1
|
Haseltine WA, Hazel K, Patarca R. RNA Structure: Past, Future, and Gene Therapy Applications. Int J Mol Sci 2024; 26:110. [PMID: 39795966 PMCID: PMC11719923 DOI: 10.3390/ijms26010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes. In contrast to the success of 3-dimensional protein structure prediction using AlphaFold, RNA tertiary and beyond structures prediction remains challenging. However, approaches involving machine learning and artificial intelligence, sequencing of RNA and its modifications, and structural analyses at the single-cell and intact tissue levels, among others, provide an optimistic outlook for the continued development and refinement of RNA-based applications. Here, we highlight those in gene therapy.
Collapse
Affiliation(s)
- William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| | - Kim Hazel
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
| | - Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| |
Collapse
|
2
|
Williams AM, Jolley EA, Santiago-Martínez MG, Chan CX, Gutell RR, Ferry JG, Bevilacqua PC. In vivo structure probing of RNA in Archaea: novel insights into the ribosome structure of Methanosarcina acetivorans. RNA (NEW YORK, N.Y.) 2023; 29:1610-1620. [PMID: 37491319 PMCID: PMC10578495 DOI: 10.1261/rna.079687.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/24/2023] [Indexed: 07/27/2023]
Abstract
Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date, such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.
Collapse
Affiliation(s)
- Allison M Williams
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elizabeth A Jolley
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Robin R Gutell
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - James G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
3
|
Jolley EA, Yakhnin H, Tack DC, Babitzke P, Bevilacqua PC. Transcriptome-wide probing reveals RNA thermometers that regulate translation of glycerol permease genes in Bacillus subtilis. RNA (NEW YORK, N.Y.) 2023; 29:1365-1378. [PMID: 37217261 PMCID: PMC10573289 DOI: 10.1261/rna.079652.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
RNA structure regulates bacterial gene expression by several distinct mechanisms via environmental and cellular stimuli, one of which is temperature. While some genome-wide studies have focused on heat shock treatments and the subsequent transcriptomic changes, soil bacteria are less likely to experience such rapid and extreme temperature changes. Though RNA thermometers (RNATs) have been found in 5' untranslated leader regions (5' UTRs) of heat shock and virulence-associated genes, this RNA-controlled mechanism could regulate other genes as well. Using Structure-seq2 and the chemical probe dimethyl sulfate (DMS) at four growth temperatures ranging from 23°C to 42°C, we captured a dynamic response of the Bacillus subtilis transcriptome to temperature. Our transcriptome-wide results show RNA structural changes across all four temperatures and reveal nonmonotonic reactivity trends with increasing temperature. Then, focusing on subregions likely to contain regulatory RNAs, we examined 5' UTRs to identify large, local reactivity changes. This approach led to the discovery of RNATs that control the expression of glpF (glycerol permease) and glpT (glycerol-3-phosphate permease); expression of both genes increased with increased temperature. Results with mutant RNATs indicate that both genes are controlled at the translational level. Increased import of glycerols at high temperatures could provide thermoprotection to proteins.
Collapse
Affiliation(s)
- Elizabeth A Jolley
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Helen Yakhnin
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - David C Tack
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paul Babitzke
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Meyer MO, Choi S, Keating CD, Bevilacqua PC, Yamagami R. Structure-seq of tRNAs and other short RNAs in droplets and in vivo. Methods Enzymol 2023; 691:81-126. [PMID: 37914453 PMCID: PMC10917389 DOI: 10.1016/bs.mie.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is a multitude of small (<100nt) RNAs that serve diverse functional roles in biology. Key amongst these is transfer RNA (tRNA), which is among the most ancient RNAs and is part of the translational apparatus in every domain of life. Transfer RNAs are also the most heavily modified class of RNAs. They are essential and their misregulation, due to mutated sequences or loss of modification, can lead to disease. Because of the severe phenotypes associated with mitochondrial tRNA defects in particular, the desire to deliver repaired tRNAs via droplets such as lipid nanoparticles or other compartments is an active area of research. Here we describe how to use our tRNA Structure-seq method to study tRNAs and other small RNAs in two different biologically relevant contexts, peptide-rich droplets and in vivo.
