1
|
Zhu J, Chen K, Sun YH, Ye W, Liu J, Zhang D, Su N, Wu L, Kou X, Zhao Y, Wang H, Gao S, Kang L. LSM1-mediated Major Satellite RNA decay is required for nonequilibrium histone H3.3 incorporation into parental pronuclei. Nat Commun 2023; 14:957. [PMID: 36810573 PMCID: PMC9944933 DOI: 10.1038/s41467-023-36584-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Epigenetic reprogramming of the parental genome is essential for zygotic genome activation and subsequent embryo development in mammals. Asymmetric incorporation of histone H3 variants into the parental genome has been observed previously, but the underlying mechanism remains elusive. In this study, we discover that RNA-binding protein LSM1-mediated major satellite RNA decay plays a central role in the preferential incorporation of histone variant H3.3 into the male pronucleus. Knockdown of Lsm1 disrupts nonequilibrium pronucleus histone incorporation and asymmetric H3K9me3 modification. Subsequently, we find that LSM1 mainly targets major satellite repeat RNA (MajSat RNA) for decay and that accumulated MajSat RNA in Lsm1-depleted oocytes leads to abnormal incorporation of H3.1 into the male pronucleus. Knockdown of MajSat RNA reverses the anomalous histone incorporation and modifications in Lsm1-knockdown zygotes. Our study therefore reveals that accurate histone variant incorporation and incidental modifications in parental pronuclei are specified by LSM1-dependent pericentromeric RNA decay.
Collapse
Affiliation(s)
- Jiang Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Kang Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China.,Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu H Sun
- Departments of Biology, University of Rochester, 14642, Rochester, NY, USA
| | - Wen Ye
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Juntao Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Dandan Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Nan Su
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China
| | - Li Wu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaochen Kou
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Yanhong Zhao
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China. .,Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Lan Kang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200120, Shanghai, China. .,Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
2
|
Gatica D, Hu G, Liu X, Zhang N, Williamson PR, Klionsky DJ. The Pat1-Lsm Complex Stabilizes ATG mRNA during Nitrogen Starvation-Induced Autophagy. Mol Cell 2018; 73:314-324.e4. [PMID: 30527663 DOI: 10.1016/j.molcel.2018.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
Macroautophagy/autophagy is a key catabolic recycling pathway that requires fine-tuned regulation to prevent pathologies and preserve homeostasis. Here, we report a new post-transcriptional pathway regulating autophagy involving the Pat1-Lsm (Lsm1 to Lsm7) mRNA-binding complex. Under nitrogen-starvation conditions, Pat1-Lsm binds a specific subset of autophagy-related (ATG) transcripts and prevents their 3' to 5' degradation by the exosome complex, leading to ATG mRNA stabilization and accumulation. This process is regulated through Pat1 dephosphorylation, is necessary for the efficient expression of specific Atg proteins, and is required for robust autophagy induction during nitrogen starvation. To the best of our knowledge, this work presents the first example of ATG transcript regulation via 3' binding factors and exosomal degradation.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guowu Hu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xu Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nannan Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock. PLoS Genet 2018; 14:e1007563. [PMID: 30059503 PMCID: PMC6085073 DOI: 10.1371/journal.pgen.1007563] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/09/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022] Open
Abstract
RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5’ end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered. When confronted with external physical or chemical stress, cells respond by increasing the mRNA output of a small number of genes required for stress survival, while shutting down the majority of other genes. Moreover, each mRNA is regulated under stress to either enhance or diminish its translation into proteins. The overall purpose is for the cell to optimize gene expression for survival and recovery during rapidly changing conditions. Much of this regulation is mediated by RNA-binding proteins. We have isolated proteins binding to specific mRNAs induced by stress, to investigate how they affect the stress response. We found members of one protein complex to be bound to stress-induced mRNAs. When mutants lacking these proteins were exposed to stress, ribosomes were more engaged with translating mRNAs than in the wild-type. In the mutants, it was also possible to trigger expression of stress proteins with only minimal stress levels. Tracing the passage of ribosomes over mRNAs, we saw that ribosomes accumulated around the start codon in the mutants. These findings indicate that the protein complex is required to moderate the stress response and prevent it from overreacting, which would be harmful for the cell.
