1
|
Barth KM, Hiller DA, Belem de Andrade G, Kavita K, Fernando CM, Breaker RR, Strobel SA. Decoding the Complex Functional Landscape of the ykkC Riboswitches. Biochemistry 2025; 64:1983-1995. [PMID: 40254862 DOI: 10.1021/acs.biochem.4c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The ykkC class is the most diverse riboswitch class to date, recognizing structurally and chemically diverse ligands using only minor changes in sequence and structure. Structural studies have demonstrated how sequence changes correspond to altered specificity; however, they are insufficient to define the requirements for functional riboswitch specificity. Here, we report an extensive mutational analysis of the ppGpp riboswitch to investigate the functional role in transcriptional control for this variant riboswitch. Disruption of the terminator hairpin at a single base pair is sufficient to abolish nearly all function, highlighting the fine-tuning of the terminator hairpin to its corresponding aptamer domain. This fine-tuning has been observed in other riboswitches, suggesting that high levels of tunability may be a common feature of riboswitches. Additionally, mutational analysis shows that the previously reported binding site position, G93, does not necessarily correspond to PRPP-driven function as expected. Phylogenetic analysis of natural riboswitches that contain G93 revealed an additional ykkC subclass that binds to both XMP and GMP. This variant subclass is associated with genes for de novo GMP synthesis. Identification of this variant class provides further evidence for small sequence changes corresponding to altered ligand specificity.
Collapse
Affiliation(s)
- Kathryn M Barth
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States
| | - David A Hiller
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States
| | - Gabriel Belem de Andrade
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Kumari Kavita
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Scott A Strobel
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, Connecticut 06516, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
2
|
Kelly SL, Strobel EJ. Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display. Nat Commun 2025; 16:2350. [PMID: 40064876 PMCID: PMC11894091 DOI: 10.1038/s41467-025-57415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
RNA can fold into structures that mediate diverse cellular functions. Understanding how RNA primary sequence directs the formation of functional structures requires methods that can comprehensively assess how changes in an RNA sequence affect its structure and function. Here we have developed a platform for performing high-throughput cotranscriptional RNA biochemical assays, called Transcription Elongation Complex display (TECdisplay). TECdisplay measures RNA function by fractionating a TEC library based on the activity of cotranscriptionally displayed nascent RNA. In this way, RNA function is measured as the distribution of template DNA molecules between fractions of the transcription reaction. This approach circumvents typical RNA sequencing library preparation steps that can cause technical bias. We used TECdisplay to characterize the transcription antitermination activity of >1 million variants of the Clostridium beijerinckii pfl ZTP riboswitch designed to perturb steps within its cotranscriptional folding pathway. Our findings establish TECdisplay as an accessible platform for high-throughput RNA biochemical assays.
Collapse
Affiliation(s)
- Skyler L Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA
| | - Eric J Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
Bushhouse DZ, Fu J, Lucks JB. RNA folding kinetics control riboswitch sensitivity in vivo. Nat Commun 2025; 16:953. [PMID: 39843437 PMCID: PMC11754884 DOI: 10.1038/s41467-024-55601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity to ligand (EC50) is controlled is critical to explain how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures and regulatory mechanisms demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
Collapse
Affiliation(s)
- David Z Bushhouse
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Jiayu Fu
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Water Research, Northwestern University, Evanston, IL, USA.
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
4
|
Franke L, Globisch C, Karakurt MC, Stephan T, Peter C. Atomistic Simulations Reveal Crucial Role of Metal Ions for Ligand Binding in Guanidine-I Riboswitch. Macromol Rapid Commun 2024; 45:e2400606. [PMID: 39225633 PMCID: PMC11661666 DOI: 10.1002/marc.202400606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Riboswitches are structured ribonucleic acid (RNA) segments that act as specific sensors for small molecules in bacterial metabolism. Due to the flexible nature of these highly charged macromolecules, molecular dynamics simulations are instrumental to investigating the mechanistic details of their regulatory function. In the present study, the guanidine-I riboswitch serves as an example of how atomistic simulations can shed light on the effect of ions on the structure and dynamics of RNA and on ligand binding. Relying on two orthologous crystal structures from different bacterial species, it is demonstrated how the ion setup crucially determines whether the simulation yields meaningful insights into the conformational stability of the RNA, functionally relevant residues and RNA-ligand interactions. The ion setup in this context includes diffuse ions in solution and bound ions associated directly with the RNA, in particular a triad of 2 Mg2+ ions and a K+ ion in close proximity to the guanidinium binding site. A detailed investigation of the binding pocket reveals that the K+ from the ion triad plays a decisive role in stabilizing the ligand binding by stabilizing important localized interactions, which in turn contribute to the overall shape of the folded state of the RNA.
