1
|
Deogharia M, Gurha P. The "guiding" principles of noncoding RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1704. [PMID: 34856642 DOI: 10.1002/wrna.1704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/09/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
The human genome is pervasively transcribed and yet only a small fraction of these RNAs (less than 2%) are known to code for proteins. The vast majority of the RNAs are classified as noncoding RNAs (ncRNAs) and are further subgrouped as small (shorter than 200 bases) and long noncoding RNAs. The ncRNAs have been identified in all three domains of life and regulate diverse cellular processes through transcriptional and posttranscriptional gene regulation. Most of these RNAs work in conjunction with proteins forming a wide array of base pairing interactions. The determinants of these base pairing interactions are now becoming more evident and show striking similarities among the diverse group of ncRNAs. Here we present a mechanistic overview of pairing between RNA-RNA or RNA-DNA that dictates the function of ncRNAs; we provide examples to illustrate that ncRNAs work through shared evolutionary mechanisms that encompasses a guide-target interaction, involving not only classical Watson-Crick but also noncanonical Wobble and Hoogsteen base pairing. We also highlight the similarities in target selection, proofreading, and the ruler mechanism of ncRNA-protein complexes that confers target specificity and target site selection. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA-Based Catalysis > RNA-Mediated Cleavage RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Manisha Deogharia
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, Houston, Texas, USA.,University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine, Houston, Texas, USA.,University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Lykke-Andersen S, Ardal BK, Hollensen AK, Damgaard CK, Jensen TH. Box C/D snoRNP Autoregulation by a cis-Acting snoRNA in the NOP56 Pre-mRNA. Mol Cell 2018; 72:99-111.e5. [PMID: 30220559 DOI: 10.1016/j.molcel.2018.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/18/2018] [Accepted: 08/09/2018] [Indexed: 01/23/2023]
Abstract
Box C/D snoRNAs constitute a class of abundant noncoding RNAs that associate with common core proteins to form catalytic snoRNPs. Most of these operate in trans to assist the maturation of rRNAs by guiding and catalyzing the 2'-O-methylation of specific nucleotides. Here, we report that the human intron-hosted box C/D snoRNA snoRD86 acts in cis as a sensor and master switch controlling levels of the limiting snoRNP core protein NOP56, which is important for proper ribosome biogenesis. Our results support a model in which snoRD86 adopts different RNP conformations that dictate the usage of nearby alternative splice donors in the NOP56 pre-mRNA. Excess snoRNP core proteins prevent further production of NOP56 and instead trigger the generation of a cytoplasmic snoRD86-containing NOP56-derived lncRNA via the nonsense-mediated decay pathway. Our findings reveal a feedback mechanism based on RNA structure that controls the precise coordination between box C/D snoRNP core proteins and global snoRNA levels.
Collapse
Affiliation(s)
- Søren Lykke-Andersen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark.
| | - Britt Kidmose Ardal
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Anne Kruse Hollensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Christian Kroun Damgaard
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
Deryusheva S, Gall JG. Orchestrated positioning of post-transcriptional modifications at the branch point recognition region of U2 snRNA. RNA (NEW YORK, N.Y.) 2018; 24:30-42. [PMID: 28974555 PMCID: PMC5733568 DOI: 10.1261/rna.063842.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
The branch point recognition region of spliceosomal snRNA U2 is heavily modified post-transcriptionally in most eukaryotic species. We focused on this region to learn how nearby positions may interfere with each other when targeted for modification. Using an in vivo yeast Saccharomyces cerevisiae cell system, we tested the modification activity of several guide RNAs from human, mouse, the frog Xenopus tropicalis, the fruit fly Drosophila melanogaster, and the worm Caenorhabditis elegans We experimentally verified predictions for vertebrate U2 modification guide RNAs SCARNA4 and SCARNA15, and identified a C. elegans ortholog of SCARNA15. We observed crosstalk between sites in the heavily modified regions, such that modification at one site may inhibit modification at nearby sites. This is true for the branch point recognition region of U2 snRNA, the 5' loop of U5 snRNA, and certain regions of rRNAs, when tested either in yeast or in HeLa cells. The position preceding a uridine targeted for isomerization by a box H/ACA guide RNA is the most sensitive for noncanonical base-pairing and modification (either pseudouridylation or 2'-O-methylation). Based on these findings, we propose that modification must occur stepwise starting with the most vulnerable positions and ending with the most inhibiting modifications. We discuss possible strategies that cells use to reach complete modification in heavily modified regions.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