Collapse
|
4
|
Chowdhury A, Kalurupalle S, Tharun S. Mutagenic Analysis of the C-Terminal Extension of Lsm1. PLoS One 2016; 11:e0158876. [PMID: 27434131 PMCID: PMC4951014 DOI: 10.1371/journal.pone.0158876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 11/18/2022] Open
Abstract
The Sm-like proteins (also known as Lsm proteins) are ubiquitous in nature and exist as hexa or heptameric RNA binding complexes. They are characterized by the presence of the Sm-domain. The Lsm1 through Lsm7 proteins are highly conserved in eukaryotes and they form a hetero-octameric complex together with the protein Pat1. The Lsm1-7-Pat1 complex plays a key role in mRNA decapping and 3’-end protection and therefore is required for normal mRNA decay rates in vivo. Lsm1 is a key subunit that is critical for the unique RNA binding properties of this complex. We showed earlier that unlike most Sm-like proteins, Lsm1 uniquely requires both its Sm domain and its C-terminal extension to contribute to the function of the Lsm1-7-Pat1 complex and that the C-terminal segment can associate with the rest of the complex and support the function even in trans. The studies presented here identify a set of residues at the very C-terminal end of Lsm1 to be functionally important and suggest that these residues support the function of the Lsm1-7-Pat1 complex by facilitating RNA binding either directly or indirectly.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), 4301, Jones Bridge Road, Bethesda, MD, 20814–4799, United States of America
| | - Swathi Kalurupalle
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), 4301, Jones Bridge Road, Bethesda, MD, 20814–4799, United States of America
| | - Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), 4301, Jones Bridge Road, Bethesda, MD, 20814–4799, United States of America
- * E-mail:
| |
Collapse
|
5
|
Muppavarapu M, Huch S, Nissan T. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing. RNA Biol 2016; 13:455-65. [PMID: 26918764 DOI: 10.1080/15476286.2016.1154253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation.
Collapse
Affiliation(s)
- Mridula Muppavarapu
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| | - Susanne Huch
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| | - Tracy Nissan
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| |
Collapse
|
6
|
Jungfleisch J, Chowdhury A, Alves-Rodrigues I, Tharun S, Díez J. The Lsm1-7-Pat1 complex promotes viral RNA translation and replication by differential mechanisms. RNA (NEW YORK, N.Y.) 2015; 21:1469-79. [PMID: 26092942 PMCID: PMC4509936 DOI: 10.1261/rna.052209.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 05/20/2023]
Abstract
The Lsm1-7-Pat1 complex binds to the 3' end of cellular mRNAs and promotes 3' end protection and 5'-3' decay. Interestingly, this complex also specifically binds to cis-acting regulatory sequences of viral positive-strand RNA genomes promoting their translation and subsequent recruitment from translation to replication. Yet, how the Lsm1-7-Pat1 complex regulates these two processes remains elusive. Here, we show that Lsm1-7-Pat1 complex acts differentially in these processes. By using a collection of well-characterized lsm1 mutant alleles and a system that allows the replication of Brome mosaic virus (BMV) in yeast we show that the Lsm1-7-Pat1 complex integrity is essential for both, translation and recruitment. However, the intrinsic RNA-binding ability of the complex is only required for translation. Consistent with an RNA-binding-independent function of the Lsm1-7-Pat1 complex on BMV RNA recruitment, we show that the BMV 1a protein, the sole viral protein required for recruitment, interacts with this complex in an RNA-independent manner. Together, these results support a model wherein Lsm1-7-Pat1 complex binds consecutively to BMV RNA regulatory sequences and the 1a protein to promote viral RNA translation and later recruitment out of the host translation machinery to the viral replication complexes.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Isabel Alves-Rodrigues
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Juana Díez
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
7
|
Chowdhury A, Kalurupalle S, Tharun S. Pat1 contributes to the RNA binding activity of the Lsm1-7-Pat1 complex. RNA (NEW YORK, N.Y.) 2014; 20:1465-75. [PMID: 25035297 PMCID: PMC4138329 DOI: 10.1261/rna.045252.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/03/2014] [Indexed: 05/20/2023]
Abstract
