1
|
Geng A, Roy R, Gu S, Guseva S, Pratihar S, Lee Y, Li L, Kimsey IJ, Wilson MA, Al-Hashimi HM. Insight into the conformational ensembles formed by U-U and T-T mismatches in RNA and DNA duplexes from a structure-based survey, NMR, and molecular dynamics simulations. J Mol Biol 2025:169197. [PMID: 40345379 DOI: 10.1016/j.jmb.2025.169197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Nucleic acid base pairs interconvert between alternative conformations on a free energy landscape, and these dynamics play critical roles in recognition, folding, and catalysis. U-U and T-T mismatches can adopt two nearly isoenergetic wobble conformations, distinguished by their relative shearing displacements. Experimental NMR evidence suggests that these conformations dynamically interconvert in RNA motifs containing tandem U-U mismatches. However, whether such motions occur ubiquitously across U-U and T-T mismatches remains unknown, as high-resolution nucleic acid structures typically report only a single conformation. Here, we used NMR spectroscopy, a structure-based survey of the Protein Data Bank, and molecular dynamics (MD) simulations to investigate wobble dynamics in U-U and T-T mismatches when flanked by canonical Watson-Crick base pairs in RNA and DNA duplexes. The structure-based survey revealed that U-U mismatches have propensities to adopt alternative wobble conformations even when controlling for sequence and identified potential intermediates along the wobble transition. Off-resonance R1ρ relaxation dispersion experiments detected no micro- to millisecond dynamics for U-U mismatches in duplex RNA and T-T mismatches in duplex DNA. However, alternative conformer refinement of the electron density in X-ray structures, inter-proton NOEs, carbonyl carbon chemical shifts, an RDC-derived conformational ensemble, and MD simulations indicated that U-U and T-T mismatches exist in a dynamic equilibrium between two wobble conformations, with the minor state exceeding 30% and the transitions occurring on the nanosecond timescale. Our findings suggest that U-U and T-T ubiquitously undergo sub-microsecond wobble motions, contributing to the energetic landscape and dynamic plasticity of nucleic acids, with important implications for processes that generate and act on these mismatches.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27701, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27701, USA
| | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27701, USA
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Supriya Pratihar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yeongjoon Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Linshu Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27701, USA
| | - Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Ren Y, Lin X, Liao W, Peng X, Deng J, Zhang Z, Zhan J, Zhou Y, Westhof E, Lilley DMJ, Wang J, Huang L. A general strategy for engineering GU base pairs to facilitate RNA crystallization. Nucleic Acids Res 2025; 53:gkae1218. [PMID: 39721592 PMCID: PMC11797044 DOI: 10.1093/nar/gkae1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
X-ray crystallography is a fundamental technique that provides atomic-level insights into RNA structures. However, obtaining crystals of RNA structures diffracting to high resolution is challenging. We introduce a simple strategy to enhance the resolution limit of RNA crystals by the selective substitution of Watson-Crick pairs by GU pairs within RNA sequences. Our approach has successfully yielded high-resolution structures for eight unique RNA crystals. Notably, six instances showed marked resolution enhancement upon GC/AU to GU base pair substitution, with two cases achieving high-resolution structures from initially poor data. In one case, reverting GU to GC base pairs also improved resolution. Our method facilitated the first structural determinations of the Long Interspersed Nuclear Element-1 and Olfactory Receptor family 4 subfamily K member 15 ribozymes, the 2'-deoxyguanosine-III riboswitch and the Broccoli RNA aptamer. The placement of GU base pairs within the first 5' helical stem of any given RNA species, or in one peripheral stem, is shown to be sufficient. These results offer a simple and effective approach for designing sequences or selecting sequences from homologous sequences, for high-resolution RNA structure determination.
