosis in LUAD cells. Mechanistic investigations revealed that C1orf131 knockdown induced cell cycle dysregulation via the AKT and p53/p21 signalling pathways. Additionally, C1orf131 knockdown blocked cell migration through the modulation of epithelial-mesenchymal transition (EMT) in lung adenocarcinoma. Notably, we identified the C1orf131 protein nucleolar localization sequence, which included amino acid residues 137-142 (KKRKLT) and 240-245 (KKKRKG). Collectively, C1orf131 has potential as a novel therapeutic marker for patients in the future, as it plays a vital role in the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhili Wei
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China;
| | - Yiming Zhao
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China;
| | - Jing Cai
- National Talent Introduction Demonstration Base, the College of Basic Medicine, Harbin Medical University, Harbin 150081, China;
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China;
| |
Collapse
|
4
|
Dönig J, Mende H, Davila Gallesio J, Wagner K, Hotz P, Schunck K, Piller T, Hölper S, Uhan S, Kaulich M, Wirth M, Keller U, Tascher G, Bohnsack KE, Müller S. Characterization of nucleolar SUMO isopeptidases unveils a general p53-independent checkpoint of impaired ribosome biogenesis. Nat Commun 2023; 14:8121. [PMID: 38065954 PMCID: PMC10709353 DOI: 10.1038/s41467-023-43751-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Ribosome biogenesis is a multi-step process, in which a network of trans-acting factors ensures the coordinated assembly of pre-ribosomal particles in order to generate functional ribosomes. Ribosome biogenesis is tightly coordinated with cell proliferation and its perturbation activates a p53-dependent cell-cycle checkpoint. How p53-independent signalling networks connect impaired ribosome biogenesis to the cell-cycle machinery has remained largely enigmatic. We demonstrate that inactivation of the nucleolar SUMO isopeptidases SENP3 and SENP5 disturbs distinct steps of 40S and 60S ribosomal subunit assembly pathways, thereby triggering the canonical p53-dependent impaired ribosome biogenesis checkpoint. However, inactivation of SENP3 or SENP5 also induces a p53-independent checkpoint that converges on the specific downregulation of the key cell-cycle regulator CDK6. We further reveal that impaired ribosome biogenesis generally triggers the downregulation of CDK6, independent of the cellular p53 status. Altogether, these data define the role of SUMO signalling in ribosome biogenesis and unveil a p53-independent checkpoint of impaired ribosome biogenesis.
Collapse
Affiliation(s)
- Judith Dönig
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Hannah Mende
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Kristina Wagner
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Paul Hotz
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Kathrin Schunck
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- PharmBioTec gGmbH, Schiffweiler, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Sanofi AG, Frankfurt, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Sanofi AG, Frankfurt, Germany
| | - Sara Uhan
- Department of Hematology, Oncology and Cancer Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Max Delbrück Center, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Cancer Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Max Delbrück Center, Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology (Campus Benjamin Franklin), Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Max Delbrück Center, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
6
|
Yang H, Ma X, Tian H, Yuan J, Wu D, Dong G, Liu Q, Fu J. Two Novel Heterozygous Variants in RecA2 Domain of DHX37 Cause 46,XY Gonadal Dysgenesis and Testicular Regression Syndrome. Sex Dev 2023; 17:198-202. [PMID: 37717579 PMCID: PMC11232946 DOI: 10.1159/000534086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION The pathogenic variants in DEAH-box RNA helicase DHX37 are one of the major causes of 46,XY gonadal dysgenesis and testicular regression syndrome (TRS). To date, only 13 different missense variants have been reported. We report two additional cases with different clinical presentations carrying two novel variants in the DHX37 gene. CASE PRESENTATION AND RESULTS Case 1 (4.4-year-old boy) presented with significant micropenis and cryptorchidism and was diagnosed as TRS. Case 2 (13.5-year-old girl) had a 46,XY karyotype with female external genitalia and was diagnosed as GD. Two novel DHX37 variants affecting the RecA2 domain, p.G478R and p.L627F, were identified in these cases. Both variants identified in the probands were also present in their unaffected mother. CONCLUSION Our findings broaden the variant spectrum of DHX37 in 46,XY differences of sex development (DSD) individuals.
Collapse
Affiliation(s)
- Hao Yang
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,
| | - Xiuqi Ma
- Department of Pediatrics, Guizhou Hospital of Shanghai Children's Medical Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongjuan Tian
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jinna Yuan
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dehua Wu
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qian Liu
- Department of Pediatrics, Guizhou Hospital of Shanghai Children's Medical Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
7
|
Enders M, Ficner R, Adio S. Conformational dynamics of the RNA binding channel regulates loading and translocation of the DEAH-box helicase Prp43. Nucleic Acids Res 2023; 51:6430-6442. [PMID: 37167006 PMCID: PMC10325901 DOI: 10.1093/nar/gkad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/08/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
The DEAH-box helicase Prp43 has essential functions in pre-mRNA splicing and ribosome biogenesis, remodeling structured RNAs. To initiate unwinding, Prp43 must first accommodate a single-stranded RNA segment into its RNA binding channel. This allows translocation of the helicase on the RNA. G-patch (gp) factors activate Prp43 in its cellular context enhancing the intrinsically low ATPase and RNA unwinding activity. It is unclear how the RNA loading process is accomplished by Prp43 and how it is regulated by its substrates, ATP and RNA, and the G-patch partners. We developed single-molecule (sm) FRET reporters on Prp43 from Chaetomium thermophilum to monitor the conformational dynamics of the RNA binding channel in Prp43 in real-time. We show that the channel can alternate between open and closed conformations. Binding of Pfa1(gp) and ATP shifts the distribution of states towards channel opening, facilitating the accommodation of RNA. After completion of the loading process, the channel remains firmly closed during successive cycles of ATP hydrolysis, ensuring stable interaction with the RNA and processive translocation. Without Pfa1(gp), it remains predominantly closed preventing efficient RNA loading. Our data reveal how the ligands of Prp43 regulate the structural dynamics of the RNA binding channel controlling the initial binding of RNA.
