1
|
Ceriotti LF, Warren JM, Sanchez-Puerta MV, Sloan DB. The landscape of Arabidopsis tRNA aminoacylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2784-2802. [PMID: 39555621 DOI: 10.1111/tpj.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 3' CCA tail, introduce post-transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High-throughput sequencing techniques have recently been developed to provide a comprehensive view of aminoacylation state in a tRNA-specific fashion. However, these methods have never been applied to plants. Here, we treated Arabidopsis thaliana RNA samples with periodate and then performed tRNA-seq to distinguish between aminoacylated and uncharged tRNAs. This approach successfully captured every tRNA isodecoder family and detected expression of additional tRNA-like transcripts. We found that estimated aminoacylation rates and CCA tail integrity were significantly higher on average for organellar (mitochondrial and plastid) tRNAs than for nuclear/cytosolic tRNAs. Reanalysis of previously published human cell line data showed a similar pattern. Base modifications result in nucleotide misincorporations and truncations during reverse transcription, which we quantified and used to test for relationships with aminoacylation levels. We also determined that the Arabidopsis tRNA-like sequences (t-elements) that are cleaved from the ends of some mitochondrial messenger RNAs have post-transcriptionally modified bases and CCA-tail addition. However, these t-elements are not aminoacylated, indicating that they are only recognized by a subset of tRNA-interacting enzymes and do not play a role in translation. Overall, this work provides a characterization of the baseline landscape of plant tRNA aminoacylation rates and demonstrates an approach for investigating environmental and genetic perturbations to plant translation machinery.
Collapse
Affiliation(s)
- Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Jessica M Warren
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Scheepbouwer C, Aparicio-Puerta E, Gómez-Martin C, van Eijndhoven MA, Drees EE, Bosch L, de Jong D, Wurdinger T, Zijlstra JM, Hackenberg M, Gerber A, Pegtel DM. Full-length tRNAs lacking a functional CCA tail are selectively sorted into the lumen of extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593148. [PMID: 38765958 PMCID: PMC11100784 DOI: 10.1101/2024.05.12.593148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Small extracellular vesicles (sEVs) are heterogenous lipid membrane particles typically less than 200 nm in size and secreted by most cell types either constitutively or upon activation signals. sEVs isolated from biofluids contain RNAs, including small non-coding RNAs (ncRNAs), that can be either encapsulated within the EV lumen or bound to the EV surface. EV-associated microRNAs (miRNAs) are, despite a relatively low abundance, extensively investigated for their selective incorporation and their role in cell-cell communication. In contrast, the sorting of highly-structured ncRNA species is understudied, mainly due to technical limitations of traditional small RNA sequencing protocols. Here, we adapted ALL-tRNAseq to profile the relative abundance of highly structured and potentially methylated small ncRNA species, including transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and Y RNAs in bulk EV preparations. We determined that full-length tRNAs, typically 75 to 90 nucleotides in length, were the dominant small ncRNA species (>60% of all reads in the 18-120 nucleotides size-range) in all cell culture-derived EVs, as well as in human plasma-derived EV samples, vastly outnumbering 21 nucleotides-long miRNAs. Nearly all EV-associated tRNAs were protected from external RNAse treatment, indicating a location within the EV lumen. Strikingly, the vast majority of luminal-sorted, full-length, nucleobase modification-containing EV-tRNA sequences, harbored a dysfunctional 3' CCA tail, 1 to 3 nucleotides truncated, rendering them incompetent for amino acid loading. In contrast, in non-EV associated extracellular particle fractions (NVEPs), tRNAs appeared almost exclusively fragmented or 'nicked' into tRNA-derived small RNAs (tsRNAs) with lengths between 18 to 35 nucleotides. We propose that in mammalian cells, tRNAs that lack a functional 3' CCA tail are selectively sorted into EVs and shuttled out of the producing cell, offering a new perspective into the physiological role of secreted EVs and luminal cargo-selection.
