1
|
Fang F, Guo X, Liu S, Dang L, Chen Z, Yang Y, Chen L, Lin J, Qiu W, Chen Z, Wu B. LincRNA-ASAO promotes dental pulp repair through interacting with PTBP1 to increase ALPL alternative splicing. Stem Cell Res Ther 2025; 16:149. [PMID: 40140936 PMCID: PMC11948687 DOI: 10.1186/s13287-025-04274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Alternative splicing not only expands the genetic encoding of genes but also determines cellular activities. This study aimed to elucidate the regulation mechanism and biological functions of lincRNA-ASAO in the process of odontogenesis-related genes alternative splicing mediated odontogenic differentiation of hDPSCs. METHODS RACE, RNA-seq, FISH and bioinformatics techniques were used to identify novel lincRNA-ASAO. ALP staining, alizarin red staining, qRT-PCR and western blot were used to identify the role of lincRNA-ASAO in regulating the odontoblast differentiation of hDPSCs. The binding protein PTBP1 of lincRNA-ASAO was screened by RNA-Pulldown, protein profiling and bioinformatics. The target gene ALPL of lincRNA-ASAO/PTBP1 was identified by RNA-seq, bioinformatics technology and DNA agarose gel electrophoresis. FISH, IF, PAR-CLIP and bioinformatics techniques were used to determine the roles of lincRNA-ASAO, PTBP1 and ALPL pre-mRNA in the odontoblast differentiation of hDPSCs. RESULTS We identified a novel lincRNA-ASAO that could promote the odontogenic differentiation of human Dental Pulp Stem Cells (hDPSCs). And, the interaction between lincRNA-ASAO and alternative splicing factor PTBP1 promoted the odontoblast differentiation of hDPSCs. In addition, lincRNA-ASAO forms duplexes with ALPL pre-mRNA, targeting PTBP1 to exonic splicing silencer (ESS) of ALPL and regulating exon 2 skipping. Notably, lincRNA-ASAO/PTBP1 regulated ALPL production to increase the type 2 splice variant, which promoted the odontoblast differentiation of hDPSCs. CONCLUSIONS We have identified the novel lincRNA-ASAO, which can promote the odontoblast differentiation of hDPSCs. The mechanism study found that lincRNA-ASAO/PTBP1 mediated the exon 2 skipping of ALPL pre-mRNA, resulting in the type 2 splice variant of ALPL. Our results enrich the understanding of lncRNAs and alternative splicing in regulating the odontoblast differentiation of hDPSCs, and provide clues to improve the clinical therapeutic potential of hDPSCs for dental pulp restoration.
Collapse
Affiliation(s)
- Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolan Guo
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sitong Liu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longrui Dang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yumeng Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiahao Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China.
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Li G, Zhao B, Su X, Yang Y, Zeng Z, Hu P, Hu L. Capturing short-range and long-range dependencies of nucleotides for identifying RNA N6-methyladenosine modification sites. Comput Biol Med 2025; 186:109625. [PMID: 39756188 DOI: 10.1016/j.compbiomed.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
N6-methyladenosine (m6A) plays a crucial role in enriching RNA functional and genetic information, and the identification of m6A modification sites is therefore an important task to promote the understanding of RNA epigenetics. In the identification process, current studies are mainly concentrated on capturing the short-range dependencies between adjacent nucleotides in RNA sequences, while ignoring the impact of long-range dependencies between non-adjacent nucleotides for learning high-quality representation of RNA sequences. In this work, we propose an end-to-end prediction model, called m6ASLD, to improve the identification accuracy of m6A modification sites by capturing the short-range and long-range dependencies of nucleotides. Specifically, m6ASLD first encodes the type and position information of nucleotides to construct the initial embeddings of RNA sequences. A self-correlation map is then generated to characterize both short-range and long-range dependencies with a designed map generating block for each RNA sequence. After that, m6ASLD learns the global and local representations of RNA sequences by using a graph convolution process and a designed dependency searching block respectively, and finally achieves its identification task under a joint training scheme. Extensive experiments have demonstrated the promising performance of m6ASLD on 11 benchmark datasets across several evaluation metrics.