A major mRNA decay pathway in eukaryotes is initiated by deadenylation followed by decapping of the oligoadenylated mRNAs and subsequent 5'-to-3' exonucleolytic degradation of the capless mRNA. In this pathway, decapping is a rate-limiting step that requires the hetero-octameric Lsm1-7-Pat1 complex to occur at normal rates in vivo. This complex is made up of the seven Sm-like proteins, Lsm1 through Lsm7, and the Pat1 protein. It binds RNA and has a unique binding preference for oligoadenylated RNAs over polyadenylated RNAs. Such binding ability is crucial for its mRNA decay function in vivo. In order to determine the contribution of Pat1 to the function of the Lsm1-7-Pat1 complex, we compared the RNA binding properties of the Lsm1-7 complex purified from pat1Δ cells and purified Pat1 fragments with that of the wild-type Lsm1-7-Pat1 complex. Our studies revealed that both the Lsm1-7 complex and purified Pat1 fragments have very low RNA binding activity and are impaired in the ability to recognize the oligo(A) tail on the RNA. However, reconstitution of the Lsm1-7-Pat1 complex from these components restored these abilities. We also observed that Pat1 directly contacts RNA in the context of the Lsm1-7-Pat1 complex. These studies suggest that the unique RNA binding properties and the mRNA decay function of the Lsm1-7-Pat1 complex involve cooperation of residues from both Pat1 and the Lsm1-7 ring. Finally our studies also revealed that the middle domain of Pat1 is essential for the interaction of Pat1 with the Lsm1-7 complex in vivo.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Swathi Kalurupalle
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
8
|
Lyons SM, Ricciardi AS, Guo AY, Kambach C, Marzluff WF. The C-terminal extension of Lsm4 interacts directly with the 3' end of the histone mRNP and is required for efficient histone mRNA degradation. RNA (NEW YORK, N.Y.) 2014; 20:88-102. [PMID: 24255165 PMCID: PMC3866647 DOI: 10.1261/rna.042531.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metazoan replication-dependent histone mRNAs are the only known eukaryotic mRNAs that lack a poly(A) tail, ending instead in a conserved stem-loop sequence, which is bound to the stem-loop binding protein (SLBP) on the histone mRNP. Histone mRNAs are rapidly degraded when DNA synthesis is inhibited in S phase in mammalian cells. Rapid degradation of histone mRNAs is initiated by oligouridylation of the 3' end of histone mRNAs and requires the cytoplasmic Lsm1-7 complex, which can bind to the oligo(U) tail. An exonuclease, 3'hExo, forms a ternary complex with SLBP and the stem-loop and is required for the initiation of histone mRNA degradation. The Lsm1-7 complex is also involved in degradation of polyadenylated mRNAs. It binds to the oligo(A) tail remaining after deadenylation, inhibiting translation and recruiting the enzymes required for decapping. Whether the Lsm1-7 complex interacts directly with other components of the mRNP is not known. We report here that the C-terminal extension of Lsm4 interacts directly with the histone mRNP, contacting both SLBP and 3'hExo. Mutants in the C-terminal tail of Lsm4 that prevent SLBP and 3'hExo binding reduce the rate of histone mRNA degradation when DNA synthesis is inhibited.
Collapse
Affiliation(s)
- Shawn M. Lyons
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Adele S. Ricciardi
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew Y. Guo
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christian Kambach
- Department of Biochemistry, Universität Bayreuth, Bayreuth, Germany 95447
| | - William F. Marzluff
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Corresponding authorE-mail
| |
Collapse
|
9
|
Architecture of the Lsm1-7-Pat1 complex: a conserved assembly in eukaryotic mRNA turnover. Cell Rep 2013; 5:283-91. [PMID: 24139796 DOI: 10.1016/j.celrep.2013.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 12/31/2022] Open
Abstract
The decay of mRNAs is a key step in eukaryotic gene expression. The cytoplasmic Lsm1-7-Pat1 complex is a conserved component of the 5'-to-3' mRNA decay pathway, linking deadenylation to decapping. Lsm1-7 is similar to the nuclear Sm complexes that bind oligo-uridine tracts in snRNAs. The 2.3 Å resolution structure of S. cerevisiae Lsm1-7 shows the presence of a heptameric ring with Lsm1-2-3-6-5-7-4 topology. A distinct structural feature of the cytoplasmic Lsm ring is the C-terminal extension of Lsm1, which plugs the exit site of the central channel and approaches the RNA binding pockets. The 3.7 Å resolution structure of Lsm1-7 bound to the C-terminal domain of Pat1 reveals that Pat1 recognition is not mediated by the distinguishing cytoplasmic subunit, Lsm1, but by Lsm2 and Lsm3. These results show how the auxiliary domains and the canonical Sm folds of the Lsm1-7 complex are organized in order to mediate and modulate macromolecular interactions.
