1
|
Lécuyer E, Sauvageau M, Kothe U, Unrau PJ, Damha MJ, Perreault J, Abou Elela S, Bayfield MA, Claycomb JM, Scott MS. Canada's contributions to RNA research: past, present, and future perspectives. Biochem Cell Biol 2024; 102:472-491. [PMID: 39320985 DOI: 10.1139/bcb-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
The field of RNA research has provided profound insights into the basic mechanisms modulating the function and adaption of biological systems. RNA has also been at the center stage in the development of transformative biotechnological and medical applications, perhaps most notably was the advent of mRNA vaccines that were critical in helping humanity through the Covid-19 pandemic. Unbeknownst to many, Canada boasts a diverse community of RNA scientists, spanning multiple disciplines and locations, whose cutting-edge research has established a rich track record of contributions across various aspects of RNA science over many decades. Through this position paper, we seek to highlight key contributions made by Canadian investigators to the RNA field, via both thematic and historical viewpoints. We also discuss initiatives underway to organize and enhance the impact of the Canadian RNA research community, particularly focusing on the creation of the not-for-profit organization RNA Canada ARN. Considering the strategic importance of RNA research in biology and medicine, and its considerable potential to help address major challenges facing humanity, sustained support of this sector will be critical to help Canadian scientists play key roles in the ongoing RNA revolution and the many benefits this could bring about to Canada.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Martin Sauvageau
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Jonathan Perreault
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sherif Abou Elela
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle S Scott
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
2
|
Ravn Berg S, Dikic A, Sharma A, Hagen L, Vågbø CB, Zatula A, Misund K, Waage A, Slupphaug G. Progression of monoclonal gammopathy of undetermined significance to multiple myeloma is associated with enhanced translational quality control and overall loss of surface antigens. J Transl Med 2024; 22:548. [PMID: 38849800 PMCID: PMC11162064 DOI: 10.1186/s12967-024-05345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Despite significant advancements in treatment strategies, multiple myeloma remains incurable. Additionally, there is a distinct lack of reliable biomarkers that can guide initial treatment decisions and help determine suitable replacement or adjuvant therapies when relapse ensues due to acquired drug resistance. METHODS To define specific proteins and pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM), we have applied super-SILAC quantitative proteomic analysis to CD138 + plasma cells from 9 individuals with MGUS and 37 with MM. RESULTS Unsupervised hierarchical clustering defined three groups: MGUS, MM, and MM with an MGUS-like proteome profile (ML) that may represent a group that has recently transformed to MM. Statistical analysis identified 866 differentially expressed proteins between MM and MGUS, and 189 between MM and ML, 177 of which were common between MGUS and ML. Progression from MGUS to MM is accompanied by upregulated EIF2 signaling, DNA repair, and proteins involved in translational quality control, whereas integrin- and actin cytoskeletal signaling and cell surface markers are downregulated. CONCLUSION Compared to the premalignant plasma cells in MGUS, malignant MM cells apparently have mobilized several pathways that collectively contribute to ensure translational fidelity and to avoid proteotoxic stress, especially in the ER. The overall reduced expression of immunoglobulins and surface antigens contribute to this and may additionally mediate evasion from recognition by the immune apparatus. Our analyses identified a range of novel biomarkers with potential prognostic and therapeutic value, which will undergo further evaluation to determine their clinical significance.
Collapse
Affiliation(s)
- Sigrid Ravn Berg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Aida Dikic
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Cathrine Broberg Vågbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway
| | - Alexey Zatula
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Medical Genetics, St Olavs hospital, N-7491, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway
- Department of Hematology, and Biobank1, St Olavs hospital, N-7491, Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, N-7491, Trondheim, Norway.
- Clinic of Laboratory Medicine, St. Olavs hospital, N-7491, Trondheim, Norway.
- PROMEC Core Facility for Proteomics and Modomics, Norwegian University of Science and Technology, NTNU, and the Central Norway Regional Health Authority Norway, N-7491, Trondheim, Norway.