Collapse
Affiliation(s)
- Guodong Li
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Bowei Zhao
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Xiaorui Su
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Yue Yang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Zhi Zeng
- College of Computer Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Pengwei Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| | - Lun Hu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, 830011, Urumqi, China; University of Chinese Academy of Sciences, 100049, Beijing, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, 830011, Urumqi, China.
| |
Collapse
|
3
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
4
|
Brownmiller T, Caplen NJ. The HNRNPF/H RNA binding proteins and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1788. [PMID: 37042074 PMCID: PMC10523889 DOI: 10.1002/wrna.1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Haque N, Will A, Cook AG, Hogg JR. A network of DZF proteins controls alternative splicing regulation and fidelity. Nucleic Acids Res 2023; 51:6411-6429. [PMID: 37144502 PMCID: PMC10325889 DOI: 10.1093/nar/gkad351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Proteins containing DZF (domain associated with zinc fingers) modules play important roles throughout gene expression, from transcription to translation. Derived from nucleotidyltransferases but lacking catalytic residues, DZF domains serve as heterodimerization surfaces between DZF protein pairs. Three DZF proteins are widely expressed in mammalian tissues, ILF2, ILF3 and ZFR, which form mutually exclusive ILF2-ILF3 and ILF2-ZFR heterodimers. Using eCLIP-Seq, we find that ZFR binds across broad intronic regions to regulate the alternative splicing of cassette and mutually exclusive exons. ZFR preferentially binds dsRNA in vitro and is enriched on introns containing conserved dsRNA elements in cells. Many splicing events are similarly altered upon depletion of any of the three DZF proteins; however, we also identify independent and opposing roles for ZFR and ILF3 in alternative splicing regulation. Along with widespread involvement in cassette exon splicing, the DZF proteins control the fidelity and regulation of over a dozen highly validated mutually exclusive splicing events. Our findings indicate that the DZF proteins form a complex regulatory network that leverages dsRNA binding by ILF3 and ZFR to modulate splicing regulation and fidelity.
Collapse
Affiliation(s)
- Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892, USA
| | - Alexander Will
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
6
|
Protocatechuic Aldehyde Alleviates d -Galactose-Induced Cardiomyocyte Senescence by Regulating the TCF3/ATG5 Axis. J Cardiovasc Pharmacol 2023; 81:221-231. [PMID: 36651950 DOI: 10.1097/fjc.0000000000001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/03/2022] [Indexed: 01/19/2023]
Abstract
ABSTRACT Cardiomyocyte senescence is an independent risk factor for cardiovascular diseases. Protocatechuic aldehyde (PCA) is a natural chemical in the Chinese medicinal herb Salvia miltiorrhiza . PCA could protect against oxidative stress and inflammation in the cardiovascular system. In present study, we treated H9C2 cells with d -galactose to establish an in vitro model of cardiomyocyte senescence and investigated the role and underlying mechanisms of PCA in myocardial cell senescence. It was found that d -galactose induced transcription factor 3 (TCF3) expression and decreased autophagy-related genes 5 (ATG5) expression. Meanwhile, inflammation and senescence were exacerbated by d -galactose. TCF3 transcriptionally inhibited ATG5 expression. TCF3 knockdown abolished the effects of d -galactose on H9C2 by activating ATG5-mediated autophagy. PCA hindered TCF3 and inflammation to alleviate the d -galactose-induced senescence of H9C2 cells in a dose-dependent manner. Whereas, the anti-inflammation and anti-senescence effects of PCA were reversed by TCF3 knockdown. Furthermore, absence of ATG5 partially eliminated the impacts of PCA on H9C2 cells treated with d -galactose. Conclusively, PCA alleviated d -galactose-induced senescence by downregulating TCF3, promoting ATG5-mediated autophagy, and inhibiting inflammation in H9C2 cells. These results elucidated the potential mechanism by which PCA alleviated cardiomyocyte senescence and enabled its application in treating cardiomyocyte senescence.