Collapse
Affiliation(s)
- Marieke Enders
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Sarah Adio
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
8
|
Turner M. Regulation and function of poised mRNAs in lymphocytes. Bioessays 2023; 45:e2200236. [PMID: 37009769 DOI: 10.1002/bies.202200236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 04/04/2023]
Abstract
Pre-existing but untranslated or 'poised' mRNA exists as a means to rapidly induce the production of specific proteins in response to stimuli and as a safeguard to limit the actions of these proteins. The translation of poised mRNA enables immune cells to express quickly genes that enhance immune responses. The molecular mechanisms that repress the translation of poised mRNA and, upon stimulation, enable translation have yet to be elucidated. They likely reflect intrinsic properties of the mRNAs and their interactions with trans-acting factors that direct poised mRNAs away from or into the ribosome. Here, I discuss mechanisms by which this might be regulated.
Collapse
Affiliation(s)
- Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
9
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Abstract
The DEAH/RHA helicase Prp43 remodels protein-RNA complexes during pre-messenger RNA (mRNA) splicing and ribosome biogenesis. The helicase activity and ATP turnover are intrinsically low and become activated by G-patch (gp) factors in the specific cellular context. The gp motif connects the helicase core to the flexible C-terminal domains, but it is unclear how this affects RecA domain movement during catalysis and the unwinding of RNA substrates. We developed single-molecule Förster Resonance Energy Transfer (smFRET) reporters to study RecA domain movements within Prp43 in real time. Without Pfa1(gp), the domains approach each other adopting predominantly a closed conformation. The addition of Pfa1(gp) induces an open state, which becomes even more prevalent during interaction with RNA. In the open state, Prp43 has reduced contacts with bound nucleotide and shows rapid adenosine diphosphate (ADP) release accelerating the transition from the weak (ADP) to the strong (apo) RNA binding state. Using smFRET labels on the RNA to probe substrate binding and unwinding, we demonstrate that Pfa1(gp) enables Prp43(ADP) to switch between RNA-bound and RNA-unbound states instead of dissociating from the RNA. ATP binding to the apo-enzyme induces the translocation along the RNA, generating the unwinding force required to melt proximal RNA structures. During ATP turnover, Pfa1(gp) stimulates alternating of the RecA domains between open and closed states. Consequently, the translocation becomes faster than dissociation from the substrate in the ADP state, allowing processive movement along the RNA. We provide a mechanistic model of DEAH/RHA helicase motility and reveal the principles of Prp43 regulation by G-patch proteins.
Collapse
|
11
|
Cheng J, Lau B, Thoms M, Ameismeier M, Berninghausen O, Hurt E, Beckmann R. The nucleoplasmic phase of pre-40S formation prior to nuclear export. Nucleic Acids Res 2022; 50:11924-11937. [PMID: 36321656 PMCID: PMC9723619 DOI: 10.1093/nar/gkac961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Biogenesis of the small ribosomal subunit in eukaryotes starts in the nucleolus with the formation of a 90S precursor and ends in the cytoplasm. Here, we elucidate the enigmatic structural transitions of assembly intermediates from human and yeast cells during the nucleoplasmic maturation phase. After dissociation of all 90S factors, the 40S body adopts a close-to-mature conformation, whereas the 3' major domain, later forming the 40S head, remains entirely immature. A first coordination is facilitated by the assembly factors TSR1 and BUD23-TRMT112, followed by re-positioning of RRP12 that is already recruited early to the 90S for further head rearrangements. Eventually, the uS2 cluster, CK1 (Hrr25 in yeast) and the export factor SLX9 associate with the pre-40S to provide export competence. These exemplary findings reveal the evolutionary conserved mechanism of how yeast and humans assemble the 40S ribosomal subunit, but reveal also a few minor differences.
Collapse
Affiliation(s)
- Jingdong Cheng
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany,Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Dong’an Road 131, 200032 Shanghai, China
| | - Benjamin Lau
- BZH, University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Michael Ameismeier
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Ed Hurt
- Correspondence may also be addressed to Ed Hurt.
| | - Roland Beckmann
- To whom correspondence should be addressed. Tel: +49 89 218076900; Fax: +49 89 218076945;
| |
Collapse
|
12
|
Ying S, Zhang Z, Zhang Y, Hao Z, Chai R, Qiu H, Wang Y, Zhu X, Wang J, Sun G, Lin F. MoDHX35, a DEAH-Box Protein, Is Required for Appressoria Formation and Full Virulence of the Rice Blast Fungus, Magnaporthe oryzae. Int J Mol Sci 2022; 23:9015. [PMID: 36012276 PMCID: PMC9409162 DOI: 10.3390/ijms23169015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
The DExD/H-box protein family encompasses a large number of RNA helicases that are involved in RNA metabolism and a variety of physiological functions in different species. However, there is limited knowledge of whether DExD/H-box proteins play a role in the pathogenicity of plant fungal pathogens. In the present work, the DExD/H-box protein MoDHX35, which belongs to the DEAH subfamily, was shown to be crucial in appressoria formation and full virulence of the rice blast fungus, Magnaporthe oryzae. The predicted protein sequence of MoDHX35 had typical DEAH-box domains, showed 47% identity to DHX35 in Homo species, but had no orthologs in Saccharomyces cerevisiae. Deletion of the MoDHX35 gene resulted in reduced tolerance of the mutants to doxorubicin, a nucleic acid synthesis disturbing agent, suggesting the involvement of MoDHX35 in RNA metabolism. MoDHX35-deleted mutants exhibited normal vegetative growth, conidia generation and conidial germination, but showed a reduced appressorium formation rate and attenuated virulence. Our work demonstrates the involvement of DEAH-box protein functions in the pathogenicity of plant fungal pathogens.