Collapse
Affiliation(s)
- Chantal Scheepbouwer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Ernesto Aparicio-Puerta
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Cristina Gómez-Martin
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Monique A.J. van Eijndhoven
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Esther E.E. Drees
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Leontien Bosch
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Josée M. Zijlstra
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Michael Hackenberg
- Bioinformatics Laboratory, Biomedical Research Centre (CIBM), Biotechnology Institute, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Genetics Department, Faculty of Science, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain
| | - Alan Gerber
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
| | - D. Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
3
|
Zhang Q, Zhao X, Sun M, Dong D. Novel insights into transfer RNA-derived small RNA (tsRNA) in cardio-metabolic diseases. Life Sci 2024; 341:122475. [PMID: 38309576 DOI: 10.1016/j.lfs.2024.122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Cardio-metabolic diseases, including a cluster of metabolic disorders and their secondary affections on cardiovascular physiology, are gradually brought to the forefront by researchers due to their high prevalence and mortality, as well as an unidentified pathogenesis. tRNA-derived small RNAs (tsRNAs), cleaved by several specific enzymes and once considered as some "metabolic junks" in the past, have been proved to possess numerous functions in human bodies. More interestingly, such a potential also seems to influence the progression of cardio-metabolic diseases to some extent. In this review, the biogenesis, classification and mechanisms of tsRNAs will be discussed based on some latest studies, and their relations with several cardio-metabolic diseases will be highlighted in sequence. Lastly, some future prospects, such as their clinical applications as biomarkers and therapeutic targets will also be mentioned, in order to provide researchers with a comprehensive understanding of the research status of tsRNAs as well as its association with cardio-metabolic diseases, thus presenting as a beacon to indicate directions for the next stage of study.
Collapse
Affiliation(s)
- Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
4
|
Padhiar NH, Katneni U, Komar AA, Motorin Y, Kimchi-Sarfaty C. Advances in methods for tRNA sequencing and quantification. Trends Genet 2024; 40:276-290. [PMID: 38123442 DOI: 10.1016/j.tig.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
In the past decade tRNA sequencing (tRNA-seq) has attracted considerable attention as an important tool for the development of novel approaches to quantify highly modified tRNA species and to propel tRNA research aimed at understanding the cellular physiology and disease and development of tRNA-based therapeutics. Many methods are available to quantify tRNA abundance while accounting for modifications and tRNA charging/acylation. Advances in both library preparation methods and bioinformatic workflows have enabled developments in next-generation sequencing (NGS) workflows. Other approaches forgo NGS applications in favor of hybridization-based approaches. In this review we provide a brief comparative overview of various tRNA quantification approaches, focusing on the advantages and disadvantages of these methods, which together facilitate reliable tRNA quantification.
Collapse
Affiliation(s)
- Nigam H Padhiar
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Upendra Katneni
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Anton A Komar
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Yuri Motorin
- CNRS-Université de Lorraine, UAR 2008, IBSLor UMR 7365 IMoPA, Nancy, France.
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
5
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
6
|
Abula A, Yang T, Zhang Y, Li T, Ji X. Enhancement of Escherichia coli Ribonuclease R Cytosine-Sensitive Activity by Single Amino Acid Substitution. Mol Biotechnol 2023; 65:108-115. [PMID: 35838865 DOI: 10.1007/s12033-022-00533-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Exoribonucleases are frequently used as nuclei acids detection tools for their sequences, modifications, and structures. Escherichia coli ribonuclease R (EcR) is the prototypical exoribonuclease of the RNase II/RNB family degrading RNA in the 3'-5' direction. Different from RNase II, EcR is capable of degrading structured RNA efficiently, which makes it a potential analysis tool for various RNA species. In this work, we examined the nuclease activity of EcR degrading a series of RNA substrates with various sequences. Our biochemical work reveals that EcR is significantly sensitive to cytosine compared with other bases when catalyzing RNA degradation. EcR shows higher cytosine sensitivity compared to its homolog RNase II when degrading RNAs, and the hydrolysis process of EcR is transiently halted and produces apparent intermediate product when the 1-nt upstream of C is A or U, or G. Furthermore, the substitution of glycine with proline (G273P) in EcR enhances its cytosine sensitivity. These findings expand our understanding of EcR enzymatic activities. The EcR G273P mutant bearing higher cytosine sensitivity could help enrich cytosine trails in RNAs and will have potential implications in the detection and analysis of various RNA species especially small RNAs in biological and clinical samples.
Collapse
Affiliation(s)
- Abudureyimu Abula
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.,School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Tingting Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Yingxin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China. .,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China. .,Ministry of Education, Engineering Research Center of Protein and Peptide Medicine, Nanjing, China.