Collapse
Affiliation(s)
- Yangyi Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaowei Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Dafeng Hospital, Chaoyang District, Shantou 515000, China
| | - Wenjian Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xuemei Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhe Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jian Zhan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Ribopeutic Inc., Guangzhou International Bio Island, Guangzhou 510005, China
| | - Yaoqi Zhou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Eric Westhof
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, Strasbourg F-67084, France
| | - David M J Lilley
- Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Jia Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
3
|
Timsit Y, Sergeant-Perthuis G, Bennequin D. The role of ribosomal protein networks in ribosome dynamics. Nucleic Acids Res 2025; 53:gkae1308. [PMID: 39788545 PMCID: PMC11711686 DOI: 10.1093/nar/gkae1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Accurate protein synthesis requires ribosomes to integrate signals from distant functional sites and execute complex dynamics. Despite advances in understanding ribosome structure and function, two key questions remain: how information is transmitted between these distant sites, and how ribosomal movements are synchronized? We recently highlighted the existence of ribosomal protein networks, likely evolved to participate in ribosome signaling. Here, we investigate the relationship between ribosomal protein networks and ribosome dynamics. Our findings show that major motion centers in the bacterial ribosome interact specifically with r-proteins, and that ribosomal RNA exhibits high mobility around each r-protein. This suggests that periodic electrostatic changes in the context of negatively charged residues (Glu and Asp) induce RNA-protein 'distance-approach' cycles, controlling key ribosomal movements during translocation. These charged residues play a critical role in modulating electrostatic repulsion between RNA and proteins, thus coordinating ribosomal dynamics. We propose that r-protein networks synchronize ribosomal dynamics through an 'electrostatic domino' effect, extending the concept of allostery to the regulation of movements within supramolecular assemblies.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 163 avenue de Luminy 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France
| | - Grégoire Sergeant-Perthuis
- Laboratory of Computational and Quantitative Biology (LCQB), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Daniel Bennequin
- Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS, Université Paris Diderot, 8, Pace Aurélie Nemours, 75013 Paris, France
| |
Collapse
|
4
|
Leonarski F, Henning-Knechtel A, Kirmizialtin S, Ennifar E, Auffinger P. Principles of ion binding to RNA inferred from the analysis of a 1.55 Å resolution bacterial ribosome structure - Part I: Mg2. Nucleic Acids Res 2025; 53:gkae1148. [PMID: 39791453 PMCID: PMC11724316 DOI: 10.1093/nar/gkae1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025] Open
Abstract
The importance of Mg2+ ions for RNA structure and function cannot be overstated. Several attempts were made to establish a comprehensive Mg2+ binding site classification. However, such descriptions were hampered by poorly modelled ion binding sites as observed in a recent cryo-EM 1.55 Å Escherichia coli ribosome structure where incomplete ion assignments blurred our understanding of their binding patterns. We revisited this model to establish general binding principles applicable to any RNA of sufficient resolution. These principles rely on the 2.9 Å distance separating two water molecules bound in cis to Mg2+. By applying these rules, we could assign all Mg2+ ions bound with 2-4 non-water oxygens. We also uncovered unanticipated motifs where up to five adjacent nucleotides wrap around a single ion. The formation of such motifs involves a hierarchical Mg2+ ion dehydration process that plays a significant role in ribosome biogenesis and in the folding of large RNAs. Besides, we established a classification of the Mg2+…Mg2+ and Mg2+…K+ ion pairs observed in this ribosome. Overall, the uncovered binding principles enhance our understanding of the roles of ions in RNA structure and will help refining the solvation shell of other RNA systems.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI 5232, Switzerland
| | - Anja Henning-Knechtel
- Chemistry Program, Science Division, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, USA
| | - Eric Ennifar
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| | - Pascal Auffinger
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 2 Allée Konrad Roentgen, 67084 Strasbourg, France
| |
Collapse
|
5
|
Saon MS, Douds CA, Veenis AJ, Pearson AN, Yennawar NH, Bevilacqua PC. Identification and characterization of shifted G•U wobble pairs resulting from alternative protonation of RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630957. [PMID: 39803426 PMCID: PMC11722211 DOI: 10.1101/2024.12.31.630957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
RNA can serve as an enzyme, small molecule sensor, and vaccine, and it may have been a conduit for the origin of life. Despite these profound functions, RNA is thought to have quite limited molecular diversity. A pressing question, therefore, is whether RNA can adopt novel molecular states that enhance its function. Covalent modifications of RNA have been demonstrated to augment biological function, but much less is known about non-covalent alterations such as novel protonated or tautomeric forms. Conventionally, a G•U wobble has the U shifted into the major groove. We used a cheminformatic approach to identify four structural families of shifted G•U wobbles in which the G instead resides in the major groove of RNA, which requires alternative tautomeric states of either base, or an anionic state of the U. We provide experimental support for these shifted G•U wobbles via the potent, and unconventional, in vivo reactivity of the U with dimethylsulfate (DMS) in three organisms. These shifted wobbles may play important functional roles and could serve as drug targets. Our cheminformatics approach is general and can be applied to identify alternative protonation states in other RNA motifs, as well as in DNA and proteins.
Collapse
|
6
|
Akiyama N, Ishiguro K, Yokoyama T, Miyauchi K, Nagao A, Shirouzu M, Suzuki T. Structural insights into the decoding capability of isoleucine tRNAs with lysidine and agmatidine. Nat Struct Mol Biol 2024; 31:817-825. [PMID: 38538915 DOI: 10.1038/s41594-024-01238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/31/2024] [Indexed: 05/21/2024]
Abstract
The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.
