1
|
Suárez-Herrera N, Garanto A, Collin RWJ. Understanding and Rescuing the Splicing Defect Caused by the Frequent ABCA4 Variant c.4253+43G>A Underlying Stargardt Disease. Nucleic Acid Ther 2024; 34:73-82. [PMID: 38466963 DOI: 10.1089/nat.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Pathogenic variants in ABCA4 are the underlying molecular cause of Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by a progressive loss of central vision. Among intronic ABCA4 variants, c.4253+43G>A is frequently detected in STGD1 cases and is classified as a hypomorphic allele, generally associated with late-onset cases. This variant was previously reported to alter splicing regulatory sequences, but the splicing outcome is not fully understood yet. In this study, we attempted to better understand its effect on splicing and to rescue the aberrant splicing via antisense oligonucleotides (AONs). Wild-type and c.4253+43G>A variant-harboring maxigene vectors revealed additional skipping events, which were not previously detected upon transfection in HEK293T cells. To restore exon inclusion, we designed a set of 27 AONs targeting either splicing silencer motifs or the variant region and screened these in maxigene-transfected HEK293T cells. Candidate AONs able to promote exon inclusion were selected for further testing in patient-derived photoreceptor precursor cells. Surprisingly, no robust splicing modulation was observed in this model system. Overall, this research helped to adequately characterize the splicing alteration caused by the c.4253+43G>A variant, although future development of AON-mediated exon inclusion therapy for ABCA4 is needed.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Xu C, Xie N, Su Y, Sun Z, Liang Y, Zhang N, Liu D, Jia S, Xing X, Han L, Li G, Tong T, Chen J. HnRNP F/H associate with hTERC and telomerase holoenzyme to modulate telomerase function and promote cell proliferation. Cell Death Differ 2019; 27:1998-2013. [PMID: 31863069 PMCID: PMC7244589 DOI: 10.1038/s41418-019-0483-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Human telomerase RNA component hTERC comprises multiple motifs that contribute to hTERC biogenesis, holoenzyme activity, and enzyme recruitment to telomeres. hTERC contains several guanine tracts (G-tracts) at its 5′-end, but its associated proteins and potential roles in telomerase function are still poorly understood. The heterogeneous nuclear ribonucleoproteins F, H1, and H2 (hnRNP F/H) are splicing factors that preferentially bind to poly(G)-rich sequences RNA. Here, we demonstrate that hnRNP F/H associate with both hTERC and telomerase holoenzyme to regulate telomerase activity. We reveal hnRNP F/H bind to the 5′-end region of hTERC in vitro and in vivo, and identify the first three G-tracts of hTERC and qRRM1 domain of hnRNP F/H are required for their interaction. Furthermore, hnRNP F/H also directly interact with telomerase holoenzyme. Functionally, we show that hnRNP F/H plays important roles in modulating telomerase activity and telomere length. Moreover, hnRNP F/H deletion greatly impair cancer and stem cell proliferation, and induce stem cell senescence, while hnRNP F/H overexpression delay stem cell senescence. Collectively, our findings unveil a novel role of hnRNP F/H as the binding partners of hTERC and telomerase holoenzyme to regulate telomerase function.
Collapse
Affiliation(s)
- Chenzhong Xu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Nan Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Yuanyuan Su
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Zhaomeng Sun
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Yao Liang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Na Zhang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Doudou Liu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Shuqin Jia
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaofang Xing
- Department of Molecular Diagnostics, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Limin Han
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Guodong Li
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Bergougnoux A, Délétang K, Pommier A, Varilh J, Houriez F, Altieri JP, Koenig M, Férec C, Claustres M, Lalau G, Bienvenu T, Audrézet MP, Pagin A, Girodon E, Raynal C, Taulan-Cadars M. Functional characterization and phenotypic spectrum of three recurrent disease-causing deep intronic variants of the CFTR gene. J Cyst Fibros 2018; 18:468-475. [PMID: 30389601 DOI: 10.1016/j.jcf.2018.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND The CFTR genotype remains incomplete in 1% of Cystic Fibrosis (CF) cases, because only one or no disease-causing variants is detected after extended analysis. This fraction is probably higher in CFTR-Related Disorders (CFTR-RD). Deep-intronic CFTR variants are putative candidates to fill this gap. However, the recurrence, phenotypic spectrum and full molecular characterization of newly reported variants are unknown. METHODS Minigenes and analysis of CFTR transcripts in nasal epithelial cells were used to determine the impact on CFTR splicing of intronic variants that we previously identified by next generation sequencing of the whole CFTR locus. Phenotypic data were collected in 19 patients with CF and CFTR-RD, in whom one of the deep intronic variants has been detected. RESULTS Three deep-intronic variants promoted the inclusion of pseudo-exons (PE) in the CFTR transcript, hindering the synthesis of a functional protein. The c.2989-313A > T variant, detected in four patients with CF or CFTR-RD from three different families, led to the inclusion of a 118 bp PE. The c.3469-1304C > G variant promoted the inclusion of a 214 bp-PE and was identified in five patients with CF from four families. Haplotype analysis confirmed that this variant was associated with one CF chromosome of African origin. The most represented variant in our cohort was the c.3874-4522A > G, detected in 10 patients with various phenotypes, from male infertility to CF with pancreatic insufficiency. CONCLUSION These three deep intronic CFTR variants are associated with a large phenotypic spectrum, including typical CF. They should be included in CF diagnostic testing and carrier screening strategies.