| |
Collapse
|
3
|
Pederiva C, Trevisan DM, Peirasmaki D, Chen S, Savage SA, Larsson O, Ule J, Baranello L, Agostini F, Farnebo M. Control of protein synthesis through mRNA pseudouridylation by dyskerin. SCIENCE ADVANCES 2023; 9:eadg1805. [PMID: 37506213 PMCID: PMC10381945 DOI: 10.1126/sciadv.adg1805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Posttranscriptional modifications of mRNA have emerged as regulators of gene expression. Although pseudouridylation is the most abundant, its biological role remains poorly understood. Here, we demonstrate that the pseudouridine synthase dyskerin associates with RNA polymerase II, binds to thousands of mRNAs, and is responsible for their pseudouridylation, an action that occurs in chromatin and does not appear to require a guide RNA with full complementarity. In cells lacking dyskerin, mRNA pseudouridylation is reduced, while at the same time, de novo protein synthesis is enhanced, indicating that this modification interferes with translation. Accordingly, mRNAs with fewer pseudouridines due to knockdown of dyskerin are translated more efficiently. Moreover, mRNA pseudouridylation is severely reduced in patients with dyskeratosis congenita caused by inherited mutations in the gene encoding dyskerin (i.e., DKC1). Our findings demonstrate that pseudouridylation by dyskerin modulates mRNA translatability, with important implications for both normal development and disease.
Collapse
Affiliation(s)
- Chiara Pederiva
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Davide M. Trevisan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Shan Chen
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20852, USA
| | - Ola Larsson
- Department of Oncology and Pathology, Karolinska Institutet, Solna 17165, Sweden
- Science for Life Laboratory, Stockholm 17165, Sweden
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK
- UK Dementia Research Institute, King’s College London, London W1T 7NF, UK
- National Institute of Chemistry, 1001 Ljubljana, Slovenia
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
| | - Federico Agostini
- Science for Life Laboratory, Stockholm 17165, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 17165, Sweden
| | - Marianne Farnebo
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
4
|
Adachi H, Pan Y, He X, Chen JL, Klein B, Platenburg G, Morais P, Boutz P, Yu YT. Targeted pseudouridylation: An approach for suppressing nonsense mutations in disease genes. Mol Cell 2023; 83:637-651.e9. [PMID: 36764303 PMCID: PMC9975048 DOI: 10.1016/j.molcel.2023.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
Nonsense mutations create premature termination codons (PTCs), activating the nonsense-mediated mRNA decay (NMD) pathway to degrade most PTC-containing mRNAs. The undegraded mRNA is translated, but translation terminates at the PTC, leading to no production of the full-length protein. This work presents targeted PTC pseudouridylation, an approach for nonsense suppression in human cells. Specifically, an artificial box H/ACA guide RNA designed to target the mRNA PTC can suppress both NMD and premature translation termination in various sequence contexts. Targeted pseudouridylation exhibits a level of suppression comparable with that of aminoglycoside antibiotic treatments. When targeted pseudouridylation is combined with antibiotic treatment, a much higher level of suppression is observed. Transfection of a disease model cell line (carrying a chromosomal PTC) with a designer guide RNA gene targeting the PTC also leads to nonsense suppression. Thus, targeted pseudouridylation is an RNA-directed gene-specific approach that suppresses NMD and concurrently promotes PTC readthrough.
Collapse
Affiliation(s)
- Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yi Pan
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Xueyang He
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bart Klein
- ProQR Therapeutics, Leiden, the Netherlands
| | | | | | - Paul Boutz
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA; Center for Biomedical Informatics and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Montes M, Martínez NM. Rewriting the message: Harnessing RNA pseudouridylation to tackle disease. Mol Cell 2023; 83:503-506. [PMID: 36804913 DOI: 10.1016/j.molcel.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
Adachi et al.1 and Song et al.2 demonstrate the feasibility of engineering pseudouridylation at specific sites and its utility to correct disease-causing premature termination codons (PTCs) in human cells.
Collapse
Affiliation(s)
- Matias Montes
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Martínez
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Nir R, Hoernes TP, Muramatsu H, Faserl K, Karikó K, Erlacher MD, Sas-Chen A, Schwartz S. A systematic dissection of determinants and consequences of snoRNA-guided pseudouridylation of human mRNA. Nucleic Acids Res 2022; 50:4900-4916. [PMID: 35536311 PMCID: PMC9122591 DOI: 10.1093/nar/gkac347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 12/25/2022] Open
Abstract
RNA can be extensively modified post-transcriptionally with >170 covalent modifications, expanding its functional and structural repertoire. Pseudouridine (Ψ), the most abundant modified nucleoside in rRNA and tRNA, has recently been found within mRNA molecules. It remains unclear whether pseudouridylation of mRNA can be snoRNA-guided, bearing important implications for understanding the physiological target spectrum of snoRNAs and for their potential therapeutic exploitation in genetic diseases. Here, using a massively parallel reporter based strategy we simultaneously interrogate Ψ levels across hundreds of synthetic constructs with predesigned complementarity against endogenous snoRNAs. Our results demonstrate that snoRNA-mediated pseudouridylation can occur on mRNA targets. However, this is typically achieved at relatively low efficiencies, and is constrained by mRNA localization, snoRNA expression levels and the length of the snoRNA:mRNA complementarity stretches. We exploited these insights for the design of snoRNAs targeting pseudouridylation at premature termination codons, which was previously shown to suppress translational termination. However, in this and follow-up experiments in human cells we observe no evidence for significant levels of readthrough of pseudouridylated stop codons. Our study enhances our understanding of the scope, 'design rules', constraints and consequences of snoRNA-mediated pseudouridylation.