Collapse
Affiliation(s)
- Shumin Ying
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 310029, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 310029, China
| | - Zhongna Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Rongyao Chai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiping Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guochang Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
13
|
Liu Z, Ye Y, Liu Y, Liu Y, Chen H, Shen M, Wang Z, Huang S, Han L, Chen Z, He X. RNA Helicase DHX37 Facilitates Liver Cancer Progression by Cooperating with PLRG1 to Drive Superenhancer-Mediated Transcription of Cyclin D1. Cancer Res 2022; 82:1937-1952. [PMID: 35290436 PMCID: PMC9359749 DOI: 10.1158/0008-5472.can-21-3038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 01/07/2023]
Abstract
RNA helicases are dysregulated in tumors. Here, we identified DHX37 as one of the top RNA helicase genes with upregulated expression in hepatocellular carcinoma (HCC). DHX37 promoted proliferation of liver cancer cells in vitro and in vivo. Epigenomic profiling of DHX37-knockdown and control HCC cells revealed that DHX37 is associated with superenhancer activity. Mechanistically, DHX37 interacted with pleiotropic regulator 1 (PLRG1) to transcriptionally activate cyclin D1 (CCND1) expression via co-occupation of its promoter and superenhancer elements. DHX37 and PLRG1 promoted liver cancer cell proliferation and contributed to the poor prognosis of patients with HCC. Importantly, CCND1 inhibitors were effective as antiproliferative agents for liver cancer. These results together demonstrate a cooperative mechanistic interaction between DHX37 and PLRG1 that regulates CCND1 expression and promotes liver cancer progression, advancing our understanding of the epigenetic and transcriptional dysregulations mediated by RNA helicases and superenhancers in HCC. SIGNIFICANCE This work characterizes a novel mechanism of superenhancer-driven cyclin D1 upregulation by DHX37 and PLRG1, implicating this pathway as a potential therapeutic target in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Oncology, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yizhe Liu
- Department of Oncology, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yanfang Liu
- Department of Oncology, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Huifang Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Mengting Shen
- Department of Oncology, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Zhen Wang
- Department of Oncology, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Shenglin Huang
- Department of Oncology, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, P.R. China
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Zhiao Chen
- Department of Oncology, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Corresponding Authors: Xianghuo He, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Bldg. 7, Room 302, 270 Dong An Rd., Shanghai 200032, P.R. China. Phone: 8621-3477-7329; Fax: 8621-6417-2585; E-mail: ; and Zhiao Chen,
| | - Xianghuo He
- Department of Oncology, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, P.R. China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, P.R. China.,Corresponding Authors: Xianghuo He, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Bldg. 7, Room 302, 270 Dong An Rd., Shanghai 200032, P.R. China. Phone: 8621-3477-7329; Fax: 8621-6417-2585; E-mail: ; and Zhiao Chen,
| |
Collapse
|
14
|
Venus S, Jankowsky E. Measuring the impact of cofactors on RNA helicase activities. Methods 2022; 204:376-385. [PMID: 35429628 PMCID: PMC9306305 DOI: 10.1016/j.ymeth.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
RNA helicases are the largest class of enzymes in eukaryotic RNA metabolism. In cells, protein cofactors regulate RNA helicase functions and impact biochemical helicase activities. Understanding how cofactors affect enzymatic activities of RNA helicases is thus critical for delineating physical roles and regulation of RNA helicases in cells. Here, we discuss approaches and conceptual considerations for the design of experiments to interrogate cofactor effects on RNA helicase activities in vitro. We outline the mechanistic frame for helicase reactions, discuss optimization of experimental setup and reaction parameters for measuring cofactor effects on RNA helicase activities, and provide basic guides to data analysis and interpretation. The described approaches are also instructive for determining the impact of small molecule inhibitors of RNA helicases.
Collapse
|
15
|
Vanden Broeck A, Klinge S. An emerging mechanism for the maturation of the Small Subunit Processome. Curr Opin Struct Biol 2022; 73:102331. [PMID: 35176592 DOI: 10.1016/j.sbi.2022.102331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
The biogenesis of the eukaryotic ribosome is a tightly regulated and energetically demanding process involving more than 200 ribosome assembly factors. These factors work in concert to ensure accurate assembly and maturation of both ribosomal subunits. Cryo-electron microscopy (cryo-EM) structures of numerous eukaryotic ribosome assembly intermediates have provided a wealth of structural insights highlighting the molecular interplay of a cast of assembly factors. In this review, we focus on recently determined structures of maturing small subunit (SSU) processomes, giant precursors of the small ribosomal subunit. Based on these structures and complementary biochemical and genetic studies, we discuss an emerging mechanism involving exosome-mediated SSU processome maturation and disassembly.