Collapse
|
7
|
Feng S, Wen H, Liu K, Xiong M, Li J, Gui Y, Lv C, Zhang J, Ma X, Wang X, Yuan S. hnRNPH1 establishes Sertoli-germ cell crosstalk through cooperation with PTBP1 and AR, and is essential for male fertility in mice. Development 2023; 150:dev201040. [PMID: 36718792 DOI: 10.1242/dev.201040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023]
Abstract
Spermatogenesis depends on the crosstalk of Sertoli cells (SCs) and germ cells. However, the gene regulatory network establishing the communications between SCs and germ cells remains unclear. Here, we report that heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) in SCs is essential for the establishment of crosstalk between SCs and germ cells. Conditional knockout of hnRNPH1 in mouse SCs leads to compromised blood-testis barrier function, delayed meiotic progression, increased germ cell apoptosis, sloughing of germ cells and, eventually, infertility of mice. Mechanistically, we discovered that hnRNPH1 could interact with the splicing regulator PTBP1 in SCs to regulate the pre-mRNA alternative splicing of the target genes functionally related to cell adhesion. Interestingly, we also found hnRNPH1 could cooperate with the androgen receptor, one of the SC-specific transcription factors, to modulate the transcription level of a group of genes associated with the cell-cell junction and EGFR pathway by directly binding to the gene promoters. Collectively, our findings reveal a crucial role for hnRNPH1 in SCs during spermatogenesis and uncover a potential molecular regulatory network involving hnRNPH1 in establishing Sertoli-germ cell crosstalk.
Collapse
Affiliation(s)
- Shenglei Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kuan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengneng Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinmei Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqian Gui
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chunyu Lv
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xixiang Ma
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
8
|
Liu M, Yang L, Liu X, Nie Z, Zhang X, Lu Y, Pan Y, Wang X, Luo J. HNRNPH1 Is a Novel Regulator Of Cellular Proliferation and Disease Progression in Chronic Myeloid Leukemia. Front Oncol 2021; 11:682859. [PMID: 34295818 PMCID: PMC8290130 DOI: 10.3389/fonc.2021.682859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022] Open
Abstract
RNA binding proteins act as essential modulators in cancers by regulating biological cellular processes. Heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1), as a key member of the heterogeneous nuclear ribonucleoproteins family, is frequently upregulated in multiple cancer cells and involved in tumorigenesis. However, the function of HNRNPH1 in chronic myeloid leukemia (CML) remains unclear. In the present study, we revealed that HNRNPH1 expression level was upregulated in CML patients and cell lines. Moreover, the higher level of HNRNPH1 was correlated with disease progression of CML. In vivo and in vitro experiments showed that knockdown of HNRNPH1 inhibited cell proliferation and promoted cell apoptosis in CML cells. Importantly, knockdown of HNRNPH1 in CML cells enhanced sensitivity to imatinib. Mechanically, HNRNPH1 could bind to the mRNA of PTPN6 and negatively regulated its expression. PTPN6 mediated the regulation between HNRNPH1 and PI3K/AKT activation. Furthermore, the HNRNPH1–PTPN6–PI3K/AKT axis played a critical role in CML tumorigenesis and development. The present study first investigated the deregulated HNRNPH1–PTPN6–PI3K/AKT axis moderated cell growth and apoptosis in CML cells, whereby targeting this pathway may be a therapeutic CML treatment.
