1
|
Mamońska MD, Basczok MM, Stein EM, Kurzawska J, Olejniczak M. Different RNA recognition by ProQ and FinO depends on the sequence surrounding intrinsic terminator hairpins. RNA (NEW YORK, N.Y.) 2025; 31:692-708. [PMID: 40044219 PMCID: PMC12001967 DOI: 10.1261/rna.080206.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/13/2025] [Indexed: 03/28/2025]
Abstract
Escherichia coli ProQ and FinO proteins both have RNA-binding FinO domains, which bind to intrinsic transcription terminators, but each protein recognizes distinct RNAs. To explore how ProQ and FinO discriminate between RNAs, we transplanted sequences surrounding terminator hairpins between RNAs specific for each protein, and compared their binding to ProQ, the isolated FinO domain of ProQ (ProQNTD), and FinO. The results showed that the binding specificity of chimeric RNAs toward ProQ, ProQNTD, or FinO was determined by the origin of the transplanted sequence. Further analysis showed that the sequence surrounding the terminator hairpin, including a purine-purine mismatch, in natural RNA ligands of FinO and in chimeric RNAs, weakened their binding by ProQNTD Overall, our studies suggest that RNA sequence elements surrounding the intrinsic terminator hairpin contribute to the discrimination between RNAs by ProQ and FinO.
Collapse
Affiliation(s)
- Maria D Mamońska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Maciej M Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Kurzawska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Lian L, Zhang L, Shen C, Zhang B, Zhang H, Xie Y, Lin X. The impact of lysine succinylation modification of host factor for RNA phage Qβ replicase at K56 site on the biological functions of Aeromonas hydrophila. Int J Biol Macromol 2025; 310:143156. [PMID: 40239779 DOI: 10.1016/j.ijbiomac.2025.143156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Post-translational modifications (PTMs) play pivotal roles in modulating protein functions. In Aeromonas hydrophila, a freshwater Gram-negative pathogen threatening human and animal health, the host factor for RNA phage Qβ replicase (Hfq) is a key regulatory protein. Its K56 site undergoes succinylation modification, suggesting important functions. However, the exact roles of Hfq and its K56 site in A. hydrophila were unclear. Our physiological assays showed that hfq deletion increased protease activity and motility, but reduced biofilm formation, chemotaxis, stress response, and antibiotic resistance. K56 succinylation enhanced protease activity and biofilm formation, and altered chemotaxis. Comprehensive transcriptome and proteome analysis further revealed that hfq deletion led to an increase in 11 peptidases and 8 flagellar proteins, as well as a decrease in 5 stress-related proteins. It also suppressed the pathways involved in chemotaxis and beta-lactam resistance. On the other hand, K56 succinylation enhanced fatty acid synthesis pathway and the expression of methyl-accepting chemotaxis proteins (MCPs). Consistent with the omics data, qPCR validation confirmed the expression of 12 genes, including metalloprotease and MCPs. Overall, this study deepened insights into Hfq regulation in A. hydrophila and revealed the previously unknown molecular switch function of post-translational modifications (PTMs) on this protein.
Collapse
Affiliation(s)
- Lingli Lian
- School of Life Sciences, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lishan Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Chenghao Shen
- School of Life Sciences, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Binghui Zhang
- School of Life Sciences, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Huaiyao Zhang
- School of Life Sciences, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuyue Xie
- School of Life Sciences, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangmin Lin
- School of Life Sciences, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
3
|
Basczok M, Olejniczak M. RNA recognition by minimal ProQ from Neisseria meningitidis. RNA (NEW YORK, N.Y.) 2025; 31:549-565. [PMID: 39875175 PMCID: PMC11912907 DOI: 10.1261/rna.080207.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Neisseria meningitidis minimal ProQ is a global RNA-binding protein belonging to the family of FinO-domain proteins. The N. meningitidis ProQ consists only of the FinO domain accompanied by short N- and C-terminal extensions. To better understand how this minimal FinO-domain protein recognizes RNAs, we compared its binding to seven different natural RNA ligands of this protein. Next, two of these RNAs, rpmG-3' and AniS, were subject to further mutational studies. The data showed that N. meningitidis ProQ binds the lower part of the intrinsic transcription terminator hairpin, and that the single-stranded sequences on the 5' and 3' side of the terminator stem are required for tight binding. However, the specific lengths of 5' and 3' RNA sequences required for optimal binding differed between the two RNAs. Additionally, our data show that the 2'-OH and 3'-OH groups of the 3' terminal ribose contribute to RNA binding by N. meningitidis ProQ. In summary, the minimal ProQ protein from N. meningitidis has generally similar requirements for RNA binding as the isolated FinO domains of other proteins of this family, but differs from them in detailed RNA features that are optimal for specific RNA recognition.