Collapse
|
10
|
Abstract
The bacterial Hfq protein is a versatile modulator of RNA function and is particularly important for regulation mediated by small non-coding RNAs. Hfq is a bacterial Sm protein but bears more similarity to the eukaryotic Sm-like (Lsm) family of proteins than the prototypical Sm proteins. Hfq and Lsm proteins share the ability to chaperone RNA-RNA and RNA/protein interactions and an interesting penchant for protecting the 3′ end of a transcript from exonucleolytic decay while encouraging degradation through other pathways. Our view of Lsm function in eukaryotes has historically been informed by studies of Hfq structure and function but mutational analyses and structural studies of Lsm sub-complexes have given important insights as well. Here, we aim to compare and contrast the roles of these evolutionarily related complexes and to highlight areas for future investigation.
Collapse
Affiliation(s)
- Carol J Wilusz
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA.
| | | |
Collapse
|
11
|
Chen CYA, Shyu AB. Deadenylation and P-bodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 768:183-95. [PMID: 23224971 DOI: 10.1007/978-1-4614-5107-5_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deadenylation is the major step in triggering mRNA decay and results in mRNA translation inhibition in eukaryotic cells. Therefore, it is plausible that deadenylation also induces the mRNP remodeling required for formation of GW bodies or RNA processing bodies (P-bodies), which harbor translationally silenced mRNPs. In this chapter, we discuss several examples to illustrate the roles of deadenylation in regulating gene expression. We highlight several lines of evidence indicating that even though non-translatable mRNPs may be prepared and/or assembled into P-bodies in different ways, deadenylation is always a necessary, and perhaps the earliest, step in mRNA decay pathways that enable mRNP remodeling required for P-body formation. Thus, deadenylation and the participating deadenylases are not simply required for preparing mRNA substrates; they play an indispensable role both structurally and functionally in P-body formation and regulation.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX 77030, USA
| | | |
Collapse
|
12
|
Balagopal V, Fluch L, Nissan T. Ways and means of eukaryotic mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:593-603. [DOI: 10.1016/j.bbagrm.2012.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/29/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|
13
|
Chowdhury A, Raju KK, Kalurupalle S, Tharun S. Both Sm-domain and C-terminal extension of Lsm1 are important for the RNA-binding activity of the Lsm1-7-Pat1 complex. RNA (NEW YORK, N.Y.) 2012; 18:936-44. [PMID: 22450758 PMCID: PMC3334702 DOI: 10.1261/rna.029876.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 02/24/2012] [Indexed: 05/20/2023]
Abstract
Lsm proteins are a ubiquitous family of proteins characterized by the Sm-domain. They exist as hexa- or heptameric RNA-binding complexes and carry out RNA-related functions. The Sm-domain is thought to be sufficient for the RNA-binding activity of these proteins. The highly conserved eukaryotic Lsm1 through Lsm7 proteins are part of the cytoplasmic Lsm1-7-Pat1 complex, which is an activator of decapping in the conserved 5'-3' mRNA decay pathway. This complex also protects mRNA 3'-ends from trimming in vivo. Purified Lsm1-7-Pat1 complex is able to bind RNA in vitro and exhibits a unique binding preference for oligoadenylated RNA (over polyadenylated and unadenylated RNA). Lsm1 is a key subunit that determines the RNA-binding properties of this complex. The normal RNA-binding activity of this complex is crucial for mRNA decay and 3'-end protection in vivo and requires the intact Sm-domain of Lsm1. Here, we show that though necessary, the Sm-domain of Lsm1 is not sufficient for the normal RNA-binding ability of the Lsm1-7-Pat1 complex. Deletion of the C-terminal domain (CTD) of Lsm1 (while keeping the Sm-domain intact) impairs mRNA decay in vivo and results in Lsm1-7-Pat1 complexes that are severely impaired in RNA binding in vitro. Interestingly, the mRNA decay and 3'-end protection defects of such CTD-truncated lsm1 mutants could be suppressed in trans by overexpression of the CTD polypeptide. Thus, unlike most Sm-like proteins, Lsm1 uniquely requires both its Sm-domain and CTD for its normal RNA-binding function.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Kalidindi K. Raju
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Swathi Kalurupalle
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
| | - Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland 20814-4799, USA
- Corresponding author.E-mail .