4
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
5
|
Joardar A, Malliahgari SR, Skariah G, Gupta R. 2'-O-methylation of the wobble residue of elongator pre-tRNA(Met) in Haloferax volcanii is guided by a box C/D RNA containing unique features. RNA Biol 2011; 8:782-91. [PMID: 21654217 PMCID: PMC3256356 DOI: 10.4161/rna.8.5.16015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/16/2011] [Accepted: 03/29/2011] [Indexed: 11/19/2022] Open
Abstract
The wobble residue C34 of Haloferax volcanii elongator tRNA(Met) is 2'-O-methylated. Neither a protein enzyme nor a guide RNA for this modification has been described. In this study, we show that this methylation is guided by a box C/D RNA targeting the intron-containing precursor of the tRNA. This guide RNA is starkly different from its homologs. This unique RNA of approximately 75 bases, named sR-tMet, is encoded in the genomes of H. volcanii and several other haloarchaea. A unique feature of sR-tMet is that the mature RNA in H. volcanii is substantially larger than its predicted size, whereas those in other haloarchaea are as predicted. While the 5'-ends of all tested haloarchaeal sR-tMets are equivalent, H. volcanii sR-tMet possesses an additional 51-base extension at its 3' end. This extension is present in the precursor but not in the mature sR-tMet of Halobacterium sp., suggesting differential 3'-end processing of sR-tMet in these two closely related organisms. Archaeal box C/D RNAs mostly contain a K-loop at the C'/D' motif. Another unique feature of sR-tMet is that its C'/D' motif lacks either a conventional K-turn or a K-loop. Instead, it contains two tandem, sheared G•A base pairs and a pyrimidine-pyrimidine pair in the non-canonical stem; the latter may form an alternative K-turn. Gel shift assays indicate that the L7Ae protein can form a stable complex with this unusual C'/D' motif, suggesting a novel RNA structure for L7Ae interaction.
Collapse
Affiliation(s)
- Archi Joardar
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, IL, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.
Collapse
|
7
|
Li D, Wang Y, Zhang K, Jiao Z, Zhu X, Skogerboe G, Guo X, Chinnusamy V, Bi L, Huang Y, Dong S, Chen R, Kan Y. Experimental RNomics and genomic comparative analysis reveal a large group of species-specific small non-message RNAs in the silkworm Bombyx mori. Nucleic Acids Res 2011; 39:3792-805. [PMID: 21227919 PMCID: PMC3089462 DOI: 10.1093/nar/gkq1317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidences show that small non-protein coding RNAs (ncRNAs) play important roles in development, stress response and other cellular processes. The silkworm is an important model for studies on insect genetics and control of lepidopterous pests. Here, we have performed the first systematic identification and analysis of intermediate size ncRNAs (50–500 nt) in the silkworm. We identified 189 novel ncRNAs, including 141 snoRNAs, six snRNAs, three tRNAs, one SRP and 38 unclassified ncRNAs. Forty ncRNAs showed significantly altered expression during silkworm development or across specific stage transitions. Genomic comparisons revealed that 123 of these ncRNAs are potentially silkworm-specific. Analysis of the genomic organization of the ncRNA loci showed that 32.62% of the novel snoRNA loci are intergenic, and that all the intronic snoRNAs follow the pattern of one-snoRNA-per-intron. Target site analysis predicted a total of 95 2′-O-methylation and pseudouridylation modification sites of rRNAs, snRNAs and tRNAs. Together, these findings provide new clues for future functional study of ncRNA during insect development and evolution.
Collapse
Affiliation(s)
- Dandan Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Noncoding RNAs form an indispensible component of the cellular information processing networks, a role that crucially depends on the specificity of their interactions among each other as well as with DNA and protein. Patterns of intramolecular and intermolecular base pairs govern most RNA interactions. Specific base pairs dominate the structure formation of nucleic acids. Only little details distinguish intramolecular secondary structures from those cofolding molecules. RNA-protein interactions, on the other hand, are strongly dependent on the RNA structure as well since the sequence content of helical regions is largely unreadable, so that sequence specificity is mostly restricted to unpaired loop regions. Conservation of both sequence and structure thus this can give indications of the functioning of the diversity of ncRNAs.