Collapse
Affiliation(s)
- Maciej Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Bergman S, Birk C, Holmqvist E. ProQ prevents mRNA degradation through inhibition of poly(A) polymerase. Nucleic Acids Res 2025; 53:gkaf103. [PMID: 40036335 DOI: 10.1093/nar/gkaf103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 02/09/2025] [Indexed: 03/06/2025] Open
Abstract
The RNA-binding protein ProQ interacts with many transcripts in the bacterial cell. ProQ binding is associated with increased messenger RNA (mRNA) levels, but a mechanistic explanation for this effect has been lacking. In Salmonella Typhimurium, ProQ affects key traits associated with infection, including motility and intracellular survival. However, the direct links between ProQ activity and these phenotypes are not well understood. Here, we demonstrate that ProQ promotes biofilm formation, another virulence-associated phenotype. This effect is strictly dependent on sigma factor RpoS. ProQ increases both RpoS protein and rpoS mRNA levels, but neither affects rpoS transcription nor translation. The rpoS mRNA is a ProQ target, and expression of the rpoS 3'UTR alone is strongly dependent on ProQ. RpoS expression becomes independent of ProQ in strains lacking poly(A) polymerase I (PAPI), indicating that ProQ protects against 3' end-dependent decay. Indeed, purified ProQ inhibits PAPI-mediated polyadenylation at RNA 3' ends. Finally, PAPI is required for ProQ's effect on expression of genes involved in biofilm, motility, osmotic stress, and virulence, indicating that inhibition of polyadenylation is a general function of ProQ.
Collapse
Affiliation(s)
- Sofia Bergman
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| | | | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, 75124 Uppsala, Sweden
| |
Collapse
|
5
|
Babina AM, Kirsebom LA, Andersson DI. Suppression of the Escherichia coli rnpA49 conditionally lethal phenotype by different compensatory mutations. RNA (NEW YORK, N.Y.) 2024; 30:977-991. [PMID: 38688559 PMCID: PMC11251521 DOI: 10.1261/rna.079909.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
RNase P is an essential enzyme found across all domains of life that is responsible for the 5'-end maturation of precursor tRNAs. For decades, numerous studies have sought to elucidate the mechanisms and biochemistry governing RNase P function. However, much remains unknown about the regulation of RNase P expression, the turnover and degradation of the enzyme, and the mechanisms underlying the phenotypes and complementation of specific RNase P mutations, especially in the model bacterium, Escherichia coli In E. coli, the temperature-sensitive (ts) rnpA49 mutation in the protein subunit of RNase P has arguably been one of the most well-studied mutations for examining the enzyme's activity in vivo. Here, we report for the first time naturally occurring temperature-resistant suppressor mutations of E. coli strains carrying the rnpA49 allele. We find that rnpA49 strains can partially compensate the ts defect via gene amplifications of either RNase P subunit (rnpA49 or rnpB) or by the acquisition of loss-of-function mutations in Lon protease or RNase R. Our results agree with previous plasmid overexpression and gene deletion complementation studies, and importantly suggest the involvement of Lon protease in the degradation and/or regulatory pathway(s) of the mutant protein subunit of RNase P. This work offers novel insights into the behavior and complementation of the rnpA49 allele in vivo and provides direction for follow-up studies regarding RNase P regulation and turnover in E. coli.