Collapse
MESH Headings
- RNA, Transfer, Ile/chemistry
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Ile/genetics
- Cryoelectron Microscopy
- Anticodon/chemistry
- Anticodon/metabolism
- Ribosomes/metabolism
- Ribosomes/chemistry
- Nucleic Acid Conformation
- Models, Molecular
- Codon/genetics
- Lysine/metabolism
- Lysine/chemistry
- Lysine/analogs & derivatives
- Cytidine/analogs & derivatives
- Cytidine/chemistry
- Cytidine/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- Protein Biosynthesis
- Pyrimidine Nucleosides
Collapse
Affiliation(s)
- Naho Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kensuke Ishiguro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
7
|
Szekely O, Rangadurai AK, Gu S, Manghrani A, Guseva S, Al-Hashimi HM. NMR measurements of transient low-populated tautomeric and anionic Watson-Crick-like G·T/U in RNA:DNA hybrids: implications for the fidelity of transcription and CRISPR/Cas9 gene editing. Nucleic Acids Res 2024; 52:2672-2685. [PMID: 38281263 PMCID: PMC10954477 DOI: 10.1093/nar/gkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Many biochemical processes use the Watson-Crick geometry to distinguish correct from incorrect base pairing. However, on rare occasions, mismatches such as G·T/U can transiently adopt Watson-Crick-like conformations through tautomerization or ionization of the bases, giving rise to replicative and translational errors. The propensities to form Watson-Crick-like mismatches in RNA:DNA hybrids remain unknown, making it unclear whether they can also contribute to errors during processes such as transcription and CRISPR/Cas editing. Here, using NMR R1ρ experiments, we show that dG·rU and dT·rG mismatches in two RNA:DNA hybrids transiently form tautomeric (Genol·T/U $ \mathbin{\lower.3ex\hbox{$\buildrel\textstyle\rightarrow\over {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}}$}}$ G·Tenol/Uenol) and anionic (G·T-/U-) Watson-Crick-like conformations. The tautomerization dynamics were like those measured in A-RNA and B-DNA duplexes. However, anionic dG·rU- formed with a ten-fold higher propensity relative to dT-·rG and dG·dT- and this could be attributed to the lower pKa (ΔpKa ∼0.4-0.9) of U versus T. Our findings suggest plausible roles for Watson-Crick-like G·T/U mismatches in transcriptional errors and CRISPR/Cas9 off-target gene editing, uncover a crucial difference between the chemical dynamics of G·U versus G·T, and indicate that anionic Watson-Crick-like G·U- could play a significant role evading Watson-Crick fidelity checkpoints in RNA:DNA hybrids and RNA duplexes.
Collapse
Affiliation(s)
- Or Szekely
- Department of Biology, Duke University, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA
| | | | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| | - Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| | - Serafima Guseva
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY, NY 10032, USA
| |
Collapse
|
8
|
Szekely O, Rangadurai AK, Gu S, Manghrani A, Guseva S, Al-Hashimi HM. NMR measurements of transient low-populated tautomeric and anionic Watson-Crick-like G·T/U in RNA:DNA hybrids: Implications for the fidelity of transcription and CRISPR/Cas9 gene editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554670. [PMID: 37662220 PMCID: PMC10473728 DOI: 10.1101/2023.08.24.554670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many biochemical processes use the Watson-Crick geometry to distinguish correct from incorrect base pairing. However, on rare occasions, mismatches such as G•T/U can transiently adopt Watson-Crick-like conformations through tautomerization or ionization of the bases, giving rise to replicative and translational errors. The propensities to form Watson-Crick-like mismatches in RNA:DNA hybrids remain unknown, making it unclear whether they can also contribute to errors during processes such as transcription and CRISPR/Cas editing. Here, using NMR R 1ρ experiments, we show that dG•rU and dT•rG mismatches in two RNA:DNA hybrids transiently form tautomeric (G enol •T/U ⇄G•T enol /U enol ) and anionic (G•T - /U - ) Watson-Crick-like conformations. The tautomerization dynamics were like those measured in A-RNA and B-DNA duplexes. However, anionic dG•rU - formed with a ten-fold higher propensity relative to dT - •rG and dG•dT - and this could be attributed to the lower pK a (Δ pK a ∼0.4-0.9) of U versus T. Our findings suggest plausible roles for Watson-Crick-like G•T/U mismatches in transcriptional errors and CRISPR/Cas9 off-target gene editing, uncover a crucial difference between the chemical dynamics of G•U versus G•T, and indicate that anionic Watson-Crick-like G•U - could play a significant role evading Watson-Crick fidelity checkpoints in RNA:DNA hybrids and RNA duplexes.
Collapse
|