Collapse
Affiliation(s)
- Menghan Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Xiaojun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Ziyuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Xiaoyan Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Yaqiong Lu
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Yuxia Pan
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Xingzhe Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| | - Jianmin Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Key Laboratory of Hematology, Shijiazhuang, China
| |
Collapse
|
9
|
Conboy JG. Unannotated splicing regulatory elements in deep intron space. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1656. [PMID: 33887804 DOI: 10.1002/wrna.1656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Deep intron space harbors a diverse array of splicing regulatory elements that cooperate with better-known exon-proximal elements to enforce proper tissue-specific and development-specific pre-mRNA processing. Many deep intron elements have been highly conserved through vertebrate evolution, yet remain poorly annotated in the human genome. Recursive splicing exons (RS-exons) and intraexons promote noncanonical, multistep resplicing pathways in long introns, involving transient intermediate structures that are greatly underrepresented in RNA-seq datasets. Decoy splice sites and decoy exons act at a distance to inhibit splicing catalysis at annotated splice sites, with functional consequences such as exon skipping and intron retention. RNA:RNA bridges can juxtapose distant sequences within or across introns to activate deep intron splicing enhancers and silencers, to loop out exons to be skipped, or to select one member of a mutually exclusive set of exons. Similarly, protein bridges mediated by interactions among transcript-bound RNA binding proteins (RBPs) can modulate splicing outcomes. Experimental disruption of deep intron elements serving any of these functions can abrogate normal splicing, strongly suggesting that natural mutations of deep intron elements can do likewise to cause human disease. Understanding noncanonical splicing pathways and discovering deep intron regulatory signals, many of which map hundreds to many thousands of nucleotides from annotated splice junctions, is of great academic interest for basic scientists studying alternative splicing mechanisms. Hopefully, this knowledge coupled with increased analysis of deep intron sequences will also have important medical applications, as better interpretation of deep intron mutations may reveal new disease mechanisms and suggest new therapies. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- John G Conboy
- Lawrence Berkeley National Laboratory, Biological Systems and Engineering Division, Berkeley, California, USA
| |
Collapse
|
10
|
Gong M, Zhang X, Wang Y, Mao G, Ou Y, Wei C, Hu X, Xiang S. DDX21 interacts with nuclear AGO2 and regulates the alternative splicing of SMN2. Biosci Biotechnol Biochem 2021; 85:272-279. [PMID: 33604619 DOI: 10.1093/bbb/zbaa029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/17/2020] [Indexed: 01/30/2023]
Abstract
AGO2 is the only member of mammalian Ago protein family that possesses the catalytic activity and plays a central role in gene silencing. Recently researches reported that multiple gene silencing factors, including AGO2, function in the nuclei. The molecular mechanisms of the gene silencing factors functioning in nuclei are conducive to comprehend the roles of gene silencing in pretranslational regulation of gene expression. Here, we report that AGO2 interacts with DDX21 indirectly in an RNA-dependent manner by Co-IP and GST-Pulldown assays and the 2 proteins present nuclei foci in the immunofluorescence experiments. We found that DDX21 up-regulated the protein level of AGO2 and participated in target gene, SNM2, alternative splicing involved in AGO2 by the indirect interaction with AGO2, which produced different transcripts of SMN2 in discrepant expression level. This study laid important experiment foundation for the further analysis of the nuclear functions of gene silencing components.
Collapse
Affiliation(s)
- Mengting Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China.,College of Physical Education, Hunan University of Finance and Economics, Changsha, China
| | - Xi Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yaru Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guiyan Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yangqi Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
11
|
Xie W, Zhu H, Zhao M, Wang L, Li S, Zhao C, Zhou Y, Zhu B, Jiang X, Liu W, Ren C. Crucial roles of different RNA-binding hnRNP proteins in Stem Cells. Int J Biol Sci 2021; 17:807-817. [PMID: 33767590 PMCID: PMC7975692 DOI: 10.7150/ijbs.55120] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/07/2021] [Indexed: 11/05/2022] Open
Abstract
The self-renewal, pluripotency and differentiation of stem cells are regulated by various genetic and epigenetic factors. As a kind of RNA binding protein (RBP), the heterogeneous nuclear ribonucleoproteins (hnRNPs) can act as "RNA scaffold" and recruit mRNA, lncRNA, microRNA and circRNA to affect mRNA splicing and processing, regulate gene transcription and post-transcriptional translation, change genome structure, and ultimately play crucial roles in the biological processes of cells. Recent researches have demonstrated that hnRNPs are irreplaceable for self-renewal and differentiation of stem cells. hnRNPs function in stem cells by multiple mechanisms, which include regulating mRNA stability, inducing alternative splicing of mRNA, epigenetically regulate gene expression, and maintaining telomerase activity and telomere length. The functions and the underlying mechanisms of hnRNPs in stem cells deserve further investigation.