Collapse
Affiliation(s)
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, 751 23 Uppsala, Sweden
| | | |
Collapse
|
6
|
Zhu Y, Ponath F, Cosi V, Vogel J. A global survey of small RNA interactors identifies KhpA and KhpB as major RNA-binding proteins in Fusobacterium nucleatum. Nucleic Acids Res 2024; 52:3950-3970. [PMID: 38281181 DOI: 10.1093/nar/gkae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
The common oral microbe Fusobacterium nucleatum has recently drawn attention after it was found to colonize tumors throughout the human body. Fusobacteria are also interesting study systems for bacterial RNA biology as these early-branching species encode many small noncoding RNAs (sRNAs) but lack homologs of the common RNA-binding proteins (RBPs) CsrA, Hfq and ProQ. To search for alternate sRNA-associated RBPs in F. nucleatum, we performed a systematic mass spectrometry analysis of proteins that co-purified with 19 different sRNAs. This approach revealed strong enrichment of the KH domain proteins KhpA and KhpB with nearly all tested sRNAs, including the σE-dependent sRNA FoxI, a regulator of several envelope proteins. KhpA/B act as a dimer to bind sRNAs with low micromolar affinity and influence the stability of several of their target transcripts. Transcriptome studies combined with biochemical and genetic analyses suggest that KhpA/B have several physiological functions, including being required for ethanolamine utilization. Our RBP search and the discovery of KhpA/B as major RBPs in F. nucleatum are important first steps in identifying key players of post-transcriptional control at the root of the bacterial phylogenetic tree.
Collapse
Affiliation(s)
- Yan Zhu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
| | - Valentina Cosi
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg D-97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
7
|
Bergman S, Andresen L, Kjellin J, Martinez Burgo Y, Geiser P, Baars S, Söderbom F, Sellin ME, Holmqvist E. ProQ-dependent activation of Salmonella virulence genes mediated by post-transcriptional control of PhoP synthesis. mSphere 2024; 9:e0001824. [PMID: 38411119 PMCID: PMC10964419 DOI: 10.1128/msphere.00018-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
Gastrointestinal disease caused by Salmonella enterica is associated with the pathogen's ability to replicate within epithelial cells and macrophages. Upon host cell entry, the bacteria express a type-three secretion system encoded within Salmonella pathogenicity island 2, through which host-manipulating effector proteins are secreted to establish a stable intracellular niche. Transcription of this intracellular virulence program is activated by the PhoPQ two-component system that senses the low pH and the reduced magnesium concentration of host cell vacuoles. In addition to transcriptional control, Salmonella commonly employ RNA-binding proteins (RBPs) and small regulatory RNAs (sRNAs) to regulate gene expression at the post-transcriptional level. ProQ is a globally acting RBP in Salmonella that promotes expression of the intracellular virulence program, but its RNA repertoire has previously been characterized only under standard laboratory growth conditions. Here, we provide a high-resolution ProQ interactome during conditions mimicking the environment of the Salmonella-containing vacuole (SCV), revealing hundreds of previously unknown ProQ binding sites in sRNAs and mRNA 3'UTRs. ProQ positively affected both the levels and the stability of many sRNA ligands, some of which were previously shown to associate with the well-studied and infection-relevant RBP Hfq. We further show that ProQ activates the expression of PhoP at the post-transcriptional level, which, in turn, leads to upregulation of the intracellular virulence program. IMPORTANCE Salmonella enterica is a major pathogen responsible for foodborne gastroenteritis, and a leading model organism for genetic and molecular studies of bacterial virulence mechanisms. One key trait of this pathogen is the ability to survive within infected host cells. During infection, the bacteria employ a type three secretion system that deliver effector proteins to target and manipulate host cell processes. The transcriptional regulation of this virulence program is well understood. By contrast, the factors and mechanisms operating at the post-transcriptional level to control virulence gene expression are less clear. In this study, we have charted the global RNA ligand repertoire of the RNA-binding protein ProQ during in vitro conditions mimicking the host cell environment. This identified hundreds of binding sites and revealed ProQ-dependent stabilization of intracellular-specific small RNAs. Importantly, we show that ProQ post-transcriptionally activates the expression of PhoP, a master transcriptional activator of intracellular virulence in Salmonella.