Collapse
Affiliation(s)
- McCauley O. Meyer
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Saehyun Choi
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christine D. Keating
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Philip C. Bevilacqua
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Ryota Yamagami
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
5
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Mandell ZF, Vishwakarma RK, Yakhnin H, Murakami KS, Kashlev M, Babitzke P. Comprehensive transcription terminator atlas for Bacillus subtilis. Nat Microbiol 2022; 7:1918-1931. [PMID: 36192538 PMCID: PMC10024249 DOI: 10.1038/s41564-022-01240-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023]
Abstract
The transcriptome-wide contributions of Rho-dependent and intrinsic (Rho-independent) transcription termination mechanisms in bacteria are unclear. By sequencing released transcripts in a wild-type strain and strains containing deficiencies in NusA, NusG and/or Rho (10 strains), we produced an atlas of terminators for the model Gram-positive bacterium Bacillus subtilis. We found that NusA and NusG stimulate 77% and 19% of all intrinsic terminators, respectively, and that both proteins participate in Rho-dependent termination. We also show that Rho stimulates termination at 10% of the intrinsic terminators in vivo. We recapitulated Rho-stimulated intrinsic termination at 5 terminators in vitro and found that Rho requires the KOW domain of NusG to stimulate this process at one of these terminators. Computational analyses of our atlas using RNAstructure, MEME suite and DiffLogo, combined with in vitro transcription experiments, revealed that Rho stimulates intrinsic terminators with weak hairpins and/or U-rich tracts by remodelling the RNA upstream of the intrinsic terminator to prevent the formation of RNA structures that could otherwise compete with the terminator hairpin. We also identified 56 putative examples of 'hybrid Rho-dependent termination', wherein classical Rho-dependent termination occurs after readthrough of a Rho-stimulated intrinsic terminator.
Collapse
Affiliation(s)
- Zachary F Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Department of Molecular Biology and Genetics and Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rishi K Vishwakarma
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
7
|
Zhang M, Liu G, Zhang Y, Chen T, Feng S, Cai R, Lu C. The Second Class of Tetrahydrofolate (THF-II) Riboswitches Recognizes the Tetrahydrofolic Acid Ligand via Local Conformation Changes. Int J Mol Sci 2022; 23:ijms23115903. [PMID: 35682583 PMCID: PMC9180208 DOI: 10.3390/ijms23115903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Riboswitches are regulatory noncoding RNAs found in bacteria, fungi and plants, that modulate gene expressions through structural changes in response to ligand binding. Understanding how ligands interact with riboswitches in solution can shed light on the molecular mechanisms of this ancient regulators. Previous studies showed that riboswitches undergo global conformation changes in response to ligand binding to relay information. Here, we report conformation switching models of the recently discovered tetrahydrofolic acid-responsive second class of tetrahydrofolate (THF-II) riboswitches in response to ligand binding. Using a combination of selective 2′-hydroxyl acylation, analyzed by primer extension (SHAPE) assay, 3D modeling and small-angle X-ray scattering (SAXS), we found that the ligand specifically recognizes and reshapes the THF-II riboswitch loop regions, but does not affect the stability of the P3 helix. Our results show that the THF-II riboswitch undergoes only local conformation changes in response to ligand binding, rearranging the Loop1-P3-Loop2 region and rotating Loop1 from a ~120° angle to a ~75° angle. This distinct conformation changes suggest a unique regulatory mechanism of the THF-II riboswitch, previously unseen in other riboswitches. Our findings may contribute to the fields of RNA sensors and drug design.
Collapse
Affiliation(s)
- Minmin Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
| | - Yunlong Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Ting Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Shanshan Feng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
| | - Rujie Cai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Correspondence: (R.C.); (C.L.); Tel.: +86-21-6779-2740 (C.L.)
| | - Changrui Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.Z.); (Y.Z.); (T.C.); (S.F.)