Collapse
Affiliation(s)
- A Bergougnoux
- CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France; Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France.
| | - K Délétang
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| | - A Pommier
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| | - J Varilh
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| | - F Houriez
- AP-HP, HUPC, Hôpital Cochin, Laboratoire de Génétique et Biologie Moléculaires, Paris, France
| | - J P Altieri
- CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - M Koenig
- CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France; Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| | - C Férec
- Inserm, UMR1078 Génétique, Génomique Fonctionnelle et Biotechnologies, France; Univ Brest, EFS, IBSAM, Brest, France; CHU de Brest, Laboratoire de Génétique Moléculaire, Brest, France
| | - M Claustres
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| | - G Lalau
- Service de Toxicologie et Génopathies, Institut de Biochimie et Biologie Moléculaire, Centre Hospitalier Régional Universitaire, Lille, France
| | - T Bienvenu
- AP-HP, HUPC, Hôpital Cochin, Laboratoire de Génétique et Biologie Moléculaires, Paris, France
| | - M P Audrézet
- CHU de Brest, Laboratoire de Génétique Moléculaire, Brest, France
| | - A Pagin
- Service de Toxicologie et Génopathies, Institut de Biochimie et Biologie Moléculaire, Centre Hospitalier Régional Universitaire, Lille, France
| | - E Girodon
- AP-HP, HUPC, Hôpital Cochin, Laboratoire de Génétique et Biologie Moléculaires, Paris, France
| | - C Raynal
- CHU de Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, France
| | - M Taulan-Cadars
- Université de Montpellier, Laboratoire de Génétique de Maladies Rares, EA7402 Montpellier, France
| |
Collapse
|
4
|
Nazim M, Masuda A, Rahman MA, Nasrin F, Takeda JI, Ohe K, Ohkawara B, Ito M, Ohno K. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms. Nucleic Acids Res 2017; 45:1455-1468. [PMID: 28180311 PMCID: PMC5388418 DOI: 10.1093/nar/gkw823] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/11/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation.
Collapse
Affiliation(s)
- Mohammad Nazim
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mohammad Alinoor Rahman
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Farhana Nasrin
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Ohe
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Turunen JJ, Verma B, Nyman TA, Frilander MJ. HnRNPH1/H2, U1 snRNP, and U11 snRNP cooperate to regulate the stability of the U11-48K pre-mRNA. RNA (NEW YORK, N.Y.) 2013; 19:380-9. [PMID: 23335637 PMCID: PMC3677248 DOI: 10.1261/rna.036715.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alternative splicing (AS) is a major contributor to proteome diversity, but it also regulates gene expression by introducing premature termination codons (PTCs) that destabilize transcripts, typically via the nonsense-mediated decay (NMD) pathway. Such AS events often take place within long, conserved sequence elements, particularly in genes encoding various RNA binding proteins. AS-NMD is often activated by the protein encoded by the same gene, leading to a self-regulating feedback loop that maintains constant protein levels. However, cross-regulation between different RNA binding proteins is also common, giving rise to finely tuned regulatory networks. Recently, we described a feedback mechanism regulating two protein components of the U12-dependent spliceosome (U11-48K and U11/U12-65K) through a highly conserved sequence element. These elements contain a U11 snRNP-binding splicing enhancer (USSE), which, through the U11 snRNP, activates an upstream U2-type 3'ss, resulting in the degradation of the U11-48K mRNA by AS-NMD. Through phylogenetic analysis, we now identify a G-rich sequence element that is conserved in fishes as well as mammals. We show that this element binds hnRNPF/H proteins in vitro. Knockdown of hnRNPH1/H2 or mutations in the G-run both lead to enhanced activation of the 3'ss in vivo, suggesting that hnRNPH1/H2 proteins counteract the 3'ss activation. Furthermore, we provide evidence that U1 binding immediately downstream from the G-run similarly counteracts the U11-mediated activation of the alternative 3'ss. Thus, our results elucidate the mechanism in which snRNPs from both spliceosomes together with hnRNPH1/H2 proteins regulate the recognition and activation of the highly conserved alternative splice sites within the U11-48K pre-mRNA.