Collapse
Affiliation(s)
- Sofia Bergman
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Liis Andresen
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Jonas Kjellin
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Yolanda Martinez Burgo
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Petra Geiser
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sophie Baars
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Mikael E. Sellin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Stein EM, Wang S, Dailey KG, Gravel CM, Wang S, Olejniczak M, Berry KE. Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ. RNA (NEW YORK, N.Y.) 2023; 29:1772-1791. [PMID: 37607742 PMCID: PMC10578477 DOI: 10.1261/rna.079697.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and noncoding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70, and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.
Collapse
Affiliation(s)
- Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Suxuan Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Katherine G Dailey
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| |
Collapse
|
9
|
Stein EM, Wang S, Dailey K, Gravel CM, Wang S, Olejniczak M, Berry KE. Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538249. [PMID: 37163069 PMCID: PMC10168233 DOI: 10.1101/2023.04.25.538249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and non-coding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli , though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70 and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.
Collapse
Affiliation(s)
- Ewa M. Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Suxuan Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Katherine Dailey
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, MA, 01075, USA
| |
Collapse
|
10
|
FinO/ProQ-family proteins: an evolutionary perspective. Biosci Rep 2023; 43:232566. [PMID: 36787218 PMCID: PMC9977716 DOI: 10.1042/bsr20220313] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins are key actors of post-transcriptional networks. Almost exclusively studied in the light of their interactions with RNA ligands and the associated functional events, they are still poorly understood as evolutionary units. In this review, we discuss the FinO/ProQ family of bacterial RNA chaperones, how they evolve and spread across bacterial populations and what properties and opportunities they provide to their host cells. We reflect on major conserved and divergent themes within the family, trying to understand how the same ancestral RNA-binding fold, augmented with additional structural elements, could yield either highly specialised proteins or, on the contrary, globally acting regulatory hubs with a pervasive impact on gene expression. We also consider dominant convergent evolutionary trends that shaped their RNA chaperone activity and recurrently implicated the FinO/ProQ-like proteins in bacterial DNA metabolism, translation and virulence. Finally, we offer a new perspective in which FinO/ProQ-family regulators emerge as active evolutionary players with both negative and positive roles, significantly impacting the evolutionary modes and trajectories of their bacterial hosts.
Collapse
|
11
|
Chihara K, Gerovac M, Hör J, Vogel J. Global profiling of the RNA and protein complexes of Escherichia coli by size exclusion chromatography followed by RNA sequencing and mass spectrometry (SEC-seq). RNA (NEW YORK, N.Y.) 2022; 29:rna.079439.122. [PMID: 36328526 PMCID: PMC9808575 DOI: 10.1261/rna.079439.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
New methods for the global identification of RNA-protein interactions have led to greater recognition of the abundance and importance of RNA-binding proteins (RBPs) in bacteria. Here, we expand this tool kit by developing SEC-seq, a method based on a similar concept as the established Grad-seq approach. In Grad-seq, cellular RNA and protein complexes of a bacterium of interest are separated in a glycerol gradient, followed by high-throughput RNA-sequencing and mass spectrometry analyses of individual gradient fractions. New RNA-protein complexes are predicted based on the similarity of their elution profiles. In SEC-seq, we have replaced the glycerol gradient with separation by size exclusion chromatography, which shortens operation times and offers greater potential for automation. Applying SEC-seq to Escherichia coli, we find that the method provides a higher resolution than Grad-seq in the lower molecular weight range up to ~500 kDa. This is illustrated by the ability of SEC-seq to resolve two distinct, but similarly sized complexes of the global translational repressor CsrA with either of its antagonistic small RNAs, CsrB and CsrC. We also characterized changes in the SEC-seq profiles of the small RNA MicA upon deletion of its RNA chaperones Hfq and ProQ and investigated the redistribution of these two proteins upon RNase treatment. Overall, we demonstrate that SEC-seq is a tractable and reproducible method for the global profiling of bacterial RNA-protein complexes that offers the potential to discover yet-unrecognized associations between bacterial RNAs and proteins.