Collapse
Affiliation(s)
- Leon Franke
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Christoph Globisch
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Mehmet Can Karakurt
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Theresa Stephan
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Christine Peter
- Department of ChemistryUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| |
Collapse
|
5
|
Chauvier A, Walter NG. Beyond ligand binding: Single molecule observation reveals how riboswitches integrate multiple signals to balance bacterial gene regulation. Curr Opin Struct Biol 2024; 88:102893. [PMID: 39067113 DOI: 10.1016/j.sbi.2024.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Riboswitches are specialized RNA structures that orchestrate gene expression in response to sensing specific metabolite or ion ligands, mostly in bacteria. Upon ligand binding, these conformationally dynamic RNA motifs undergo structural changes that control critical gene expression processes such as transcription termination and translation initiation, thereby enabling cellular homeostasis and adaptation. Because RNA folds rapidly and co-transcriptionally, riboswitches make use of the low complexity of RNA sequences to adopt alternative, transient conformations on the heels of the transcribing RNA polymerase (RNAP), resulting in kinetic partitioning that defines the regulatory outcome. This review summarizes single molecule microscopy evidence that has begun to unveil a sophisticated network of dynamic, kinetically balanced interactions between riboswitch architecture and the gene expression machinery that, together, integrate diverse cellular signals.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA. https://twitter.com/adrienchauvier
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Steuer J, Sinn M, Eble F, Rütschlin S, Böttcher T, Hartig JS, Peter C. Cooperative binding of bivalent ligands yields new insights into the guanidine-II riboswitch. NAR Genom Bioinform 2024; 6:lqae132. [PMID: 39323654 PMCID: PMC11423145 DOI: 10.1093/nargab/lqae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
Riboswitches are involved in regulating the gene expression in bacteria. They are located within the untranslated regions of bacterial messenger RNA and function as switches by adjusting their shape, depending on the presence or absence of specific ligands. To decipher the fundamental aspects of bacterial gene control, it is therefore important to understand the mechanisms that underlie these conformational switches. To this end, a combination of an experimental binding study, molecular simulations and machine learning has been employed to obtain insights into the conformational changes and structural dynamics of the guanidine-II riboswitch. By exploiting the design of a bivalent ligand, we were able to study ligand binding in the aptamer dimer at the molecular level. Spontaneous ligand-binding events, which are usually difficult to simulate, were observed and the contributing factors are described. These findings were further confirmed by in vivo experiments, where the cooperative binding effects of the bivalent ligands resulted in increased binding affinity compared to the native guanidinium ligand. Beyond ligand binding itself, the simulations revealed a novel, ligand-dependent base-stacking interaction outside of the binding pocket that stabilizes the riboswitch.
Collapse
Affiliation(s)
- Jakob Steuer
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Malte Sinn
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Franziska Eble
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Sina Rütschlin
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Böttcher
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090 Vienna, Austria
| | - Jörg S Hartig
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Hertz LM, White EN, Kuznedelov K, Cheng L, Yu AM, Kakkaramadam R, Severinov K, Chen A, Lucks J. The effect of pseudoknot base pairing on cotranscriptional structural switching of the fluoride riboswitch. Nucleic Acids Res 2024; 52:4466-4482. [PMID: 38567721 PMCID: PMC11077080 DOI: 10.1093/nar/gkae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.
Collapse
Affiliation(s)
- Laura M Hertz
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Elise N White
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | | | - Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Angela M Yu
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rivaan Kakkaramadam
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Alan Chen
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Bushhouse DZ, Fu J, Lucks JB. RNA folding kinetics control riboswitch sensitivity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587317. [PMID: 38585885 PMCID: PMC10996619 DOI: 10.1101/2024.03.29.587317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity is controlled is critical to understanding how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover new roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures that regulate transcription and translation with ON and OFF logic demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Comparison of the most sensitized versions of these switches to equilibrium aptamer:ligand dissociation constants suggests a limit to the sensitivities achievable by kinetic RNA switches. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
Collapse
Affiliation(s)
- David Z. Bushhouse
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiayu Fu
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B. Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
9
|
Olenginski LT, Spradlin SF, Batey RT. Flipping the script: Understanding riboswitches from an alternative perspective. J Biol Chem 2024; 300:105730. [PMID: 38336293 PMCID: PMC10907184 DOI: 10.1016/j.jbc.2024.105730] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Riboswitches are broadly distributed regulatory elements most frequently found in the 5'-leader sequence of bacterial mRNAs that regulate gene expression in response to the binding of a small molecule effector. The occupancy status of the ligand-binding aptamer domain manipulates downstream information in the message that instructs the expression machinery. Currently, there are over 55 validated riboswitch classes, where each class is defined based on the identity of the ligand it binds and/or sequence and structure conservation patterns within the aptamer domain. This classification reflects an "aptamer-centric" perspective that dominates our understanding of riboswitches. In this review, we propose a conceptual framework that groups riboswitches based on the mechanism by which RNA manipulates information directly instructing the expression machinery. This scheme does not replace the established aptamer domain-based classification of riboswitches but rather serves to facilitate hypothesis-driven investigation of riboswitch regulatory mechanisms. Based on current bioinformatic, structural, and biochemical studies of a broad spectrum of riboswitches, we propose three major mechanistic groups: (1) "direct occlusion", (2) "interdomain docking", and (3) "strand exchange". We discuss the defining features of each group, present representative examples of riboswitches from each group, and illustrate how these RNAs couple small molecule binding to gene regulation. While mechanistic studies of the occlusion and docking groups have yielded compelling models for how these riboswitches function, much less is known about strand exchange processes. To conclude, we outline the limitations of our mechanism-based conceptual framework and discuss how critical information within riboswitch expression platforms can inform gene regulation.
