1
|
Fu R, Walters K, Kaufman ML, Koc K, Baldwin A, Clay MR, Basham KJ, Kiseljak-Vassiliades K, Fishbein L, Mukherjee N. In Situ Spatial Reconstruction of Distinct Normal and Pathological Cell Populations Within the Human Adrenal Gland. J Endocr Soc 2023; 7:bvad131. [PMID: 37953901 PMCID: PMC10638100 DOI: 10.1210/jendso/bvad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 11/14/2023] Open
Abstract
The human adrenal gland consists of concentrically organized, functionally distinct regions responsible for hormone production. Dysregulation of adrenocortical cell differentiation alters the proportion and organization of the functional zones of the adrenal cortex leading to disease. Current models of adrenocortical cell differentiation are based on mouse studies, but there are known organizational and functional differences between human and mouse adrenal glands. This study aimed to investigate the centripetal differentiation model in the human adrenal cortex and characterize aldosterone-producing micronodules (APMs) to better understand adrenal diseases such as primary aldosteronism. We applied spatially resolved in situ transcriptomics to human adrenal tissue sections from 2 individuals and identified distinct cell populations and their positional relationships. The results supported the centripetal differentiation model in humans, with cells progressing from the outer capsule to the zona glomerulosa, zona fasciculata, and zona reticularis. Additionally, we characterized 2 APMs in a 72-year-old woman. Comparison with earlier APM transcriptomes indicated a subset of core genes, but also heterogeneity between APMs. The findings contribute to our understanding of normal and pathological cellular differentiation in the human adrenal cortex.
Collapse
Affiliation(s)
- Rui Fu
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
- Computational Biology, New York Genome Center, New York, NY 10013, USA
| | - Kathryn Walters
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Michael L Kaufman
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Katrina Koc
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Amber Baldwin
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
- Research Service Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Lauren Fishbein
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| | - Neelanjan Mukherjee
- RNA Biosciences Initiative and Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine at Colorado Anschutz Medical Campus Aurora, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Walters K, Sajek MP, Murphy E, Issaian A, Baldwin A, Harrison E, Daniels M, Reisz JA, Hansen K, D'Alessandro A, Mukherjee N. Small-molecule Ro-08-2750 interacts with many RNA-binding proteins and elicits MUSASHI2-independent phenotypes. RNA (NEW YORK, N.Y.) 2023; 29:1458-1470. [PMID: 37369529 PMCID: PMC10578479 DOI: 10.1261/rna.079605.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
RNA-binding proteins (RBPs) are key regulators of gene expression. Small molecules targeting these RBP-RNA interactions are a rapidly emerging class of therapeutics for treating a variety of diseases. Ro-08-2750 (Ro) is a small molecule identified as a competitive inhibitor of Musashi (MSI)-RNA interactions. Here, we show that multiple Ro-dependent cellular phenotypes, specifically adrenocortical steroid production and cell viability, are Musashi-2 (MSI2)-independent. Using an unbiased proteome-wide approach, we discovered Ro broadly interacts with RBPs, many containing RRM domains. To confirm this finding, we leveraged the large-scale ENCODE data to identify a subset of RBPs whose depletion phenocopies Ro inhibition, indicating Ro is a promiscuous inhibitor of multiple RBPs. Consistent with broad disruption of ribonucleoprotein complexes, Ro treatment leads to stress granule formation. This strategy represents a generalizable framework for validating the specificity and identifying targets of RBP inhibitors in a cellular context.
Collapse
Affiliation(s)
- Kathryn Walters
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Marcin Piotr Sajek
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Elisabeth Murphy
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Amber Baldwin
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Evan Harrison
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Miles Daniels
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Howard University Karsh STEM Scholars Program, Washington DC 20059, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Neelanjan Mukherjee
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
3
|
Wellman K, Fu R, Baldwin A, Rege J, Murphy E, Rainey WE, Mukherjee N. Transcriptomic Response Dynamics of Human Primary and Immortalized Adrenocortical Cells to Steroidogenic Stimuli. Cells 2021; 10:cells10092376. [PMID: 34572026 PMCID: PMC8466536 DOI: 10.3390/cells10092376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Adrenal steroid hormone production is a dynamic process stimulated by adrenocorticotropic hormone (ACTH) and angiotensin II (AngII). These ligands initialize a rapid and robust gene expression response required for steroidogenesis. Here, we compare the predominant human immortalized cell line model, H295R cell, with primary cultures of adult adrenocortical cells derived from human kidney donors. We performed temporally resolved RNA-seq on primary cells stimulated with either ACTH or AngII at multiple time points. The magnitude of the expression dynamics elicited by ACTH was greater than AngII in primary cells. This is likely due to the larger population of adrenocortical cells that are responsive to ACTH. The dynamics of stimulus-induced expression in H295R cells are mostly recapitulated in primary cells. However, there are some expression responses in primary cells absent in H295R cells. These data are a resource for the endocrine community and will help researchers determine whether H295R is an appropriate model for the specific aspect of steroidogenesis that they are studying.
Collapse
Affiliation(s)
- Kimberly Wellman
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Amber Baldwin
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (J.R.); (W.E.R.)
| | - Elisabeth Murphy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (J.R.); (W.E.R.)
| | - Neelanjan Mukherjee
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA; (K.W.); (R.F.); (A.B.); (E.M.)
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-(303)-724-1623
| |
Collapse
|