Collapse
Affiliation(s)
- Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Philipp Hoernes
- Institute of Genomics and RNomics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Hiromi Muramatsu
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus Faserl
- Institute of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Katalin Karikó
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.,BioNTech RNA Pharmaceuticals, Mainz, Germany
| | | | - Aldema Sas-Chen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.,The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Kiss DJ, Oláh J, Tóth G, Varga M, Stirling A, Menyhárd DK, Ferenczy GG. The Structure-Derived Mechanism of Box H/ACA Pseudouridine Synthase Offers a Plausible Paradigm for Programmable RNA Editing. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dóra Judit Kiss
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Gergely Tóth
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. stny. 1/a, H-1117 Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. stny. 1/c, H-1117 Budapest, Hungary
| | - András Stirling
- Theoretical Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Dóra K. Menyhárd
- MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány P. stny. 1/a, H-1117 Budapest, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H-1094 Budapest, Hungary
| |
Collapse
|
8
|
Lin Q, Shi Y, Liu Z, Mehrpour M, Hamaï A, Gong C. Non-coding RNAs as new autophagy regulators in cancer progression. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166293. [PMID: 34688868 DOI: 10.1016/j.bbadis.2021.166293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/09/2022]
Abstract
Recent advances highlight that non-coding RNAs (ncRNAs) are emerging as fundamental regulators in various physiological as well as pathological processes by regulating macro-autophagy. Studies have disclosed that macro-autophagy, which is a highly conserved process involving cellular nutrients, components, and recycling of organelles, can be either selective or non-selective and ncRNAs show their regulation on selective autophagy as well as non-selective autophagy. The abnormal expression of ncRNAs will result in the impairment of autophagy and contribute to carcinogenesis and cancer progression by regulating both selective autophagy as well as non-selective autophagy. This review focuses on the regulatory roles of ncRNAs in autophagy and their involvement in cancer which may provide valuable therapeutic targets for cancer management.
Collapse
Affiliation(s)
- Qun Lin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China
| | - Yu Shi
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China
| | - Zihao Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China
| | - Maryam Mehrpour
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75993, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75993 Paris, France
| | - Ahmed Hamaï
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75993, Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75993 Paris, France
| | - Chang Gong
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Bioland Laboratory, 510005 Guangzhou, China.
| |
Collapse
|
9
|
Deogharia M, Gurha P. The "guiding" principles of noncoding RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1704. [PMID: 34856642 DOI: 10.1002/wrna.1704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/09/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
The human genome is pervasively transcribed and yet only a small fraction of these RNAs (less than 2%) are known to code for proteins. The vast majority of the RNAs are classified as noncoding RNAs (ncRNAs) and are further subgrouped as small (shorter than 200 bases) and long noncoding RNAs. The ncRNAs have been identified in all three domains of life and regulate diverse cellular processes through transcriptional and posttranscriptional gene regulation. Most of these RNAs work in conjunction with proteins forming a wide array of base pairing interactions. The determinants of these base pairing interactions are now becoming more evident and show striking similarities among the diverse group of ncRNAs. Here we present a mechanistic overview of pairing between RNA-RNA or RNA-DNA that dictates the function of ncRNAs; we provide examples to illustrate that ncRNAs work through shared evolutionary mechanisms that encompasses a guide-target interaction, involving not only classical Watson-Crick but also noncanonical Wobble and Hoogsteen base pairing. We also highlight the similarities in target selection, proofreading, and the ruler mechanism of ncRNA-protein complexes that confers target specificity and target site selection. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA-Based Catalysis > RNA-Mediated Cleavage RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, Houston, Texas, USA.,University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, Houston, Texas, USA.,University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
11
|
Deryusheva S, Talross GJS, Gall JG. SnoRNA guide activities: real and ambiguous. RNA (NEW YORK, N.Y.) 2021; 27:1363-1373. [PMID: 34385348 PMCID: PMC8522698 DOI: 10.1261/rna.078916.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