Collapse
Affiliation(s)
| | | | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
10
|
Barth KM, Hiller DA, Strobel SA. The Impact of Second-Shell Nucleotides on Ligand Specificity in Cyclic Dinucleotide Riboswitches. Biochemistry 2024:10.1021/acs.biochem.3c00586. [PMID: 38329042 PMCID: PMC11306416 DOI: 10.1021/acs.biochem.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ligand specificity is an essential requirement for all riboswitches. Some variant riboswitches utilize a common structural motif, yet through subtle sequence differences, they are able to selectively respond to different small molecule ligands and regulate downstream gene expression. These variants discriminate between structurally and chemically similar ligands. Crystal structures provide insight into how specificity is achieved. However, ligand specificity cannot always be explained solely by nucleotides in direct contact with the ligand. The cyclic dinucleotide variant family contains two classes, cyclic-di-GMP and cyclic-AMP-GMP riboswitches, that were distinguished based on the identity of a single nucleotide in contact with the ligand. Here we report a variant riboswitch with a mutation at a second ligand-contacting position that is promiscuous for both cyclic-di-GMP and cyclic-AMP-GMP despite a predicted preference for cyclic-AMP-GMP. A high-throughput mutational analysis, SMARTT, was used to quantitatively assess thousands of sites in the first- and second-shells of ligand contact for impacts on ligand specificity and promiscuity. In addition to nucleotides in direct ligand contact, nucleotides more distal from the binding site, within the J1/2 linker and the terminator helix, were identified that impact ligand specificity. These findings provide an example of how nucleotides outside the ligand binding pocket influence the riboswitch specificity. Moreover, these distal nucleotides could be used to predict promiscuous sequences.
Collapse
Affiliation(s)
- Kathryn M. Barth
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - David A. Hiller
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Scott A. Strobel
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
11
|
Kelly SL, Strobel EJ. Systematic analysis of cotranscriptional RNA folding using transcription elongation complex display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573115. [PMID: 38187752 PMCID: PMC10769408 DOI: 10.1101/2023.12.22.573115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
RNA can fold into structures that mediate diverse cellular functions. Understanding how RNA primary sequence directs the formation of functional structures requires methods that can comprehensively assess how changes in an RNA sequence affect its structure and function. Here we have developed a platform for performing high-throughput cotranscriptional RNA biochemical assays, called Transcription Elongation Complex display (TECdisplay). TECdisplay measures RNA function by fractionating a TEC library based on the activity of cotranscriptionally displayed nascent RNA. In this way, RNA function is measured as the distribution of template DNA molecules between fractions of the transcription reaction. This approach circumvents typical RNA sequencing library preparation steps that can cause technical bias. We used TECdisplay to characterize the transcription antitermination activity of 32,768 variants of the Clostridium beijerinckii pfl ZTP riboswitch designed to perturb steps within its cotranscriptional folding pathway. Our findings establish TECdisplay as an accessible platform for high-throughput RNA biochemical assays.
Collapse
Affiliation(s)
- Skyler L. Kelly
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| | - Eric J. Strobel
- Department of Biological Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
12
|
Hertz LM, White EN, Kuznedelov K, Cheng L, Yu AM, Kakkaramadam R, Severinov K, Chen A, Lucks JB. The Effect of Pseudoknot Base Pairing on Cotranscriptional Structural Switching of the Fluoride Riboswitch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570056. [PMID: 38106011 PMCID: PMC10723315 DOI: 10.1101/2023.12.05.570056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of E. coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37 °C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65 °C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.
Collapse
Affiliation(s)
- Laura M Hertz
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Elise N White
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | | | - Luyi Cheng
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
| | - Angela M Yu
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rivaan Kakkaramadam
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854, USA
| | - Alan Chen
- Department of Chemistry and the RNA Institute, University at Albany, Albany, NY 12222, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|