Collapse
Affiliation(s)
- Wen Xie
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Hecheng Zhu
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, China
| | - Lei Wang
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Shasha Li
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Cong Zhao
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Yao Zhou
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Bin Zhu
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, School of Basic Medical Science, Xiangya Hospital, Central South University, Changsha 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha 410008, China
| |
Collapse
|
12
|
Nadeu F, Martin-Garcia D, Clot G, Díaz-Navarro A, Duran-Ferrer M, Navarro A, Vilarrasa-Blasi R, Kulis M, Royo R, Gutiérrez-Abril J, Valdés-Mas R, López C, Chapaprieta V, Puiggros M, Castellano G, Costa D, Aymerich M, Jares P, Espinet B, Muntañola A, Ribera-Cortada I, Siebert R, Colomer D, Torrents D, Gine E, López-Guillermo A, Küppers R, Martin-Subero JI, Puente XS, Beà S, Campo E. Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes. Blood 2020; 136:1419-1432. [PMID: 32584970 PMCID: PMC7498364 DOI: 10.1182/blood.2020005289] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm initially driven by CCND1 rearrangement with 2 molecular subtypes, conventional MCL (cMCL) and leukemic non-nodal MCL (nnMCL), that differ in their clinicobiological behavior. To identify the genetic and epigenetic alterations determining this diversity, we used whole-genome (n = 61) and exome (n = 21) sequencing (74% cMCL, 26% nnMCL) combined with transcriptome and DNA methylation profiles in the context of 5 MCL reference epigenomes. We identified that open and active chromatin at the major translocation cluster locus might facilitate the t(11;14)(q13;32), which modifies the 3-dimensional structure of the involved regions. This translocation is mainly acquired in precursor B cells mediated by recombination-activating genes in both MCL subtypes, whereas in 8% of cases the translocation occurs in mature B cells mediated by activation-induced cytidine deaminase. We identified novel recurrent MCL drivers, including CDKN1B, SAMHD1, BCOR, SYNE1, HNRNPH1, SMARCB1, and DAZAP1. Complex structural alterations emerge as a relevant early oncogenic mechanism in MCL, targeting key driver genes. Breakage-fusion-bridge cycles and translocations activated oncogenes (BMI1, MIR17HG, TERT, MYC, and MYCN), generating gene amplifications and remodeling regulatory regions. cMCL carried significant higher numbers of structural variants, copy number alterations, and driver changes than nnMCL, with exclusive alterations of ATM in cMCL, whereas TP53 and TERT alterations were slightly enriched in nnMCL. Several drivers had prognostic impact, but only TP53 and MYC aberrations added value independently of genomic complexity. An increasing genomic complexity, together with the presence of breakage-fusion-bridge cycles and high DNA methylation changes related to the proliferative cell history, defines patients with different clinical evolution.
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - David Martin-Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Ander Díaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Navarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Roser Vilarrasa-Blasi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Romina Royo
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Jesús Gutiérrez-Abril
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Rafael Valdés-Mas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
| | - Pedro Jares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| | - Blanca Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, Barcelona, Spain
| | - Ana Muntañola
- Servei d'Hematologia, Hospital Mútua de Terrassa, Terrassa, Spain
| | - Inmaculada Ribera-Cortada
- Hospital Clínic of Barcelona, Barcelona, Spain
- Hospital Nostra Senyora de Meritxell, Escaldes-Engordany, Andorra la Vella, Andorra
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| | | | - Eva Gine
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
| | - Armando López-Guillermo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
- German Consortium for Cancer Research, Heidelberg, Germany; and
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Yamazaki T, Liu L, Conlon EG, Manley JL. Burkitt lymphoma-related TCF3 mutations alter TCF3 alternative splicing by disrupting hnRNPH1 binding. RNA Biol 2020; 17:1383-1390. [PMID: 32449435 DOI: 10.1080/15476286.2020.1772559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Burkitt lymphoma (BL) is an aggressive B-cell lymphoma characterized by translocation and deregulation of the proto-oncogene c-MYC. Transcription factor 3 (TCF3) has also been shown to be involved in BL pathogenesis. In BL, TCF3 is constitutively active, and/or expression of its transcriptional targets are altered as a result of BL-associated mutations. Here, we found that BL-related TCF3 mutations affect TCF3 alternative splicing, in part by reducing binding of the splicing regulator hnRNPH1 to exon 18b. This leads to greater exon 18b inclusion, thereby generating more of the mutated E47 isoform of TCF3. Interestingly, upregulation of E47 dysregulates the expression of TCF3 targets PTPN6, and perhaps CCND3, which are known to be involved in BL pathogenesis. Our findings thus reveal a mechanism by which TCF3 somatic mutations affect multilayered gene regulation underlying BL pathogenesis.