| |
Collapse
|
14
|
Pat1 proteins: a life in translation, translation repression and mRNA decay. Biochem Soc Trans 2011; 38:1602-7. [PMID: 21118134 DOI: 10.1042/bst0381602] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pat1 proteins are conserved across eukaryotes. Vertebrates have evolved two Pat1 proteins paralogues, whereas invertebrates and yeast only possess one such protein. Despite their lack of known domains or motifs, Pat1 proteins are involved in several key post-transcriptional mechanisms of gene expression control. In yeast, Pat1p interacts with translating mRNPs (messenger ribonucleoproteins), and is responsible for translational repression and decapping activation, ultimately leading to mRNP degradation. Drosophila HPat and human Pat1b (PatL1) proteins also have conserved roles in the 5'→3' mRNA decay pathway. Consistent with their functions in silencing gene expression, Pat1 proteins localize to P-bodies (processing bodies) in yeast, Drosophila, Caenorhabditis elegans and human cells. Altogether, Pat1 proteins may act as scaffold proteins allowing the sequential binding of repression and decay factors on mRNPs, eventually leading to their degradation. In the present mini-review, we present the current knowledge on Pat1 proteins in the context of their multiple functions in post-transcriptional control.
Collapse
|
15
|
Tsuboi T, Inada T. Tethering of poly(A)-binding protein interferes with non-translated mRNA decay from the 5' end in yeast. J Biol Chem 2010; 285:33589-601. [PMID: 20732870 PMCID: PMC2962457 DOI: 10.1074/jbc.m110.117150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 08/23/2010] [Indexed: 11/06/2022] Open
Abstract
The decay of eukaryotic mRNA is triggered mainly by deadenylation, which leads to decapping and degradation from the 5' end of an mRNA. Poly(A)-binding protein has been proposed to inhibit the decapping process and to stabilize mRNA by blocking the recruitment of mRNA to the P-bodies where mRNA degradation takes place after stimulation of translation initiation. In contrast, several lines of evidence show that poly(A)-binding protein (Pab1p) has distinct functions in mRNA decay and translation in yeast. To address the translation-independent function of Pab1p in inhibition of decapping, we examined the contribution of Pab1p to the stability of non-translated mRNAs, an AUG codon-less mRNA or an mRNA containing a stable stem-loop structure at the 5'-UTR. Tethering of Pab1p stabilized non-translated mRNAs, and this stabilization did not require either the eIF4G-interacting domain of Pab1p or the Pab1p-interacting domain of eIF4G. In a ski2Δ mutant in which 3' to 5' mRNA degradation activity is defective, stabilization of non-translated mRNAs by the tethering of Pab1p lacking an eIF4G-interacting domain (Pab1-34Cp) requires a cap structure but not a poly(A) tail. In wild type cells, stabilization of non-translated mRNA by tethered Pab1-34Cp results in the accumulation of deadenylated mRNA. These results strongly suggest that tethering of Pab1p may inhibit the decapping reaction after deadenylation, independent of translation. We propose that Pab1p inhibits the decapping reaction in a translation-independent manner in vivo.