Collapse
|
6
|
Grellscheid S, Dalgliesh C, Storbeck M, Best A, Liu Y, Jakubik M, Mende Y, Ehrmann I, Curk T, Rossbach K, Bourgeois CF, Stévenin J, Grellscheid D, Jackson MS, Wirth B, Elliott DJ. Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2β in development. PLoS Genet 2011; 7:e1002390. [PMID: 22194695 PMCID: PMC3240583 DOI: 10.1371/journal.pgen.1002390] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/05/2011] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10) is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10(fl/fl); Nestin-Cre(tg/+)). This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein.
Collapse
Affiliation(s)
- Sushma Grellscheid
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Markus Storbeck
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Andrew Best
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Yilei Liu
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Miriam Jakubik
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Ylva Mende
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Tomaz Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
| | - Kristina Rossbach
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Cyril F. Bourgeois
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 964, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - James Stévenin
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 964, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - David Grellscheid
- Institute for Particle Physics Phenomenology, Durham University, Durham, United Kingdom
| | - Michael S. Jackson
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - David J. Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
7
|
Grellscheid SN, Dalgliesh C, Rozanska A, Grellscheid D, Bourgeois CF, Stévenin J, Elliott DJ. Molecular design of a splicing switch responsive to the RNA binding protein Tra2β. Nucleic Acids Res 2011; 39:8092-104. [PMID: 21724598 PMCID: PMC3185414 DOI: 10.1093/nar/gkr495] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tra2β regulates a number of splicing switches including activation of the human testis-specific exon HIPK3-T in the Homeodomain Interacting Protein Kinase 3 gene. By testing HIPK3-T exons of different intrinsic strengths, we found Tra2β most efficiently activated splicing inclusion of intrinsically weak exons, although these were spliced at a lower overall level. Both the RRM and N-terminal RS-rich region of Tra2β were required for splicing activation. Bioinformatic searches for splicing enhancers and repressors mapped four physically distinct exonic splicing enhancers (ESEs) within HIPK3-T, each containing the known Tra2β AGAA-rich binding site. Surprisingly disruption of each single ESE prevented Tra2β-mediated activation, although single mutated exons could still bind Tra2β protein by gel shifts and functional splicing analyses. Titration experiments indicate an additive model of HIPK3-T splicing activation, requiring availability of an array of four distinct ESEs to enable splicing activation. To enable this efficient Tra2β-mediated splicing switch to operate, a closely adjacent downstream and potentially competitive stronger 5'-splice site is actively repressed. Our data indicate that a novel arrangement of multiple mono-specific AGAA-rich ESEs coupled to a weak 5'-splice site functions as a responsive gauge. This gauge monitors changes in the specific nuclear concentration of the RNA binding protein Tra2β, and co-ordinately regulates HIPK3-T exon splicing inclusion.
Collapse
|
8
|
Llorian M, Schwartz S, Clark TA, Hollander D, Tan LY, Spellman R, Gordon A, Schweitzer AC, de la Grange P, Ast G, Smith CWJ. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat Struct Mol Biol 2010; 17:1114-23. [PMID: 20711188 PMCID: PMC2933513 DOI: 10.1038/nsmb.1881] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 06/25/2010] [Indexed: 12/22/2022]
Abstract
To gain global insights into the role of the well-known repressive splicing regulator PTB, we analyzed the consequences of PTB knockdown in HeLa cells using high-density oligonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB-repressed and PTB-activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons but downstream of activated exons. The N-terminal half of PTB was sufficient to activate splicing when recruited downstream of a PTB-activated exon. Moreover, insertion of an upstream pyrimidine tract was sufficient to convert a PTB-activated exon to a PTB-repressed exon. Our results show that PTB, an archetypal splicing repressor, has variable splicing activity that predictably depends upon its binding location with respect to target exons.