Collapse
Affiliation(s)
- Arnaud Vanden Broeck
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA. https://twitter.com/AVBroeck
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
16
|
Mitterer V, Pertschy B. RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol 2022; 19:781-810. [PMID: 35678541 PMCID: PMC9196750 DOI: 10.1080/15476286.2022.2079890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome biogenesis involves the synthesis of ribosomal RNA (rRNA) and its stepwise folding into the unique structure present in mature ribosomes. rRNA folding starts already co-transcriptionally in the nucleolus and continues when pre-ribosomal particles further maturate in the nucleolus and upon their transit to the nucleoplasm and cytoplasm. While the approximate order of folding of rRNA subdomains is known, especially from cryo-EM structures of pre-ribosomal particles, the actual mechanisms of rRNA folding are less well understood. Both small nucleolar RNAs (snoRNAs) and proteins have been implicated in rRNA folding. snoRNAs hybridize to precursor rRNAs (pre-rRNAs) and thereby prevent premature folding of the respective rRNA elements. Ribosomal proteins (r-proteins) and ribosome assembly factors might have a similar function by binding to rRNA elements and preventing their premature folding. Besides that, a small group of ribosome assembly factors are thought to play a more active role in rRNA folding. In particular, multiple RNA helicases participate in individual ribosome assembly steps, where they are believed to coordinate RNA folding/unfolding events or the release of proteins from the rRNA. In this review, we summarize the current knowledge on mechanisms of RNA folding and on the specific function of the individual RNA helicases involved. As the yeast Saccharomyces cerevisiae is the organism in which ribosome biogenesis and the role of RNA helicases in this process is best studied, we focused our review on insights from this model organism, but also make comparisons to other organisms where applicable.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
- BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, Graz, Austria
| |
Collapse
|
17
|
In vitro characterization of Dhr1 from Saccharomyces cerevisiae. Methods Enzymol 2022; 673:77-101. [DOI: 10.1016/bs.mie.2022.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Black JJ, Johnson AW. Genetics animates structure: leveraging genetic interactions to study the dynamics of ribosome biogenesis. Curr Genet 2021; 67:729-738. [PMID: 33844044 PMCID: PMC11979895 DOI: 10.1007/s00294-021-01187-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022]
Abstract
The assembly of eukaryotic ribosomes follows an assembly line-like pathway in which numerous trans-acting biogenesis factors act on discrete pre-ribosomal intermediates to progressively shape the nascent subunits into their final functional architecture. Recent advances in cryo-electron microscopy have led to high-resolution structures of many pre-ribosomal intermediates; however, these static snapshots do not capture the dynamic transitions between these intermediates. To this end, molecular genetics can be leveraged to reveal how the biogenesis factors drive these dynamic transitions. Here, we briefly review how we recently used the deletion of BUD23 (bud23∆) to understand its role in the assembly of the ribosomal small subunit. The strong growth defect of bud23∆ mutants places a selective pressure on yeast cells for the occurrence of extragenic suppressors that define a network of functional interactions among biogenesis factors. Mapping these suppressing mutations to recently published structures of pre-ribosomal complexes allowed us to contextualize these suppressing mutations and derive a detailed model in which Bud23 promotes a critical transition event to facilitate folding of the central pseudoknot of the small subunit. This mini-review highlights how genetics can be used to understand the dynamics of complex structures, such as the maturing ribosome.
Collapse
Affiliation(s)
- Joshua J Black
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Arlen W Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
19
|
Singh S, Vanden Broeck A, Miller L, Chaker-Margot M, Klinge S. Nucleolar maturation of the human small subunit processome. Science 2021; 373:eabj5338. [PMID: 34516797 DOI: 10.1126/science.abj5338] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sameer Singh
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Arnaud Vanden Broeck
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Linamarie Miller
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.,Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA
| | - Malik Chaker-Margot
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA.,Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA
| | - Sebastian Klinge
- Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
20
|
Hausmann S, Gonzalez D, Geiser J, Valentini M. The DEAD-box RNA helicase RhlE2 is a global regulator of Pseudomonas aeruginosa lifestyle and pathogenesis. Nucleic Acids Res 2021; 49:6925-6940. [PMID: 34151378 PMCID: PMC8266600 DOI: 10.1093/nar/gkab503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
RNA helicases perform essential housekeeping and regulatory functions in all domains of life by binding and unwinding RNA molecules. The bacterial RhlE-like DEAD-box RNA helicases are among the least well studied of these enzymes. They are widespread especially among Proteobacteria, whose genomes often encode multiple homologs. The significance of the expansion and diversification of RhlE-like proteins for bacterial fitness has not yet been established. Here, we study the two RhlE homologs present in the opportunistic pathogen Pseudomonas aeruginosa. We show that, in the course of evolution, RhlE1 and RhlE2 have diverged in their biological functions, molecular partners and RNA-dependent enzymatic activities. Whereas RhlE1 is mainly needed for growth in the cold, RhlE2 also acts as global post-transcriptional regulator, affecting the level of hundreds of cellular transcripts indispensable for both environmental adaptation and virulence. The global impact of RhlE2 is mediated by its unique C-terminal extension, which supports the RNA unwinding activity of the N-terminal domain as well as an RNA-dependent interaction with the RNase E endonuclease and the cellular RNA degradation machinery. Overall, our work reveals how the functional and molecular divergence between two homologous RNA helicases can contribute to bacterial fitness and pathogenesis.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, Institute of Biology, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
van den Heuvel J, Ashiono C, Gillet LC, Dörner K, Wyler E, Zemp I, Kutay U. Processing of the ribosomal ubiquitin-like fusion protein FUBI-eS30/FAU is required for 40S maturation and depends on USP36. eLife 2021; 10:70560. [PMID: 34318747 PMCID: PMC8354635 DOI: 10.7554/elife.70560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
In humans and other holozoan organisms, the ribosomal protein eS30 is synthesized as a fusion protein with the ubiquitin-like protein FUBI. However, FUBI is not part of the mature 40S ribosomal subunit and cleaved off by an as-of-yet unidentified protease. How FUBI-eS30 processing is coordinated with 40S subunit maturation is unknown. To study the mechanism and importance of FUBI-eS30 processing, we expressed non-cleavable mutants in human cells, which affected late steps of cytoplasmic 40S maturation, including the maturation of 18S rRNA and recycling of late-acting ribosome biogenesis factors. Differential affinity purification of wild-type and non-cleavable FUBI-eS30 mutants identified the deubiquitinase USP36 as a candidate FUBI-eS30 processing enzyme. Depletion of USP36 by RNAi or CRISPRi indeed impaired FUBI-eS30 processing and moreover, purified USP36 cut FUBI-eS30 in vitro. Together, these data demonstrate the functional importance of FUBI-eS30 cleavage and identify USP36 as a novel protease involved in this process.