- Correspondence: (R.C.); (C.L.); Tel.: +86-21-6779-2740 (C.L.)
| |
Collapse
|
8
|
Zuber J, Schroeder SJ, Sun H, Turner DH, Mathews DH. Nearest neighbor rules for RNA helix folding thermodynamics: improved end effects. Nucleic Acids Res 2022; 50:5251-5262. [PMID: 35524574 PMCID: PMC9122537 DOI: 10.1093/nar/gkac261] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
Nearest neighbor parameters for estimating the folding stability of RNA secondary structures are in widespread use. For helices, current parameters penalize terminal AU base pairs relative to terminal GC base pairs. We curated an expanded database of helix stabilities determined by optical melting experiments. Analysis of the updated database shows that terminal penalties depend on the sequence identity of the adjacent penultimate base pair. New nearest neighbor parameters that include this additional sequence dependence accurately predict the measured values of 271 helices in an updated database with a correlation coefficient of 0.982. This refined understanding of helix ends facilitates fitting terms for base pair stacks with GU pairs. Prior parameter sets treated 5′GGUC3′ paired to 3′CUGG5′ separately from other 5′GU3′/3′UG5′ stacks. The improved understanding of helix end stability, however, makes the separate treatment unnecessary. Introduction of the additional terms was tested with three optical melting experiments. The average absolute difference between measured and predicted free energy changes at 37°C for these three duplexes containing terminal adjacent AU and GU pairs improved from 1.38 to 0.27 kcal/mol. This confirms the need for the additional sequence dependence in the model.
Collapse
Affiliation(s)
- Jeffrey Zuber
- Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Susan J Schroeder
- Department of Chemistry and Biochemistry, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Hongying Sun
- Department of Biochemistry & Biophysics, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Douglas H Turner
- Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.,Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.,Department of Biostatistics & Computational Biology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Chhabra S, Mandell ZF, Liu B, Babitzke P, Bechhofer DH. Analysis of mRNA Decay Intermediates in Bacillus subtilis 3' Exoribonuclease and RNA Helicase Mutant Strains. mBio 2022; 13:e0040022. [PMID: 35311531 PMCID: PMC9040804 DOI: 10.1128/mbio.00400-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
The Bacillus subtilis genome encodes four 3' exoribonucleases: polynucleotide phosphorylase (PNPase), RNase R, RNase PH, and YhaM. Previous work showed that PNPase, encoded by the pnpA gene, is the major 3' exonuclease involved in mRNA turnover; in a pnpA deletion strain, numerous mRNA decay intermediates accumulate. Whether B. subtilis mRNA decay occurs in the context of a degradosome complex is controversial. In this study, global mapping of mRNA decay intermediate 3' ends within coding sequences was performed in strains that were either deleted for or had an inactivating point mutation in the pnpA gene. The patterns of 3'-end accumulation in these strains were highly similar, which may have implications for the role of a degradosome in mRNA decay. A comparison with mapped 3' ends in a strain lacking CshA, the major RNA helicase, indicated that many mRNAs require both PNPase and CshA for efficient decay. Transcriptome sequencing (RNA-seq) analysis of strains lacking RNase R suggested that this enzyme did not play a major role in mRNA turnover in the wild-type strain. Strains were constructed that contained only one of the four known 3' exoribonucleases. When RNase R was the only 3' exonuclease present, it was able to degrade a model mRNA efficiently, showing processive decay even through a strong stem-loop structure that inhibits PNPase processivity. Strains containing only RNase PH or only YhaM were also insensitive to this RNA secondary structure, suggesting the existence of another, as-yet-unidentified, 3' exoribonuclease. IMPORTANCE The ability to rapidly change bacterial gene expression programs in response to environmental conditions is highly dependent on the efficient turnover of mRNA. While much is known about the regulation of gene expression at the transcriptional and translational levels, much less is known about the intermediate step of mRNA decay. Here, we mapped the 3' ends of mRNA decay intermediates in strains that were missing the major 3' exoribonuclease PNPase or the RNA helicase CshA. We also assessed the roles of three other B. subtilis 3' exonucleases in the mRNA decay process. The data confirm the primary role of PNPase in mRNA turnover and suggest the involvement of one or more unknown RNases.
