1
|
Tian Q, Zou Q, Jia L. Benchmarking of methods that identify alternative polyadenylation events in single-/multiple-polyadenylation site genes. NAR Genom Bioinform 2025; 7:lqaf056. [PMID: 40371010 PMCID: PMC12076406 DOI: 10.1093/nargab/lqaf056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/23/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
Alternative polyadenylation (APA) is a widespread post-transcriptional mechanism that diversifies gene expression by generating messenger RNA isoforms with varying 3' untranslated regions. Accurate identification and quantification of transcriptome-wide polyadenylation site (PAS) usage are essential for understanding APA-mediated gene regulation and its biological implications. In this review, we first review the landscape of computational tools developed to identify APA events from RNA sequencing (RNA-seq) data. We then benchmarked five PAS prediction tools and seven APA detection algorithms using five RNA-seq datasets derived from clear cell renal cell carcinoma (ccRCC) and adjacent normal tissues. By evaluating tool performance across genes with either single or multiple PASs, we revealed substantial variation in accuracy, sensitivity, and consistency among the tools. Based on this comparative analysis, we offer practical guidelines for tool selection and propose considerations for improving APA detection accuracy. Additionally, our analysis identified CCNL2 as a candidate gene exhibiting significant APA regulation in ccRCC, highlighting its potential as a disease-associated biomarker.
Collapse
Affiliation(s)
- Qiuxiang Tian
- College of Information Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Quan Zou
- School of Information Technology and Administration, Hunan University of Finance and Economics, Changsha, 410205, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, 324000, China
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing, 100053, China
| |
Collapse
|
2
|
Moon Y, Herrmann C, Mironov A, Zavolan M. PolyASite v3.0: a multi-species atlas of polyadenylation sites inferred from single-cell RNA-sequencing data. Nucleic Acids Res 2025; 53:D197-D204. [PMID: 39530237 PMCID: PMC11701536 DOI: 10.1093/nar/gkae1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The broadly used 10X Genomics technology for single-cell RNA sequencing (scRNA-seq) captures RNA 3' ends. Thus, some reads contain part of the non-templated polyadenosine tails, providing direct evidence for the sites of 3' end cleavage and polyadenylation on the respective RNAs. Taking advantage of this property, we recently developed the SCINPAS workflow to infer polyadenylation sites (PASs) from scRNA-seq data. Here, we used this workflow to construct version 3.0 (v3.0, https://polyasite.unibas.ch/) of the PolyASite Atlas from a big compendium of publicly available human, mouse and worm scRNA-seq datasets obtained from healthy tissues. As the resolution of scRNA-seq was too low for robust detection of cell-level differences in PAS usage, we aggregated samples based on their tissue-of-origin to construct tissue-level catalogs of PASs. These provide qualitatively new information about PAS usage, in comparison to the previous PAS catalogs that were based on bulk 3' end sequencing experiments primarily in cell lines. In the new version, we document stringency levels associated with each PAS so that users can balance sensitivity and specificity in their analysis. We also upgraded the integration with the UCSC Genome Browser and developed track hubs conveniently displaying pooled and tissue-specific expression of PASs.
Collapse
Affiliation(s)
- Youngbin Moon
- Computational and Systems Biology, Biozentrum University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Quartier Sorge, Bâtiment Amphipôle, Vaud CH-1015, Switzerland
| | - Christina J Herrmann
- Computational and Systems Biology, Biozentrum University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Quartier Sorge, Bâtiment Amphipôle, Vaud CH-1015, Switzerland
| | - Aleksei Mironov
- Computational and Systems Biology, Biozentrum University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Quartier Sorge, Bâtiment Amphipôle, Vaud CH-1015, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Quartier Sorge, Bâtiment Amphipôle, Vaud CH-1015, Switzerland
| |
Collapse
|
3
|
Ou J, Liu H, Park S, Green MR, Zhu LJ. InPAS: An R/Bioconductor Package for Identifying Novel Polyadenylation Sites and Alternative Polyadenylation from Bulk RNA-seq Data. Front Biosci (Schol Ed) 2024; 16:21. [PMID: 39736014 DOI: 10.31083/j.fbs1604021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes. However, RNA sequencing (RNA-seq) technology has revolutionized transcriptome profiling and recent studies have shown that RNA-seq data can be leveraged to identify and quantify APA events. RESULTS To fully capitalize on the exponentially growing RNA-seq data, we developed InPAS (Identification of Novel alternative PolyAdenylation Sites), an R/Bioconductor package for accurate identification of novel and known cleavage and polyadenylation sites (CPSs), as well as quantification of APA from RNA-seq data of various experimental designs. Compared to other APA analysis tools, InPAS offers several important advantages, including the ability to detect both novel proximal and distal CPSs, to fine tune positions of CPSs using a naïve Bayes classifier based on flanking sequence features, and to identify APA events from RNA-seq data of complex experimental designs using linear models. We benchmarked the performance of InPAS and other leading tools using simulated and experimental RNA-seq data with matched 3'-end RNA-seq data. Our results reveal that InPAS frequently outperforms existing tools in terms of precision, sensitivity, and specificity. Furthermore, we demonstrate its scalability and versatility by applying it to large, diverse RNA-seq datasets. CONCLUSIONS InPAS is an efficient and robust tool for identifying and quantifying APA events using readily accessible conventional RNA-seq data. Its versatility opens doors to explore APA regulation across diverse eukaryotic systems with various experimental designs. We believe that InPAS will drive APA research forward, deepening our understanding of its role in regulating gene expression, and potentially leading to the discovery of biomarkers or therapeutics for diseases.