Collapse
Affiliation(s)
- Jasmin van den Heuvel
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Caroline Ashiono
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ludovic C Gillet
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Kerstin Dörner
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Emanuel Wyler
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ivo Zemp
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Grass LM, Wollenhaupt J, Barthel T, Parfentev I, Urlaub H, Loll B, Klauck E, Antelmann H, Wahl MC. Large-scale ratcheting in a bacterial DEAH/RHA-type RNA helicase that modulates antibiotics susceptibility. Proc Natl Acad Sci U S A 2021; 118:e2100370118. [PMID: 34290142 PMCID: PMC8325345 DOI: 10.1073/pnas.2100370118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many bacteria harbor RNA-dependent nucleoside-triphosphatases of the DEAH/RHA family, whose molecular mechanisms and cellular functions are poorly understood. Here, we show that the Escherichia coli DEAH/RHA protein, HrpA, is an ATP-dependent 3 to 5' RNA helicase and that the RNA helicase activity of HrpA influences bacterial survival under antibiotics treatment. Limited proteolysis, crystal structure analysis, and functional assays showed that HrpA contains an N-terminal DEAH/RHA helicase cassette preceded by a unique N-terminal domain and followed by a large C-terminal region that modulates the helicase activity. Structures of an expanded HrpA helicase cassette in the apo and RNA-bound states in combination with cross-linking/mass spectrometry revealed ratchet-like domain movements upon RNA engagement, much more pronounced than hitherto observed in related eukaryotic DEAH/RHA enzymes. Structure-based functional analyses delineated transient interdomain contact sites that support substrate loading and unwinding, suggesting that similar conformational changes support RNA translocation. Consistently, modeling studies showed that analogous dynamic intramolecular contacts are not possible in the related but helicase-inactive RNA-dependent nucleoside-triphosphatase, HrpB. Our results indicate that HrpA may be an interesting target to interfere with bacterial tolerance toward certain antibiotics and suggest possible interfering strategies.
Collapse
Affiliation(s)
- Lena M Grass
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Tatjana Barthel
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| | - Iwan Parfentev
- Bioanalytical Mass Spectrometry, Max-Planck-Institut für biophysikalische Chemie, D-37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max-Planck-Institut für biophysikalische Chemie, D-37077 Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Eberhard Klauck
- Microbiology, Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Haike Antelmann
- Microbiology, Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany;
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, D-12489 Berlin, Germany
| |
Collapse
|
23
|
Zidoune H, Martinerie L, Tan DS, Askari M, Rezgoune D, Ladjouze A, Boukri A, Benelmadani Y, Sifi K, Abadi N, Satta D, Rastari M, Seresht-Ahmadi M, Bignon-Topalovic J, Mazen I, Leger J, Simon D, Brauner R, Totonchi M, Jauch R, Bashamboo A, McElreavey K. Expanding DSD Phenotypes Associated with Variants in the DEAH-Box RNA Helicase DHX37. Sex Dev 2021; 15:244-252. [PMID: 34293745 DOI: 10.1159/000515924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
Missense variants in the RNA-helicase DHX37 are associated with either 46,XY gonadal dysgenesis or 46,XY testicular regression syndrome (TRS). DHX37 is required for ribosome biogenesis, and this subgroup of XY DSD is a new human ribosomopathy. In a cohort of 140 individuals with 46,XY DSD, we identified 7 children with either 46,XY complete gonadal dysgenesis or 46,XY TRS carrying rare or novel DHX37 variants. A novel p.R390H variant within the RecA1 domain was identified in a girl with complete gonadal dysgenesis. A paternally inherited p.R487H variant, previously associated with a recessive congenital developmental syndrome, was carried by a boy with a syndromic form of 46,XY DSD. His phenotype may be explained in part by a novel homozygous loss-of-function variant in the NGLY1 gene, which causes a congenital disorder of deglycosylation. Remarkably, a homozygous p.T477H variant was identified in a boy with TRS. His fertile father had unilateral testicular regression with typical male genital development. This expands the DSD phenotypes associated with DHX37. Structural analysis of all variants predicted deleterious effects on helicase function. Similar to all other known ribosomopathies, the mechanism of pathogenesis is unknown.