Collapse
Affiliation(s)
- Kotaro Chihara
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
| | | | - Jens Hör
- Weizmann Institute, Rehovot, Israel
| | | |
Collapse
|
12
|
The Role and Targets of the RNA-Binding Protein ProQ in the Gram-Negative Bacterial Pathogen Pasteurella multocida. J Bacteriol 2022; 204:e0059221. [PMID: 35323048 DOI: 10.1128/jb.00592-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative pathogen Pasteurella multocida is the causative agent of many important animal diseases. While a number of P. multocida virulence factors have been identified, very little is known about how gene expression and protein production is regulated in this organism. One mechanism by which bacteria regulate transcript abundance and protein production is riboregulation, which involves the interaction of a small RNA (sRNA) with a target mRNA to alter transcript stability and/or translational efficiency. This interaction often requires stabilization by an RNA-binding protein such as ProQ or Hfq. In Escherichia coli and a small number of other species, ProQ has been shown to play a critical role in stabilizing sRNA-mRNA interactions and preferentially binds to the 3' stem-loop regions of the mRNA transcripts, characteristic of intrinsic transcriptional terminators. The aim of this study was to determine the role of ProQ in regulating P. multocida transcript abundance and identify the RNA targets to which it binds. We assessed differentially expressed transcripts in a proQ mutant and identified sites of direct ProQ-RNA interaction using in vivo UV-cross-linking and analysis of cDNA (CRAC). These analyses demonstrated that ProQ binds to, and stabilizes, ProQ-dependent sRNAs and transfer RNAs in P. multocida via adenosine-enriched, highly structured sequences. The binding of ProQ to two RNA molecules was characterized, and these analyses showed that ProQ bound within the coding sequence of the transcript PmVP161_1121, encoding an uncharacterized protein, and within the 3' region of the putative sRNA Prrc13. IMPORTANCE Regulation in P. multocida involving the RNA-binding protein Hfq is required for hyaluronic acid capsule production and virulence. This study further expands our understanding of riboregulation by examining the role of a second RNA-binding protein, ProQ, in transcript regulation and abundance in P. multocida.
Collapse
|
13
|
Katsuya-Gaviria K, Paris G, Dendooven T, Bandyra KJ. Bacterial RNA chaperones and chaperone-like riboregulators: behind the scenes of RNA-mediated regulation of cellular metabolism. RNA Biol 2021; 19:419-436. [PMID: 35438047 PMCID: PMC9037510 DOI: 10.1080/15476286.2022.2048565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/26/2022] [Indexed: 11/02/2022] Open
Abstract
In all domains of life, RNA chaperones safeguard and guide the fate of the cellular RNA pool. RNA chaperones comprise structurally diverse proteins that ensure proper folding, stability, and ribonuclease resistance of RNA, and they support regulatory activities mediated by RNA. RNA chaperones constitute a topologically diverse group of proteins that often present an unstructured region and bind RNA with limited nucleotide sequence preferences. In bacteria, three main proteins - Hfq, ProQ, and CsrA - have been shown to regulate numerous complex processes, including bacterial growth, stress response and virulence. Hfq and ProQ have well-studied activities as global chaperones with pleiotropic impact, while CsrA has a chaperone-like role with more defined riboregulatory function. Here, we describe relevant novel insights into their common features, including RNA binding properties, unstructured domains, and interplay with other proteins important to RNA metabolism.
Collapse
Affiliation(s)
- Kai Katsuya-Gaviria
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CambridgeCB2 1GA, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CambridgeCB2 1GA, UK
| | - Tom Dendooven
- Department of Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Katarzyna J. Bandyra
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 02-089Warsaw, Poland
| |
Collapse
|