Collapse
Affiliation(s)
- Tatsuhisa Tsuboi
- From the Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Toshifumi Inada
- From the Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
16
|
The C-terminal alpha-alpha superhelix of Pat is required for mRNA decapping in metazoa. EMBO J 2010; 29:2368-80. [PMID: 20543818 PMCID: PMC2910274 DOI: 10.1038/emboj.2010.124] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/14/2010] [Indexed: 11/18/2022] Open
Abstract
Pat proteins regulate the transition of mRNAs from a state that is translationally active to one that is repressed, committing targeted mRNAs to degradation. Pat proteins contain a conserved N-terminal sequence, a proline-rich region, a Mid domain and a C-terminal domain (Pat-C). We show that Pat-C is essential for the interaction with mRNA decapping factors (i.e. DCP2, EDC4 and LSm1–7), whereas the P-rich region and Mid domain have distinct functions in modulating these interactions. DCP2 and EDC4 binding is enhanced by the P-rich region and does not require LSm1–7. LSm1–7 binding is assisted by the Mid domain and is reduced by the P-rich region. Structural analysis revealed that Pat-C folds into an α–α superhelix, exposing conserved and basic residues on one side of the domain. This conserved and basic surface is required for RNA, DCP2, EDC4 and LSm1–7 binding. The multiplicity of interactions mediated by Pat-C suggests that certain of these interactions are mutually exclusive and, therefore, that Pat proteins switch decapping partners allowing transitions between sequential steps in the mRNA decapping pathway.
Collapse
|
17
|
Haas G, Braun JE, Igreja C, Tritschler F, Nishihara T, Izaurralde E. HPat provides a link between deadenylation and decapping in metazoa. ACTA ACUST UNITED AC 2010; 189:289-302. [PMID: 20404111 PMCID: PMC2856893 DOI: 10.1083/jcb.200910141] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Decapping of eukaryotic messenger RNAs (mRNAs) occurs after they have undergone deadenylation, but how these processes are coordinated is poorly understood. In this study, we report that Drosophila melanogaster HPat (homologue of Pat1), a conserved decapping activator, interacts with additional decapping factors (e.g., Me31B, the LSm1-7 complex, and the decapping enzyme DCP2) and with components of the CCR4-NOT deadenylase complex. Accordingly, HPat triggers deadenylation and decapping when artificially tethered to an mRNA reporter. These activities reside, unexpectedly, in a proline-rich region. However, this region alone cannot restore decapping in cells depleted of endogenous HPat but also requires the middle (Mid) and the very C-terminal domains of HPat. We further show that the Mid and C-terminal domains mediate HPat recruitment to target mRNAs. Our results reveal an unprecedented role for the proline-rich region and the C-terminal domain of metazoan HPat in mRNA decapping and suggest that HPat is a component of the cellular mechanism that couples decapping to deadenylation in vivo.
Collapse
Affiliation(s)
- Gabrielle Haas
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Sobti M, Cubeddu L, Haynes PA, Mabbutt BC. Engineered rings of mixed yeast Lsm proteins show differential interactions with translation factors and U-rich RNA. Biochemistry 2010; 49:2335-45. [PMID: 20108977 DOI: 10.1021/bi901767w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Lsm proteins organize as heteroheptameric ring assemblies capable of binding RNA substrates and ancillary protein factors. We have constructed simplified Lsm polyproteins that organize as multimeric ring structures as analogues of the functional Lsm complexes. Polyproteins Lsm[2+3], Lsm[4+1], and Lsm[5+6] incorporate natural sequence extensions as linker peptides between the core Lsm domains. In solution, the recombinant products organize as stable ring oligomers (75 A wide, 20 A pores) in discrete tetrameric and octameric forms. Following immobilization, the polyproteins successfully act as affinity pull-down ligands for proteins within yeast lysate, including native Lsm proteins. Interaction partners were consistent with current models of the mixed Lsm ring assembly in vivo but also suggest that dynamic rearrangements of Lsm protein complexes can occur. The Lsm polyprotein ring complexes were seen in gel shift assays to have a preference for U-rich RNA sequences, with tightest binding measured for Lsm[2+3] with U(10). Polyprotein rings containing truncated forms of Lsm1 and Lsm4 were found to associate with translation, initiation, and elongation protein factors in an RNA-dependent manner. Our findings suggest Lsm1 and/or Lsm4 can interact with translationally active mRNA.