Collapse
Affiliation(s)
- Shivani Chhabra
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Zachary F. Mandell
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - Bo Liu
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| | - Paul Babitzke
- The Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, University Park, Pennsylvania, USA
| | - David H. Bechhofer
- Icahn School of Medicine at Mount Sinai, Department of Pharmacological Sciences, New York, New York, USA
| |
Collapse
|
10
|
Losa J, Leupold S, Alonso‐Martinez D, Vainikka P, Thallmair S, Tych KM, Marrink SJ, Heinemann M. Perspective: a stirring role for metabolism in cells. Mol Syst Biol 2022; 18:e10822. [PMID: 35362256 PMCID: PMC8972047 DOI: 10.15252/msb.202110822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022] Open
Abstract
Based on recent findings indicating that metabolism might be governed by a limit on the rate at which cells can dissipate Gibbs energy, in this Perspective, we propose a new mechanism of how metabolic activity could globally regulate biomolecular processes in a cell. Specifically, we postulate that Gibbs energy released in metabolic reactions is used to perform work, allowing enzymes to self-propel or to break free from supramolecular structures. This catalysis-induced enzyme movement will result in increased intracellular motion, which in turn can compromise biomolecular functions. Once the increased intracellular motion has a detrimental effect on regulatory mechanisms, this will establish a feedback mechanism on metabolic activity, and result in the observed thermodynamic limit. While this proposed explanation for the identified upper rate limit on cellular Gibbs energy dissipation rate awaits experimental validation, it offers an intriguing perspective of how metabolic activity can globally affect biomolecular functions and will hopefully spark new research.
Collapse
Affiliation(s)
- José Losa
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Simeon Leupold
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Diego Alonso‐Martinez
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Petteri Vainikka
- Molecular DynamicsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Sebastian Thallmair
- Molecular DynamicsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
| | - Katarzyna M Tych
- Chemical BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Siewert J Marrink
- Molecular DynamicsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Matthias Heinemann
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
11
|
Chen Y, Zhai W, Zhang K, Liu H, Zhu T, Su L, Bermudez L, Chen H, Guo A. Small RNA Profiling in Mycobacterium Provides Insights Into Stress Adaptability. Front Microbiol 2021; 12:752537. [PMID: 34803973 PMCID: PMC8600241 DOI: 10.3389/fmicb.2021.752537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022] Open
Abstract
Mycobacteria encounter a number of environmental changes during infection and respond using different mechanisms. Small RNA (sRNA) is a post-transcriptionally regulatory system for gene functions and has been investigated in many other bacteria. This study used Mycobacterium tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection models and sequenced whole bacterial RNAs before and after host cell infection. A comparison of differentially expressed sRNAs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and target prediction was carried out. Six pathogenically relevant stress conditions, growth rate, and morphology were used to screen and identify sRNAs. From these data, a subset of sRNAs was differentially expressed in multiple infection groups and stress conditions. Many were found associated with lipid metabolism. Among them, ncBCG427 was significantly downregulated when BCG entered into macrophages and was associated with increased biofilm formation. The reduction of virulence possibility depends on regulating lipid metabolism.
Collapse
Affiliation(s)
- Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Wenjun Zhai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Kailun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Li Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Luiz Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Mandell ZF, Oshiro RT, Yakhnin AV, Vishwakarma R, Kashlev M, Kearns DB, Babitzke P. NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA. eLife 2021; 10:e61880. [PMID: 33835023 PMCID: PMC8060035 DOI: 10.7554/elife.61880] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
NusA and NusG are transcription factors that stimulate RNA polymerase pausing in Bacillus subtilis. While NusA was known to function as an intrinsic termination factor in B. subtilis, the role of NusG in this process was unknown. To examine the individual and combinatorial roles that NusA and NusG play in intrinsic termination, Term-seq was conducted in wild type, NusA depletion, ΔnusG, and NusA depletion ΔnusG strains. We determined that NusG functions as an intrinsic termination factor that works alone and cooperatively with NusA to facilitate termination at 88% of the 1400 identified intrinsic terminators. Our results indicate that NusG stimulates a sequence-specific pause that assists in the completion of suboptimal terminator hairpins with weak terminal A-U and G-U base pairs at the bottom of the stem. Loss of NusA and NusG leads to global misregulation of gene expression and loss of NusG results in flagella and swimming motility defects.
Collapse
Affiliation(s)
- Zachary F Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Reid T Oshiro
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Alexander V Yakhnin
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Rishi Vishwakarma
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Mikhail Kashlev
- NCI RNA Biology Laboratory, Center for Cancer Research, NCIFrederickUnited States
| | - Daniel B Kearns
- Department of Biology, Indiana UniversityBloomingtonUnited States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|