In eukaryotes, rRNAs and spliceosomal snRNAs are heavily modified post-transcriptionally. Pseudouridylation and 2'-O-methylation are the most abundant types of RNA modifications. They are mediated by modification guide RNAs, also known as small nucleolar (sno)RNAs and small Cajal body-specific (sca)RNAs. We used yeast and vertebrate cells to test guide activities predicted for a number of snoRNAs, based on their regions of complementarity with rRNAs. We showed that human SNORA24 is a genuine guide RNA for 18S-Ψ609, despite some noncanonical base-pairing with its target. At the same time, we found quite a few snoRNAs that have the ability to base-pair with rRNAs and can induce predicted modifications in artificial substrate RNAs, but do not modify the same target sequence within endogenous rRNA molecules. Furthermore, certain fragments of rRNAs can be modified by the endogenous yeast modification machinery when inserted into an artificial backbone RNA, even though the same sequences are not modified in endogenous yeast rRNAs. In Xenopus cells, a guide RNA generated from scaRNA, but not from snoRNA, could induce an additional pseudouridylation of U2 snRNA at position 60; both guide RNAs were equally active on a U2 snRNA-specific substrate in yeast cells. Thus, post-transcriptional modification of functionally important RNAs, such as rRNAs and snRNAs, is highly regulated and more complex than simply strong base-pairing between a guide RNA and substrate RNA. We discuss possible regulatory roles for these unexpected modifications.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Gaëlle J S Talross
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
12
|
From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021; 9:biomedicines9050550. [PMID: 34068948 PMCID: PMC8156014 DOI: 10.3390/biomedicines9050550] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides interact with a target RNA via Watson-Crick complementarity, affecting RNA-processing reactions such as mRNA degradation, pre-mRNA splicing, or mRNA translation. Since they were proposed decades ago, several have been approved for clinical use to correct genetic mutations. Three types of mechanisms of action (MoA) have emerged: RNase H-dependent degradation of mRNA directed by short chimeric antisense oligonucleotides (gapmers), correction of splicing defects via splice-modulation oligonucleotides, and interference of gene expression via short interfering RNAs (siRNAs). These antisense-based mechanisms can tackle several genetic disorders in a gene-specific manner, primarily by gene downregulation (gapmers and siRNAs) or splicing defects correction (exon-skipping oligos). Still, the challenge remains for the repair at the single-nucleotide level. The emerging field of epitranscriptomics and RNA modifications shows the enormous possibilities for recoding the transcriptome and repairing genetic mutations with high specificity while harnessing endogenously expressed RNA processing machinery. Some of these techniques have been proposed as alternatives to CRISPR-based technologies, where the exogenous gene-editing machinery needs to be delivered and expressed in the human cells to generate permanent (DNA) changes with unknown consequences. Here, we review the current FDA-approved antisense MoA (emphasizing some enabling technologies that contributed to their success) and three novel modalities based on post-transcriptional RNA modifications with therapeutic potential, including ADAR (Adenosine deaminases acting on RNA)-mediated RNA editing, targeted pseudouridylation, and 2′-O-methylation.
Collapse
|
13
|
Trucks S, Hanspach G, Hengesbach M. Eukaryote specific RNA and protein features facilitate assembly and catalysis of H/ACA snoRNPs. Nucleic Acids Res 2021; 49:4629-4642. [PMID: 33823543 PMCID: PMC8096250 DOI: 10.1093/nar/gkab177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
H/ACA Box ribonucleoprotein complexes (RNPs) play a major role in modification of rRNA and snRNA, catalyzing the sequence specific pseudouridylation in eukaryotes and archaea. This enzymatic reaction takes place on a substrate RNA recruited via base pairing to an internal loop of the snoRNA. Eukaryotic snoRNPs contain the four proteins Nop10, Cbf5, Gar1 and Nhp2, with Cbf5 as the catalytic subunit. In contrast to archaeal H/ACA RNPs, eukaryotic snoRNPs contain several conserved features in both the snoRNA as well as the protein components. Here, we reconstituted the eukaryotic H/ACA RNP containing snR81 as a guide RNA in vitro and report on the effects of these eukaryote specific features on complex assembly and enzymatic activity. We compare their contribution to pseudouridylation activity for stand-alone hairpins versus the bipartite RNP. Using single molecule FRET spectroscopy, we investigated the role of the different eukaryote-specific proteins and domains on RNA folding and complex assembly, and assessed binding of substrate RNA to the RNP. Interestingly, we found diverging effects for the two hairpins of snR81, suggesting hairpin-specific requirements for folding and RNP formation. Our results for the first time allow assessing interactions between the individual hairpin RNPs in the context of the full, bipartite snoRNP.