Collapse
Affiliation(s)
- Manja Marz
- Department of Computer Science, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
9
|
Abstract
Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA-protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo.
Collapse
|
10
|
Bleichert F, Baserga SJ. Dissecting the role of conserved box C/D sRNA sequences in di-sRNP assembly and function. Nucleic Acids Res 2010; 38:8295-305. [PMID: 20693534 PMCID: PMC3001065 DOI: 10.1093/nar/gkq690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In all three kingdoms of life, nucleotides in ribosomal RNA (rRNA) are post-transcriptionally modified. One type of chemical modification is 2'-O-ribose methylation, which is, in eukaryotes and archaea, performed by box C/D small ribonucleoproteins (box C/D sRNPs in archaea) and box C/D small nucleolar ribonucleoproteins (box C/D snoRNPs in eukaryotes), respectively. Recently, the first structure of any catalytically active box C/D s(no)RNP determined by electron microscopy and single particle analysis surprisingly demonstrated that they are dimeric RNPs. Mutational analyses of the Nop5 protein interface suggested that di-sRNP formation is also required for the in vitro catalytic activity. We have now analyzed the functional relevance of the second interface, the sRNA interface, within the box C/D di-sRNP. Mutations in conserved sequence elements of the sRNA, which allow sRNP assembly but which severely interfere with the catalytic activity of box C/D sRNPs, prevent formation of the di-sRNP. In addition, we can observe the dimeric box C/D sRNP architecture with a different box C/D sRNP, suggesting that this architecture is conserved. Together, these results provide further support for the functional relevance of the di-sRNP architecture and also provide a structural explanation for the observed defects in catalysis of 2'-O-ribose methylation.
Collapse
|
11
|
Structural organization of box C/D RNA-guided RNA methyltransferase. Proc Natl Acad Sci U S A 2009; 106:13808-13. [PMID: 19666563 DOI: 10.1073/pnas.0905128106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Box C/D guide RNAs are abundant noncoding RNAs that primarily function to direct the 2'-O-methylation of specific nucleotides by base-pairing with substrate RNAs. In archaea, a bipartite C/D RNA assembles with L7Ae, Nop5, and the methyltransferase fibrillarin into a modification enzyme with unique substrate specificity. Here, we determined the crystal structure of an archaeal C/D RNA-protein complex (RNP) composed of all 3 core proteins and an engineered half-guide RNA at 4 A resolution, as well as 2 protein substructures at higher resolution. The RNP structure reveals that the C-terminal domains of Nop5 in the dimeric complex provide symmetric anchoring sites for 2 L7Ae-associated kink-turn motifs of the C/D RNA. A prominent protrusion in Nop5 seems to be important for guide RNA organization and function and for discriminating the structurally related U4 snRNA. Multiple conformations of the N-terminal domain of Nop5 and its associated fibrillarin in different structures indicate the inherent flexibility of the catalytic module, suggesting that a swinging motion of the catalytic module is part of the enzyme mechanism. We also built a model of a native C/D RNP with substrate and fibrillarin in an active conformation. Our results provide insight into the overall organization and mechanism of action of C/D RNA-guided RNA methyltransferases.
Collapse
|
12
|
Grosjean H, Gaspin C, Marck C, Decatur WA, de Crécy-Lagard V. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. BMC Genomics 2008; 9:470. [PMID: 18844986 PMCID: PMC2584109 DOI: 10.1186/1471-2164-9-470] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/09/2008] [Indexed: 12/14/2022] Open
Abstract
Background Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes. Results By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions. Conclusion The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation.
Collapse
Affiliation(s)
- Henri Grosjean
- Department of Microbiology, University of Florida, Gainsville, FL 32611, Florida, USA.
| | | | | | | | | |
Collapse
|
13
|
Box C/D RNA-guided 2'-O methylations and the intron of tRNATrp are not essential for the viability of Haloferax volcanii. J Bacteriol 2008; 190:7308-13. [PMID: 18757532 DOI: 10.1128/jb.00820-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deleting the box C/D RNA-containing intron in the Haloferax volcanii tRNATrp gene abolishes RNA-guided 2'-O methylations of C34 and U39 residues of tRNATrp. However, this deletion does not affect growth under standard conditions.
Collapse
|