1
|
Nguyen LD, LeBlanc H, Berry KE. Improved constructs for bait RNA display in a bacterial three-hybrid assay. Sci Rep 2025; 15:3820. [PMID: 39885279 PMCID: PMC11782564 DOI: 10.1038/s41598-024-85082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025] Open
Abstract
We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest. One limiting factor in detecting RNA-protein interactions in the B3H assay is RNA misfolding arising from incorrect base-pair interactions with neighboring RNA sequences in a hybrid RNA. To support correct folding of hybrid bait RNAs, we have explored the use of a highly stable stem ("GC clamp") to isolate regions of a hybrid RNA as discrete folding units. In this work, we introduce new bait RNA constructs to (1) insulate the folding of individual components of the hybrid RNA with GC clamps and (2) express bait RNAs that do not encode their own intrinsic terminator. We find that short GC clamps (5 or 7 bp long) are more effective than a longer 13 bp GC clamp in the B3H assay. These new constructs increase the number of Hfq-sRNA and -5'UTR interactions that are detectable in the B3H system and improve the signal-to-noise ratio of many of these interactions. We therefore recommend the use of constructs containing short GC clamps for the expression of future B3H bait RNAs. With these new constructs, a broader range of RNA-protein interactions are detectable in the B3H assay, expanding the utility and impact of this genetic tool as a platform to search for and interrogate mechanisms of additional RNA-protein interactions.
Collapse
Affiliation(s)
- Linh D Nguyen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA.
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA.
| |
Collapse
|
2
|
Nguyen LD, LeBlanc H, Berry KE. Improved constructs for bait RNA display in a bacterial three-hybrid assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604302. [PMID: 39091812 PMCID: PMC11291032 DOI: 10.1101/2024.07.23.604302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest. One limiting factor in detecting RNA-protein interactions in the B3H assay is RNA misfolding arising from incorrect base-pair interactions with neighboring RNA sequences in a hybrid RNA. To support correct folding of hybrid bait RNAs, we have explored the use of a highly stable stem ("GC clamp") to isolate regions of a hybrid RNA as discrete folding units. In this work, we introduce new bait RNA constructs to 1) insulate the folding of individual components of the hybrid RNA with GC clamps and 2) express bait RNAs that do not encode their own intrinsic terminator. We find that short GC clamps (5 or 7 bp long) are more effective than a longer 13bp GC clamp in the B3H assay. These new constructs increase the number of Hfq-sRNA and -5'UTR interactions that are detectable in the B3H system and improve the signal-to-noise ratio of many of these interactions. We therefore recommend the use of constructs containing short GC clamps for the expression of future B3H bait RNAs. With these new constructs, a broader range of RNA-protein interactions are detectable in the B3H assay, expanding the utility and impact of this genetic tool as a platform to search for and interrogate mechanisms of additional RNA-protein interactions.
Collapse
Affiliation(s)
- Linh D. Nguyen
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Katherine E. Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| |
Collapse
|
3
|
Stein EM, Wang S, Dailey KG, Gravel CM, Wang S, Olejniczak M, Berry KE. Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ. RNA (NEW YORK, N.Y.) 2023; 29:1772-1791. [PMID: 37607742 PMCID: PMC10578477 DOI: 10.1261/rna.079697.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and noncoding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70, and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.
Collapse
Affiliation(s)
- Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Suxuan Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Katherine G Dailey
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| |
Collapse
|
4
|
Stein EM, Wang S, Dailey K, Gravel CM, Wang S, Olejniczak M, Berry KE. Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538249. [PMID: 37163069 PMCID: PMC10168233 DOI: 10.1101/2023.04.25.538249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and non-coding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli , though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70 and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.
Collapse
Affiliation(s)
- Ewa M. Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Suxuan Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Katherine Dailey
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| |
Collapse
|
5
|
Stockert OM, Gravel CM, Berry KE. A bacterial three-hybrid assay for forward and reverse genetic analysis of RNA-protein interactions. Nat Protoc 2022; 17:941-961. [PMID: 35197605 PMCID: PMC10241318 DOI: 10.1038/s41596-021-00657-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
This protocol describes a bacterial three-hybrid (B3H) assay, an in vivo system that reports on RNA-protein interactions and can be implemented in both forward and reverse genetic experiments. The B3H assay connects the strength of an RNA-protein interaction inside of living Escherichia coli cells to the transcription of a reporter gene (here, lacZ). We present protocols to (1) insert RNA and protein sequences into appropriate vectors for B3H experiments, (2) detect putative RNA-protein interactions with both qualitative and quantitative readouts and (3) carry out forward genetic mutagenesis screens. The B3H assay builds on a well-established bacterial two-hybrid system for genetic analyses. As a result, protein-protein interactions can be assessed in tandem with RNA interactions with a bacterial two-hybrid assay to ensure that protein variants maintain their functionality. The B3H system is a powerful complement to traditional biochemical methods for dissecting RNA-protein interaction mechanisms: RNAs and proteins of interest do not need to be purified, and their interactions can be assessed under native conditions inside of a living bacterial cell. Once cloning has been completed, an assay can be completed in under a week and a screen in 1-2 weeks.
Collapse
Affiliation(s)
- Oliver M Stockert
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, USA
- Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, USA.
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, USA.
| |
Collapse
|