Collapse
Affiliation(s)
- Miriam Llorian
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Structural basis of G-tract recognition and encaging by hnRNP F quasi-RRMs. Nat Struct Mol Biol 2010; 17:853-61. [PMID: 20526337 DOI: 10.1038/nsmb.1814] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/22/2010] [Indexed: 01/19/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) F is involved in the regulation of mRNA metabolism by specifically recognizing G-tract RNA sequences. We have determined the solution structures of the three quasi-RNA-recognition motifs (qRRMs) of hnRNP F in complex with G-tract RNA. These structures show that qRRMs bind RNA in a very unusual manner, with the G-tract 'encaged', making the qRRM a novel RNA binding domain. We defined a consensus signature sequence for qRRMs and identified other human qRRM-containing proteins that also specifically recognize G-tract RNAs. Our structures explain how qRRMs can sequester G-tracts, maintaining them in a single-stranded conformation. We also show that isolated qRRMs of hnRNP F are sufficient to regulate the alternative splicing of the Bcl-x pre-mRNA, suggesting that hnRNP F would act by remodeling RNA secondary and tertiary structures.
Collapse
|
10
|
A glycine-rich domain of hnRNP H/F promotes nucleocytoplasmic shuttling and nuclear import through an interaction with transportin 1. Mol Cell Biol 2010; 30:2552-62. [PMID: 20308327 DOI: 10.1128/mcb.00230-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) H and F are members of a closely related subfamily of hnRNP proteins that are implicated in many aspects of RNA processing. hnRNP H and F are alternative splicing factors for numerous U2- and U12-dependent introns. The proteins have three RNA binding domains and two glycine-rich domains and localize to both the nucleus and cytoplasm, but little is known about which domains govern subcellular localization or splicing activity. We show here that the central glycine-tyrosine-arginine-rich (GYR) domain is responsible for nuclear localization, and a nonclassical nuclear localization signal (NLS) was mapped to a short, highly conserved sequence whose activity was compromised by point mutations. Glutathione S-transferase (GST) pulldown assays demonstrated that the hnRNP H NLS interacts with the import receptor transportin 1. Finally, we show that hnRNP H/F are transcription-dependent shuttling proteins. Collectively, the results suggest that hnRNP H and F are GYR domain-dependent shuttling proteins whose posttranslational modifications may alter nuclear localization and hence function.
Collapse
|
11
|
The intronic splicing code: multiple factors involved in ATM pseudoexon definition. EMBO J 2010; 29:749-60. [PMID: 20094034 DOI: 10.1038/emboj.2009.397] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 12/08/2009] [Indexed: 12/30/2022] Open
Abstract
Abundance of pseudo splice sites in introns can potentially give rise to innumerable pseudoexons, outnumbering the real ones. Nonetheless, these are efficiently ignored by the splicing machinery, a process yet to be understood completely. Although numerous 5' splice site-like sequences functioning as splicing silencers have been found to be enriched in predicted human pseudoexons, the lack of active pseudoexons pose a fundamental challenge to how these U1snRNP-binding sites function in splicing inhibition. Here, we address this issue by focusing on a previously described pathological ATM pseudoexon whose inhibition is mediated by U1snRNP binding at intronic splicing processing element (ISPE), composed of a consensus donor splice site. Spliceosomal complex assembly demonstrates inefficient A complex formation when ISPE is intact, implying U1snRNP-mediated unproductive U2snRNP recruitment. Furthermore, interaction of SF2/ASF with its motif seems to be dependent on RNA structure and U1snRNP interaction. Our results suggest a complex combinatorial interplay of RNA structure and trans-acting factors in determining the splicing outcome and contribute to understanding the intronic splicing code for the ATM pseudoexon.
Collapse
|
12
|
Dhir A, Buratti E. Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies. FEBS J 2010; 277:841-55. [PMID: 20082636 DOI: 10.1111/j.1742-4658.2009.07520.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
What makes a nucleotide sequence an exon (or an intron) is a question that still lacks a satisfactory answer. Indeed, most eukaryotic genes are full of sequences that look like perfect exons, but which are nonetheless ignored by the splicing machinery (hence the name 'pseudoexons'). The existence of these pseudoexons has been known since the earliest days of splicing research, but until recently the tendency has been to view them as an interesting, but rather rare, curiosity. In recent years, however, the importance of pseudoexons in regulating splicing processes has been steadily revalued. Even more importantly, clinically oriented screening studies that search for splicing mutations are beginning to uncover a situation where aberrant pseudoexon inclusion as a cause of human disease is more frequent than previously thought. Here we aim to provide a review of the mechanisms that lead to pseudoexon activation in human genes and how the various cis- and trans-acting cellular factors regulate their inclusion. Moreover, we list the potential therapeutic approaches that are being tested with the aim of inhibiting their inclusion in the final mRNA molecules.
Collapse
Affiliation(s)
- Ashish Dhir
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | | |
Collapse
|