Collapse
Affiliation(s)
- Housna Zidoune
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, Paris, France.,Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, Constantine, Algeria.,Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Laetitia Martinerie
- Assistance Publique-Hôpitaux de Paris Université de Paris, Robert Debré University Hospital, Endocrinology-Diabetology Department, Reference Center for Growth and Development Endocrine Diseases, Paris, France
| | - Daisylyn S Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Masomeh Askari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Djalila Rezgoune
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, Constantine, Algeria.,Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | | | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
| | - Yasmina Benelmadani
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Karima Sifi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Noureddine Abadi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Dalila Satta
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, Constantine, Algeria.,Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Mandana Rastari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehrshad Seresht-Ahmadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Inas Mazen
- Genetics Department, National Research Center, Cairo, Egypt
| | - Juliane Leger
- Assistance Publique-Hôpitaux de Paris Université de Paris, Robert Debré University Hospital, Endocrinology-Diabetology Department, Reference Center for Growth and Development Endocrine Diseases, Paris, France
| | - Dominique Simon
- Assistance Publique-Hôpitaux de Paris Université de Paris, Robert Debré University Hospital, Endocrinology-Diabetology Department, Reference Center for Growth and Development Endocrine Diseases, Paris, France
| | - Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Kenneth McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
24
|
Bohnsack KE, Ficner R, Bohnsack MT, Jonas S. Regulation of DEAH-box RNA helicases by G-patch proteins. Biol Chem 2021; 402:561-579. [PMID: 33857358 DOI: 10.1515/hsz-2020-0338] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
RNA helicases of the DEAH/RHA family form a large and conserved class of enzymes that remodel RNA protein complexes (RNPs) by translocating along the RNA. Driven by ATP hydrolysis, they exert force to dissociate hybridized RNAs, dislocate bound proteins or unwind secondary structure elements in RNAs. The sub-cellular localization of DEAH-helicases and their concomitant association with different pathways in RNA metabolism, such as pre-mRNA splicing or ribosome biogenesis, can be guided by cofactor proteins that specifically recruit and simultaneously activate them. Here we review the mode of action of a large class of DEAH-specific adaptor proteins of the G-patch family. Defined only by their eponymous short glycine-rich motif, which is sufficient for helicase binding and stimulation, this family encompasses an immensely varied array of domain compositions and is linked to an equally diverse set of functions. G-patch proteins are conserved throughout eukaryotes and are even encoded within retroviruses. They are involved in mRNA, rRNA and snoRNA maturation, telomere maintenance and the innate immune response. Only recently was the structural and mechanistic basis for their helicase enhancing activity determined. We summarize the molecular and functional details of G-patch-mediated helicase regulation in their associated pathways and their involvement in human diseases.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Stefanie Jonas
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
25
|
Abstract
RNA helicases are ubiquitous, highly conserved RNA-binding enzymes that use the energy derived from the hydrolysis of nucleoside triphosphate to modify the structure of RNA molecules and/or the functionality of ribonucleoprotein complexes. Ultimately, the action of RNA helicases results in changes in gene expression that allow the cell to perform crucial functions. In this chapter, we review established and emerging concepts for DEAD-box and DExH-box RNA helicases. We mention examples from both eukaryotic and prokaryotic systems, in order to highlight common themes and specific actions.
Collapse
Affiliation(s)
- Martina Valentini
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland
| | - Patrick Linder
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Genève, Switzerland.
| |
Collapse
|
26
|
Bud23 promotes the final disassembly of the small subunit Processome in Saccharomyces cerevisiae. PLoS Genet 2020; 16:e1009215. [PMID: 33306676 PMCID: PMC7758049 DOI: 10.1371/journal.pgen.1009215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/23/2020] [Accepted: 10/21/2020] [Indexed: 01/18/2023] Open
Abstract
The first metastable assembly intermediate of the eukaryotic ribosomal small subunit (SSU) is the SSU Processome, a large complex of RNA and protein factors that is thought to represent an early checkpoint in the assembly pathway. Transition of the SSU Processome towards continued maturation requires the removal of the U3 snoRNA and biogenesis factors as well as ribosomal RNA processing. While the factors that drive these events are largely known, how they do so is not. The methyltransferase Bud23 has a role during this transition, but its function, beyond the nonessential methylation of ribosomal RNA, is not characterized. Here, we have carried out a comprehensive genetic screen to understand Bud23 function. We identified 67 unique extragenic bud23Δ-suppressing mutations that mapped to genes encoding the SSU Processome factors DHR1, IMP4, UTP2 (NOP14), BMS1 and the SSU protein RPS28A. These factors form a physical interaction network that links the binding site of Bud23 to the U3 snoRNA and many of the amino acid substitutions weaken protein-protein and protein-RNA interactions. Importantly, this network links Bud23 to the essential GTPase Bms1, which acts late in the disassembly pathway, and the RNA helicase Dhr1, which catalyzes U3 snoRNA removal. Moreover, particles isolated from cells lacking Bud23 accumulated late SSU Processome factors and ribosomal RNA processing defects. We propose a model in which Bud23 dissociates factors surrounding its binding site to promote SSU Processome progression. Ribosomes are the molecular machines that synthesize proteins and are composed of a large and a small subunit which carry out the essential functions of polypeptide synthesis and mRNA decoding, respectively. Ribosome production is tightly linked to cellular growth as cells must produce enough ribosomes to meet their protein needs. However, ribosome assembly is a metabolically expensive pathway that must be balanced with other cellular energy needs and regulated accordingly. In eukaryotes, the small subunit (SSU) Processome is a metastable intermediate that ultimately progresses towards a mature SSU through the release of biogenesis factors. The decision to progress the SSU Processome is thought to be an early checkpoint in the SSU assembly pathway, but insight into the mechanisms of progression is needed. Previous studies suggest that Bud23 plays an uncharacterized role during SSU Processome progression. Here, we used a genetic approach to understand its function and found that Bud23 is connected to a network of SSU Processome factors that stabilize the particle. Interestingly, two of these factors are enzymes that are needed for progression. We conclude that Bud23 promotes the release of factors surrounding its binding site to induce structural rearrangements during the progression of the SSU Processome.