Collapse
Affiliation(s)
- Takashi Yamazaki
- Department of Biological Sciences, Columbia University , New York, NY, USA.,Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Co. Ltd ., Fujisawa, Japan
| | - Lizhi Liu
- Department of Biological Sciences, Columbia University , New York, NY, USA
| | - Erin G Conlon
- Department of Biological Sciences, Columbia University , New York, NY, USA.,Laboratory of Molecular Neuro-oncology, Rockefeller University , New York, NY, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University , New York, NY, USA
| |
Collapse
|
14
|
Monzón-Casanova E, Matheson LS, Tabbada K, Zarnack K, Smith CWJ, Turner M. Polypyrimidine tract-binding proteins are essential for B cell development. eLife 2020; 9:e53557. [PMID: 32081131 PMCID: PMC7058386 DOI: 10.7554/elife.53557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a RNA-binding protein (RBP) expressed throughout B cell development. Deletion of Ptbp1 in mouse pro-B cells results in upregulation of PTBP2 and normal B cell development. We show that PTBP2 compensates for PTBP1 in B cell ontogeny as deletion of both Ptbp1 and Ptbp2 results in a complete block at the pro-B cell stage and a lack of mature B cells. In pro-B cells PTBP1 ensures precise synchronisation of the activity of cyclin dependent kinases at distinct stages of the cell cycle, suppresses S-phase entry and promotes progression into mitosis. PTBP1 controls mRNA abundance and alternative splicing of important cell cycle regulators including CYCLIN-D2, c-MYC, p107 and CDC25B. Our results reveal a previously unrecognised mechanism mediated by a RBP that is essential for B cell ontogeny and integrates transcriptional and post-translational determinants of progression through the cell cycle.
Collapse
Affiliation(s)
- Elisa Monzón-Casanova
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Louise S Matheson
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
| | - Kristina Tabbada
- Next Generation Sequencing Facility, The Babraham InstituteCambridgeUnited Kingdom
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University FrankfurtFrankfurt am MainGermany
| | | | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
| |
Collapse
|
15
|
Chen T, Zheng W, Chen J, Lin S, Zou Z, Li X, Tan Z. Systematic analysis of survival-associated alternative splicing signatures in clear cell renal cell carcinoma. J Cell Biochem 2019; 121:4074-4084. [PMID: 31886566 DOI: 10.1002/jcb.29590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Abstract
Alternative splicing (AS) constitutes a major reason for messenger RNA (mRNA) and protein diversity. Increasing studies have shown a link to splicing dysfunction associated with malignant neoplasia. Systematic analysis of AS events in kidney cancer remains poorly reported. Therefore, we generated AS profiles in 533 kidney renal clear cell carcinoma (KIRC) patients in The Cancer Genome Atlas (TCGA) database using RNA-seq data. Then, prognostic models were developed in a primary cohort (N = 351) and validated in a validation cohort (N = 182). In addition, splicing networks were built by integrating bioinformatics analyses. A total of 11 268 and 8083 AS variants were significantly associated with patient overall survival time in the primary and validation KIRC cohorts, respectively, including STAT1, DAZAP1, IDS, NUDT7, and KLHDC4. The AS events in the primary KIRC cohorts served as candidate AS events to screen the independent risk factors associated with survival in the primary cohort and to develop prognostic models. The area under the curve of the receiver-operator characteristic curve for prognostic prediction in the primary and validation KIRC cohorts was 0.84 and 0.82 at 2500 days of overall survival, respectively. In addition, splicing correlation networks revealed key splicing factors (SFs) in KIRC, such as HNRNPH1, HNRNPU, KHDBS1, KHDBS3, SRSF9, RBMX, SFQ, SRP54, HNRNPA0, and SRSF6. In this study, we analyzed the AS landscape in the TCGA KIRC cohort and detected predictors (prognostic) based on AS variants with high performance for risk stratification of the KIRC cohort and revealed key SFs in splicing networks, which could act as underlying mechanisms.
Collapse
Affiliation(s)
- Tao Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wenzhong Zheng
- Department of Anesthesiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianbo Chen
- Department of Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shouren Lin
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zihao Zou
- Department of Urology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xianxin Li
- Department of Surgery, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, China
| | - Zhengling Tan
- Department of Anesthesiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|