Collapse
Affiliation(s)
- Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Regeneration Center, Duke University School of Medicine, Duke University, Durham, NC 27701, USA
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sungmi Park
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Mironov A, Franchitti L, Ghosh S, Ritz MF, Hutter G, De Bortoli M, Zavolan M. Leveraging multi-omics data to infer regulators of mRNA 3' end processing in glioblastoma. Front Mol Biosci 2024; 11:1363933. [PMID: 39188787 PMCID: PMC11345230 DOI: 10.3389/fmolb.2024.1363933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Alterations in mRNA 3' end processing and polyadenylation are widely implicated in the biology of many cancer types, including glioblastoma (GBM), one the most aggressive tumor types. Although several RNA-binding proteins (RBPs) responsible for alternative polyadenylation (APA) were identified from functional studies in cell lines, their contribution to the APA landscape in tumors in vivo was not thoroughly addressed. In this study we analyzed a large RNA-seq data set of glioblastoma (GBM) samples from The Cancer Genome Atlas (TCGA) to identify APA patterns differentiating the main molecular subtypes of GBM. We superimposed these to RBP footprinting data and to APA events occurring upon depletion of individual RBPs from a large panel tested by the ENCODE Consortium. Our analysis revealed 22 highly concordant and statistically significant RBP-APA associations, whereby changes in RBP expression were accompanied by APA in both TCGA and ENCODE datasets. Among these, we found a previously unknown PTBP1-regulated APA event in the PRRC2B gene and an HNRNPU-regulated event in the SC5D gene. Both of these were further supported by RNA-sequencing data of paired tumor center-periphery GBM samples obtained at the University Hospital of Basel. In addition, we validated the regulation of APA in PRRC2B by PTBP1 in siRNA-knockdown and overexpression experiments followed by RNA-sequencing in two glioblastoma cell lines. The transcriptome analysis workflow that we present here enables the identification of concordant RBP-APA associations in cancers.
Collapse
Affiliation(s)
| | - Lorenzo Franchitti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | - Gregor Hutter
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
5
|
Blake D, Gazzara MR, Breuer I, Ferretti M, Lynch KW. Alternative 3'UTR expression induced by T cell activation is regulated in a temporal and signal dependent manner. Sci Rep 2024; 14:10987. [PMID: 38745101 PMCID: PMC11094061 DOI: 10.1038/s41598-024-61951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/12/2024] [Indexed: 05/16/2024] Open
Abstract
The length of 3' untranslated regions (3'UTR) is highly regulated during many transitions in cell state, including T cell activation, through the process of alternative polyadenylation (APA). However, the regulatory mechanisms and functional consequences of APA remain largely unexplored. Here we present a detailed analysis of the temporal and condition-specific regulation of APA following activation of primary human CD4+ T cells. We find that global APA changes are regulated temporally and CD28 costimulatory signals enhance a subset of these changes. Most APA changes upon T cell activation involve 3'UTR shortening, although a set of genes enriched for function in the mTOR pathway exhibit 3'UTR lengthening. While upregulation of the core polyadenylation machinery likely induces 3'UTR shortening following prolonged T cell stimulation; a significant program of APA changes occur prior to cellular proliferation or upregulation of the APA machinery. Motif analysis suggests that at least a subset of these early changes in APA are driven by upregulation of RBM3, an RNA-binding protein which competes with the APA machinery for binding. Together this work expands our understanding of the impact and mechanisms of APA in response to T cell activation and suggests new mechanisms by which APA may be regulated.
Collapse
Affiliation(s)
- Davia Blake
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Genomic and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabel Breuer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Genetics and Epigenetics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Genomic and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Genetics and Epigenetics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Brooks TG, Lahens NF, Mrčela A, Grant GR. Challenges and best practices in omics benchmarking. Nat Rev Genet 2024; 25:326-339. [PMID: 38216661 DOI: 10.1038/s41576-023-00679-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/14/2024]
Abstract
Technological advances enabling massively parallel measurement of biological features - such as microarrays, high-throughput sequencing and mass spectrometry - have ushered in the omics era, now in its third decade. The resulting complex landscape of analytical methods has naturally fostered the growth of an omics benchmarking industry. Benchmarking refers to the process of objectively comparing and evaluating the performance of different computational or analytical techniques when processing and analysing large-scale biological data sets, such as transcriptomics, proteomics and metabolomics. With thousands of omics benchmarking studies published over the past 25 years, the field has matured to the point where the foundations of benchmarking have been established and well described. However, generating meaningful benchmarking data and properly evaluating performance in this complex domain remains challenging. In this Review, we highlight some common oversights and pitfalls in omics benchmarking. We also establish a methodology to bring the issues that can be addressed into focus and to be transparent about those that cannot: this takes the form of a spreadsheet template of guidelines for comprehensive reporting, intended to accompany publications. In addition, a survey of recent developments in benchmarking is provided as well as specific guidance for commonly encountered difficulties.