Collapse
|
27
|
Cheng J, Lau B, La Venuta G, Ameismeier M, Berninghausen O, Hurt E, Beckmann R. 90 S pre-ribosome transformation into the primordial 40 S subunit. Science 2020; 369:1470-1476. [PMID: 32943521 DOI: 10.1126/science.abb4119] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Production of small ribosomal subunits initially requires the formation of a 90S precursor followed by an enigmatic process of restructuring into the primordial pre-40S subunit. We elucidate this process by biochemical and cryo-electron microscopy analysis of intermediates along this pathway in yeast. First, the remodeling RNA helicase Dhr1 engages the 90S pre-ribosome, followed by Utp24 endonuclease-driven RNA cleavage at site A1, thereby separating the 5'-external transcribed spacer (ETS) from 18S ribosomal RNA. Next, the 5'-ETS and 90S assembly factors become dislodged, but this occurs sequentially, not en bloc. Eventually, the primordial pre-40S emerges, still retaining some 90S factors including Dhr1, now ready to unwind the final small nucleolar U3-18S RNA hybrid. Our data shed light on the elusive 90S to pre-40S transition and clarify the principles of assembly and remodeling of large ribonucleoproteins.
Collapse
Affiliation(s)
- Jingdong Cheng
- Gene Center, Department of Biochemistry, University of Munich, 81377 Munich, Germany
| | - Benjamin Lau
- Biochemistry Center (BZH), University of Heidelberg, 69120 Heidelberg, Germany
| | - Giuseppe La Venuta
- Biochemistry Center (BZH), University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Ameismeier
- Gene Center, Department of Biochemistry, University of Munich, 81377 Munich, Germany
| | - Otto Berninghausen
- Gene Center, Department of Biochemistry, University of Munich, 81377 Munich, Germany
| | - Ed Hurt
- Biochemistry Center (BZH), University of Heidelberg, 69120 Heidelberg, Germany.
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
28
|
Müller M, Schauer T, Krause S, Villa R, Thomae AW, Becker PB. Two-step mechanism for selective incorporation of lncRNA into a chromatin modifier. Nucleic Acids Res 2020; 48:7483-7501. [PMID: 32510132 PMCID: PMC7528653 DOI: 10.1093/nar/gkaa492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 02/04/2023] Open
Abstract
The MLE DExH helicase and the roX lncRNAs are essential components of the chromatin modifying Dosage Compensation Complex (DCC) in Drosophila. To explore the mechanism of ribonucleoprotein complex assembly, we developed vitRIP, an unbiased, transcriptome-wide in vitro assay that reveals RNA binding specificity. We found that MLE has intrinsic specificity for U-/A-rich sequences and tandem stem-loop structures and binds many RNAs beyond roX in vitro. The selectivity of the helicase for physiological substrates is further enhanced by the core DCC. Unwinding of roX2 by MLE induces a highly selective RNA binding surface in the unstructured C-terminus of the MSL2 subunit and triggers-specific association of MLE and roX2 with the core DCC. The exquisite selectivity of roX2 incorporation into the DCC thus originates from intimate cooperation between the helicase and the core DCC involving two distinct RNA selection principles and their mutual refinement.
Collapse
Affiliation(s)
- Marisa Müller
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Tamas Schauer
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Silke Krause
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Raffaella Villa
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany.,Core Facility Bioimaging at the Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
29
|
Abstract
RNA helicases exert mechanical force that changes RNA configurations in many essential cellular pathways, e.g., during mRNA maturation or assembly of ribosomes. DEAH helicases work by translocating along RNA and thereby unwind RNA duplexes or dissociate bound proteins. Because DEAH proteins are poor enzymes without intrinsic selectivity for target RNAs, they require adapter proteins that recruit them to functional sites and enhance their catalytic activity. One essential class of DEAH activators is formed by G-patch proteins, which bind helicases via their eponymous glycine-rich motif. We solved the structure of a G-patch bound to helicase DHX15. Our analysis suggests that G-patches tether mobile sections of DEAH helicases together and activate them by stabilizing a functional conformation with high RNA affinity. RNA helicases of the DEAH/RHA family are involved in many essential cellular processes, such as splicing or ribosome biogenesis, where they remodel large RNA–protein complexes to facilitate transitions to the next intermediate. DEAH helicases couple adenosine triphosphate (ATP) hydrolysis to conformational changes of their catalytic core. This movement results in translocation along RNA, which is held in place by auxiliary C-terminal domains. The activity of DEAH proteins is strongly enhanced by the large and diverse class of G-patch activators. Despite their central roles in RNA metabolism, insight into the molecular basis of G-patch–mediated helicase activation is missing. Here, we have solved the structure of human helicase DHX15/Prp43, which has a dual role in splicing and ribosome assembly, in complex with the G-patch motif of the ribosome biogenesis factor NKRF. The G-patch motif binds in an extended conformation across the helicase surface. It tethers the catalytic core to the flexibly attached C-terminal domains, thereby fixing a conformation that is compatible with RNA binding. Structures in the presence or absence of adenosine diphosphate (ADP) suggest that motions of the catalytic core, which are required for ATP binding, are still permitted. Concomitantly, RNA affinity, helicase, and ATPase activity of DHX15 are increased when G-patch is bound. Mutations that detach one end of the tether but maintain overall binding severely impair this enhancement. Collectively, our data suggest that the G-patch motif acts like a flexible brace between dynamic portions of DHX15 that restricts excessive domain motions but maintains sufficient flexibility for catalysis.