| |
Collapse
|
7
|
Chihara K, Gerovac M, Hör J, Vogel J. Global profiling of the RNA and protein complexes of Escherichia coli by size exclusion chromatography followed by RNA sequencing and mass spectrometry (SEC-seq). RNA (NEW YORK, N.Y.) 2022; 29:rna.079439.122. [PMID: 36328526 PMCID: PMC9808575 DOI: 10.1261/rna.079439.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
New methods for the global identification of RNA-protein interactions have led to greater recognition of the abundance and importance of RNA-binding proteins (RBPs) in bacteria. Here, we expand this tool kit by developing SEC-seq, a method based on a similar concept as the established Grad-seq approach. In Grad-seq, cellular RNA and protein complexes of a bacterium of interest are separated in a glycerol gradient, followed by high-throughput RNA-sequencing and mass spectrometry analyses of individual gradient fractions. New RNA-protein complexes are predicted based on the similarity of their elution profiles. In SEC-seq, we have replaced the glycerol gradient with separation by size exclusion chromatography, which shortens operation times and offers greater potential for automation. Applying SEC-seq to Escherichia coli, we find that the method provides a higher resolution than Grad-seq in the lower molecular weight range up to ~500 kDa. This is illustrated by the ability of SEC-seq to resolve two distinct, but similarly sized complexes of the global translational repressor CsrA with either of its antagonistic small RNAs, CsrB and CsrC. We also characterized changes in the SEC-seq profiles of the small RNA MicA upon deletion of its RNA chaperones Hfq and ProQ and investigated the redistribution of these two proteins upon RNase treatment. Overall, we demonstrate that SEC-seq is a tractable and reproducible method for the global profiling of bacterial RNA-protein complexes that offers the potential to discover yet-unrecognized associations between bacterial RNAs and proteins.
Collapse
Affiliation(s)
- Kotaro Chihara
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
| | | | - Jens Hör
- Weizmann Institute, Rehovot, Israel
| | | |
Collapse
|
8
|
Cristodero M, Brogli R, Joss O, Schimanski B, Schneider A, Polacek N. tRNA 3' shortening by LCCR4 as a response to stress in Trypanosoma brucei. Nucleic Acids Res 2021; 49:1647-1661. [PMID: 33406257 PMCID: PMC7897491 DOI: 10.1093/nar/gkaa1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/24/2020] [Accepted: 12/19/2020] [Indexed: 12/27/2022] Open
Abstract
Sensing of environmental cues is crucial for cell survival. To adapt to changes in their surroundings cells need to tightly control the repertoire of genes expressed at any time. Regulation of translation is key, especially in organisms in which transcription is hardly controlled, like Trypanosoma brucei. In this study, we describe the shortening of the bulk of the cellular tRNAs during stress at the expense of the conserved 3' CCA-tail. This tRNA shortening is specific for nutritional stress and renders tRNAs unsuitable substrates for translation. We uncovered the nuclease LCCR4 (Tb927.4.2430), a homologue of the conserved deadenylase Ccr4, as being responsible for tRNA trimming. Once optimal growth conditions are restored tRNAs are rapidly repaired by the trypanosome tRNA nucleotidyltransferase thus rendering the recycled tRNAs amenable for translation. This mechanism represents a fast and efficient way to repress translation during stress, allowing quick reactivation with a low energy input.
Collapse
Affiliation(s)
| | - Rebecca Brogli
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver Joss
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Bernd Schimanski
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Norbert Polacek
- Correspondence may also be addressed to Norbert Polacek. Tel: +41 031 631 4320;
| |
Collapse
|
9
|
Wang J, Toffano-Nioche C, Lorieux F, Gautheret D, Lehmann J. Accurate characterization of Escherichia coli tRNA modifications with a simple method of deep-sequencing library preparation. RNA Biol 2020; 18:33-46. [PMID: 32618488 DOI: 10.1080/15476286.2020.1790871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In conventional RNA high-throughput sequencing, modified bases prevent a large fraction of tRNA transcripts to be converted into cDNA libraries. Recent proposals aiming at resolving this issue take advantage of the interference of base modifications with RT enzymes to detect and identify them by establishing signals from aborted cDNA transcripts. Because some modifications, such as methyl groups, do almost not allow RT bypassing, demethylation and highly processive RT enzymes have been used to overcome these obstacles. Working with Escherichia coli as a model system, we show that with a conventional (albeit still engineered) RT enzyme and key optimizations in library preparation, all RT-impairing modifications can be highlighted along the entire tRNA length without demethylation procedure. This is achieved by combining deep-sequencing samples, which allows to establish aborted transcription signal of higher accuracy and reproducibility, with the potential for differentiating tiny differences in the state of modification of all cellular tRNAs. In addition, our protocol provides estimates of the relative tRNA abundance.
Collapse
Affiliation(s)
- Ji Wang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) , Gif-sur-Yvette, France
| | - Claire Toffano-Nioche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) , Gif-sur-Yvette, France
| | - Florence Lorieux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) , Gif-sur-Yvette, France
| | - Daniel Gautheret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) , Gif-sur-Yvette, France
| | - Jean Lehmann
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) , Gif-sur-Yvette, France
| |
Collapse
|