Collapse
Affiliation(s)
- Meghna Sobti
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | |
Collapse
|
19
|
Chowdhury A, Tharun S. Activation of decapping involves binding of the mRNA and facilitation of the post-binding steps by the Lsm1-7-Pat1 complex. RNA (NEW YORK, N.Y.) 2009; 15:1837-1848. [PMID: 19643916 PMCID: PMC2743039 DOI: 10.1261/rna.1650109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/25/2009] [Indexed: 05/28/2023]
Abstract
Decapping is a critical step in the conserved 5'-to-3' mRNA decay pathway of eukaryotes. The hetero-octameric Lsm1-7-Pat1 complex is required for normal rates of decapping in this pathway. This complex also protects the mRNA 3'-ends from trimming in vivo. To elucidate the mechanism of decapping, we analyzed multiple lsm1 mutants, lsm1-6, lsm1-8, lsm1-9, and lsm1-14, all of which are defective in decapping and 3'-end protection but unaffected in Lsm1-7-Pat1 complex integrity. The RNA binding ability of the mutant complex was found to be almost completely lost in the lsm1-8 mutant but only partially impaired in the other mutants. Importantly, overproduction of the Lsm1-9p- or Lsm1-14p-containing (but not Lsm1-8p-containing) mutant complexes in wild-type cells led to a dominant inhibition of mRNA decay. Further, the mRNA 3'-end protection defect of lsm1-9 and lsm1-14 cells, but not the lsm1-8 cells, could be partly suppressed by overproduction of the corresponding mutant complexes in those cells. These results suggest the following: (1) Decapping requires both binding of the Lsm1-7-Pat1 complex to the mRNA and facilitation of the post-binding events, while binding per se is sufficient for 3'-end protection. (2) A major block exists at the post-binding steps in the lsm1-9 and lsm1-14 mutants and at the binding step in the lsm1-8 mutant. Consistent with these ideas, the lsm1-9, 14 allele generated by combining the mutations of lsm1-9 and lsm1-14 alleles had almost fully lost the RNA binding activity of the complex and behaved like the lsm1-8 mutant.
Collapse
Affiliation(s)
- Ashis Chowdhury
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | |
Collapse
|
20
|
Tharun S. Purification and analysis of the decapping activator Lsm1p-7p-Pat1p complex from yeast. Methods Enzymol 2008; 448:41-55. [PMID: 19111170 DOI: 10.1016/s0076-6879(08)02603-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biochemical analysis of the components of the mRNA decay machinery is crucial to understand the mechanisms of mRNA decay. The Lsm1p-7p-Pat1p complex is a key activator of decapping in the 5' to 3'-mRNA decay pathway that is highly conserved in all eukaryotes. The first step in this pathway is poly(A) shortening that is followed by the selective decapping and subsequent 5' to 3'-exonucleolytic degradation of the oligoadenylated mRNAs. Earlier studies suggested that the Lsm1p-7p-Pat1p complex preferentially associates with oligoadenylated mRNAs and facilitates their decapping in vivo (Tharun and Parker, 2001a; Tharun et al., 2000). They also showed that the Lsm1p through Lsm7p and Pat1p are involved in protecting the 3'-ends of mRNAs in vivo from trimming (He and Parker, 2001). Therefore, to gain better insight into the biologic function of the Lsm1p-7p-Pat1p complex, it is important to determine its in vitro RNA binding properties. Here I describe the methods we use in my laboratory for the purification and in vitro RNA binding analysis of this complex from the budding yeast Saccharomyces cerevisiae. Purification was achieved with tandem affinity chromatography using a split-tag strategy. This involved use of a strain expressing FLAG-tagged Lsm1p and 6xHis-tagged Lsm5p and purification by a two-step procedure with an anti-FLAG antibody matrix followed by a Ni-NTA matrix. The purified complex was analyzed for its RNA binding properties with gel mobility shift assays. Such analyses showed that this complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs and that it binds near the 3'-ends of RNAs (Chowdhury et al., 2007). These observations, therefore, highlighted the importance of the intrinsic RNA binding properties of this complex as key determinants of its in vivo functions.
Collapse
Affiliation(s)
- Sundaresan Tharun
- Department of Biochemistry, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|