Collapse
Affiliation(s)
- Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Antonijo Mrčela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Bryce-Smith S, Brown AL, Mehta PR, Mattedi F, Mikheenko A, Barattucci S, Zanovello M, Dattilo D, Yome M, Hill SE, Qi YA, Wilkins OG, Sun K, Ryadnov E, Wan Y, NYGC ALS Consortium, Vargas JNS, Birsa N, Raj T, Humphrey J, Keuss M, Ward M, Secrier M, Fratta P. TDP-43 loss induces extensive cryptic polyadenylation in ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576625. [PMID: 38313254 PMCID: PMC10836071 DOI: 10.1101/2024.01.22.576625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Nuclear depletion and cytoplasmic aggregation of the RNA-binding protein TDP-43 is the hallmark of ALS, occurring in over 97% of cases. A key consequence of TDP-43 nuclear loss is the de-repression of cryptic exons. Whilst TDP-43 regulated cryptic splicing is increasingly well catalogued, cryptic alternative polyadenylation (APA) events, which define the 3' end of last exons, have been largely overlooked, especially when not associated with novel upstream splice junctions. We developed a novel bioinformatic approach to reliably identify distinct APA event types: alternative last exons (ALE), 3'UTR extensions (3'Ext) and intronic polyadenylation (IPA) events. We identified novel neuronal cryptic APA sites induced by TDP-43 loss of function by systematically applying our pipeline to a compendium of publicly available and in house datasets. We find that TDP-43 binding sites and target motifs are enriched at these cryptic events and that TDP-43 can have both repressive and enhancing action on APA. Importantly, all categories of cryptic APA can also be identified in ALS and FTD post mortem brain regions with TDP-43 proteinopathy underlining their potential disease relevance. RNA-seq and Ribo-seq analyses indicate that distinct cryptic APA categories have different downstream effects on transcript and translation. Intriguingly, cryptic 3'Exts occur in multiple transcription factors, such as ELK1, SIX3, and TLX1, and lead to an increase in wild-type protein levels and function. Finally, we show that an increase in RNA stability leading to a higher cytoplasmic localisation underlies these observations. In summary, we demonstrate that TDP-43 nuclear depletion induces a novel category of cryptic RNA processing events and we expand the palette of TDP-43 loss consequences by showing this can also lead to an increase in normal protein translation.
Collapse
Affiliation(s)
- Sam Bryce-Smith
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Anna-Leigh Brown
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Puja R. Mehta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Francesca Mattedi
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Alla Mikheenko
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Simone Barattucci
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matteo Zanovello
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Dario Dattilo
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Matthew Yome
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Sarah E. Hill
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Yue A. Qi
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Oscar G. Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| | - Kai Sun
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Eugeni Ryadnov
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Yixuan Wan
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Jose Norberto S. Vargas
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nicol Birsa
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Towfique Raj
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Keuss
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Michael Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
8
|
Arnold FJ, Cui Y, Michels S, Colwin MR, Stockford C, Ye W, Tam OH, Menon S, Situ WG, Ehsani KCK, Howard S, Hammell MG, Li W, La Spada AR. TDP-43 dysregulation of polyadenylation site selection is a defining feature of RNA misprocessing in ALS/FTD and related disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576709. [PMID: 38328178 PMCID: PMC10849549 DOI: 10.1101/2024.01.22.576709] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Nuclear clearance and cytoplasmic aggregation of the RNA-binding protein TDP-43 are observed in many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and fronto- temporal dementia (FTD). Although TDP-43 dysregulation of splicing has emerged as a key event in these diseases, TDP-43 can also regulate polyadenylation; yet, this has not been adequately studied. Here, we applied the dynamic analysis of polyadenylation from RNA-seq (DaPars) tool to ALS/FTD transcriptome datasets, and report extensive alternative polyadenylation (APA) upon TDP-43 alteration in ALS/FTD cell models and postmortem ALS/FTD neuronal nuclei. Importantly, many identified APA genes highlight pathways implicated in ALS/FTD pathogenesis. To determine the functional significance of APA elicited by TDP-43 nuclear depletion, we examined microtubule affinity regulating kinase 3 (MARK3). Nuclear loss of TDP-43 yielded increased expression of MARK3 transcripts with longer 3'UTRs, resulting in greater transcript stability and elevated MARK3 protein levels, which promotes increased neuronal tau S262 phosphorylation. Our findings define changes in polyadenylation site selection as a previously unrecognized feature of TDP-43-driven disease pathology in ALS/FTD and highlight a potentially novel mechanistic link between TDP-43 dysfunction and tau regulation.
Collapse
|