Collapse
Affiliation(s)
- Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
14
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
15
|
Czekay DP, Schultz SK, Kothe U. Assaying the Molecular Determinants and Kinetics of RNA Pseudouridylation by H/ACA snoRNPs and Stand-Alone Pseudouridine Synthases. Methods Mol Biol 2021; 2298:357-378. [PMID: 34085255 DOI: 10.1007/978-1-0716-1374-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Posttranscriptional modifications of RNA play an important role in promoting the maturation and functional diversity of many RNA species. Accordingly, understanding the enzymes and mechanisms that underlie RNA modifications is an important aspect in advancing our knowledge of the continually expanding RNA modification field. However, of the more than 160 currently identified RNA modifications, a large portion remains without quantitative detection assays for their biochemical characterization. Here, we describe the tritium release assay as a convenient tool allowing for the quantitative assessment of in vitro RNA pseudouridylation by stand-alone or box H/ACA RNA-guided pseudouridine synthases. This assay enables quantification of RNA pseudouridylation over a time course to effectively compare pseudouridylation activity between different substrates and/or different recombinant enzymes as well as to determine kinetic parameters. With the help of a quench-flow apparatus, the tritium release assay can be adapted for rapid kinetic measurements under single-turnover conditions to dissect reaction mechanisms. As examples, we show the formation of pseudouridines by a reconstituted Saccharomyces cerevisiae H/ACA small ribonucleoprotein (snoRNP) and an Escherichia coli stand-alone pseudouridine synthase.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Sarah K Schultz
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
16
|
Adachi H, Yu YT. Pseudouridine-mediated stop codon readthrough in S. cerevisiae is sequence context-independent. RNA (NEW YORK, N.Y.) 2020; 26:1247-1256. [PMID: 32434780 PMCID: PMC7430670 DOI: 10.1261/rna.076042.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/19/2020] [Indexed: 05/26/2023]
Abstract
We have previously shown that when the uridine of a stop codon (UAA, UAG, or UGA) is pseudouridylated, the ribosome reads through the modified stop codon. However, it is not clear as to whether or not the pseudouridine (Ψ)-mediated readthrough is dependent on the sequence context of mRNA. Here, we use several different approaches and the yeast system to address this question. We show that when a stop codon (premature termination codon, PTC) is introduced into the coding region of a reporter mRNA at several different positions (with different sequence contexts) and pseudouridylated, we detect similar levels of readthrough. Using mutational and selection/screen analyses, we also show that the upstream sequence (relative to PTC) as well as the nucleotides surrounding the PTC (upstream and downstream) play a minimal role (if at all) in Ψ-mediated ribosome readthrough. Interestingly, we detect no suppression of NMD (nonsense-mediated mRNA decay) by targeted PTC pseudouridylation in the yeast system. Our results indicate that Ψ-mediated nonsense suppression occurs at the translational level, and that the suppression is sequence context-independent, unlike some previously characterized rare stop codon readthrough events.
Collapse
Affiliation(s)
- Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA
| |
Collapse
|
17
|
Borchardt EK, Martinez NM, Gilbert WV. Regulation and Function of RNA Pseudouridylation in Human Cells. Annu Rev Genet 2020; 54:309-336. [PMID: 32870730 DOI: 10.1146/annurev-genet-112618-043830] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in pseudouridine detection reveal a complex pseudouridine landscape that includes messenger RNA and diverse classes of noncoding RNA in human cells. The known molecular functions of pseudouridine, which include stabilizing RNA conformations and destabilizing interactions with varied RNA-binding proteins, suggest that RNA pseudouridylation could have widespread effects on RNA metabolism and gene expression. Here, we emphasize how much remains to be learned about the RNA targets of human pseudouridine synthases, their basis for recognizing distinct RNA sequences, and the mechanisms responsible for regulated RNA pseudouridylation. We also examine the roles of noncoding RNA pseudouridylation in splicing and translation and point out the potential effects of mRNA pseudouridylation on protein production, including in the context of therapeutic mRNAs.