Collapse
|
30
|
Hausmann S, Geiser J, Vadas O, Ducret V, Perron K, Valentini M. Auxiliary domains of the HrpB bacterial DExH-box helicase shape its RNA preferences. RNA Biol 2020; 17:637-650. [PMID: 32050838 PMCID: PMC7237152 DOI: 10.1080/15476286.2020.1720376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RNA helicases are fundamental players in RNA metabolism: they remodel RNA secondary structures and arrange ribonucleoprotein complexes. While DExH-box RNA helicases function in ribosome biogenesis and splicing in eukaryotes, information is scarce about bacterial homologs. HrpB is the only bacterial DExH-box protein whose structure is solved. Besides the catalytic core, HrpB possesses three accessory domains, conserved in all DExH-box helicases, plus a unique C-terminal extension (CTE). The function of these auxiliary domains remains unknown. Here, we characterize genetically and biochemically Pseudomonas aeruginosa HrpB homolog. We reveal that the auxiliary domains shape HrpB RNA preferences, affecting RNA species recognition and catalytic activity. We show that, among several types of RNAs, the single-stranded poly(A) and the highly structured MS2 RNA strongly stimulate HrpB ATPase activity. In addition, deleting the CTE affects only stimulation by structured RNAs like MS2 and rRNAs, while deletion of accessory domains results in gain of poly(U)-dependent activity. Finally, using hydrogen-deuterium exchange, we dissect the molecular details of HrpB interaction with poly(A) and MS2 RNAs. The catalytic core interacts with both RNAs, triggering a conformational change that reorients HrpB. Regions within the accessory domains and CTE are, instead, specifically responsive to MS2. Altogether, we demonstrate that in bacteria, like in eukaryotes, DExH-box helicase auxiliary domains are indispensable for RNA handling.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Protein Production Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Structural analysis of the intrinsically disordered splicing factor Spp2 and its binding to the DEAH-box ATPase Prp2. Proc Natl Acad Sci U S A 2020; 117:2948-2956. [PMID: 31974312 PMCID: PMC7022188 DOI: 10.1073/pnas.1907960117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spliceosome consists of five small RNAs and more than 100 proteins. Almost 50% of the human spliceosomal proteins were predicted to be intrinsically disordered or to contain disordered regions, among them the G-patch protein Spp2. The G-patch region of Spp2 binds to the DEAH-box ATPase Prp2, and both proteins together are essential for promoting the transition from the Bact to the catalytically active B* spliceosome. Here we show by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy that Spp2 is intrinsically disordered in solution. Crystal structures of a complex consisting of Prp2-ADP and the G-patch domain of Spp2 demonstrate that the G-patch gains a defined fold when bound to Prp2. While the N-terminal region of the G-patch always folds into an α-helix in five different crystal structures, the C-terminal part is able to adopt two alternative conformations. NMR studies further revealed that the N-terminal part of the Spp2 G-patch, which is the most conserved region in different G-patch proteins, transiently samples helical conformations, possibly facilitating a conformational selection binding mechanism. The structural analysis unveils the role of conserved residues of the G-patch in the dynamic interaction mode of Spp2 with Prp2, which is vital to maintain the binding during the Prp2 domain movements needed for RNA translocation.
Collapse
|
32
|
Roychowdhury A, Joret C, Bourgeois G, Heurgué-Hamard V, Lafontaine DLJ, Graille M. The DEAH-box RNA helicase Dhr1 contains a remarkable carboxyl terminal domain essential for small ribosomal subunit biogenesis. Nucleic Acids Res 2019; 47:7548-7563. [PMID: 31188444 PMCID: PMC6698733 DOI: 10.1093/nar/gkz529] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 01/02/2023] Open
Abstract
Ribosome biogenesis is an essential process in all living cells, which entails countless highly sequential and dynamic structural reorganization events. These include formation of dozens RNA helices through Watson-Crick base-pairing within ribosomal RNAs (rRNAs) and between rRNAs and small nucleolar RNAs (snoRNAs), transient association of hundreds of proteinaceous assembly factors to nascent precursor (pre-)ribosomes, and stable assembly of ribosomal proteins. Unsurprisingly, the largest group of ribosome assembly factors are energy-consuming proteins (NTPases) including 25 RNA helicases in budding yeast. Among these, the DEAH-box Dhr1 is essential to displace the box C/D snoRNA U3 from the pre-rRNAs where it is bound in order to prevent premature formation of the central pseudoknot, a dramatic irreversible long-range interaction essential to the overall folding of the small ribosomal subunit. Here, we report the crystal structure of the Dhr1 helicase module, revealing the presence of a remarkable carboxyl-terminal domain essential for Dhr1 function in ribosome biogenesis in vivo and important for its interaction with its coactivator Utp14 in vitro. Furthermore, we report the functional consequences on ribosome biogenesis of DHX37 (human Dhr1) mutations found in patients suffering from microcephaly and other neurological diseases.
Collapse
Affiliation(s)
| | - Clément Joret
- RNA Molecular Biology, ULB Cancer Research Center (U-CRC), Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles (ULB), B-6041 Charleroi-Gosselies, Belgium
| | | | | | - Denis L J Lafontaine
- RNA Molecular Biology, ULB Cancer Research Center (U-CRC), Fonds de la Recherche Scientifique (F.R.S.-FNRS), Université Libre de Bruxelles (ULB), B-6041 Charleroi-Gosselies, Belgium
| | - Marc Graille
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| |
Collapse
|