Collapse
Affiliation(s)
- Erin K Borchardt
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Nicole M Martinez
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, USA; , ,
| |
Collapse
|
18
|
Morais P, Adachi H, Yu YT. Suppression of Nonsense Mutations by New Emerging Technologies. Int J Mol Sci 2020; 21:ijms21124394. [PMID: 32575694 PMCID: PMC7352488 DOI: 10.3390/ijms21124394] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Nonsense mutations often result from single nucleotide substitutions that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of a gene. The impact of nonsense mutations is two-fold: (1) the PTC-containing mRNA is degraded by a surveillance pathway called nonsense-mediated mRNA decay (NMD) and (2) protein translation stops prematurely at the PTC codon, and thus no functional full-length protein is produced. As such, nonsense mutations result in a large number of human diseases. Nonsense suppression is a strategy that aims to correct the defects of hundreds of genetic disorders and reverse disease phenotypes and conditions. While most clinical trials have been performed with small molecules, there is an increasing need for sequence-specific repair approaches that are safer and adaptable to personalized medicine. Here, we discuss recent advances in both conventional strategies as well as new technologies. Several of these will soon be tested in clinical trials as nonsense therapies, even if they still have some limitations and challenges to overcome.
Collapse
Affiliation(s)
- Pedro Morais
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, The Netherlands;
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
- Correspondence: ; Tel.: +1-(585)-275-1271; Fax: +1-(585)-275-6007
| |
Collapse
|
19
|
Ojha S, Malla S, Lyons SM. snoRNPs: Functions in Ribosome Biogenesis. Biomolecules 2020; 10:biom10050783. [PMID: 32443616 PMCID: PMC7277114 DOI: 10.3390/biom10050783] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Ribosomes are perhaps the most critical macromolecular machine as they are tasked with carrying out protein synthesis in cells. They are incredibly complex structures composed of protein components and heavily chemically modified RNAs. The task of assembling mature ribosomes from their component parts consumes a massive amount of energy and requires greater than 200 assembly factors. Among the most critical of these are small nucleolar ribonucleoproteins (snoRNPs). These are small RNAs complexed with diverse sets of proteins. As suggested by their name, they localize to the nucleolus, the site of ribosome biogenesis. There, they facilitate multiple roles in ribosomes biogenesis, such as pseudouridylation and 2′-O-methylation of ribosomal (r)RNA, guiding pre-rRNA processing, and acting as molecular chaperones. Here, we reviewed their activity in promoting the assembly of ribosomes in eukaryotes with regards to chemical modification and pre-rRNA processing.
Collapse
Affiliation(s)
- Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Sulochan Malla
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Shawn M. Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-358-4280
| |
Collapse
|
20
|
Majumder M, Mukhopadhyay S, Kharel P, Gupta R. The presence of the ACA box in archaeal H/ACA guide RNAs promotes atypical pseudouridylation. RNA (NEW YORK, N.Y.) 2020; 26:396-418. [PMID: 31919243 PMCID: PMC7075261 DOI: 10.1261/rna.073734.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Archaea and eukaryotes, in addition to protein-only enzymes, also possess ribonucleoproteins containing an H/ACA guide RNA plus four proteins that produce pseudouridine (Ψ). Although typical conditions for these RNA-guided reactions are known, certain variant conditions allow pseudouridylation. We used mutants of the two stem-loops of the Haloferax volcanii sR-h45 RNA that guides three pseudouridylations in 23S rRNA and their target RNAs to characterize modifications under various atypical conditions. The 5' stem-loop produces Ψ2605 and the 3' stem-loop produces Ψ1940 and Ψ1942. The latter two modifications require unpaired "UVUN" (V = A, C, or G) in the target and ACA box in the guide. Ψ1942 modification requires the presence of U1940 (or Ψ1940). Ψ1940 is not produced in the Ψ1942-containing substrate, suggesting a sequential modification of the two residues. The ACA box of a single stem-loop guide is not required when typically unpaired "UN" is up to 17 bases from its position in the guide, but is needed when the distance increases to 19 bases or the N is paired. However, ANA of the H box of the double stem-loop guide is needed even for the 5' typical pseudouridylation. The most 5' unpaired U in a string of U's is converted to Ψ, and in the absence of an unpaired U, a paired U can also be modified. Certain mutants of the Cbf5 protein affect pseudouridylation by the two stem-loops of sR-h45 differently. This study will help elucidate the conditions for production of nonconstitutive Ψ's, determine functions for orphan H/ACA RNAs and in target designing.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Shaoni Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Parinati Kharel
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|