1
|
An W, Yan Y, Ye K. High resolution landscape of ribosomal RNA processing and surveillance. Nucleic Acids Res 2024; 52:10630-10644. [PMID: 38994562 PMCID: PMC11417381 DOI: 10.1093/nar/gkae606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Ribosomal RNAs are processed in a complex pathway. We profiled rRNA processing intermediates in yeast at single-molecule and single-nucleotide levels with circularization, targeted amplification and deep sequencing (CircTA-seq), gaining significant mechanistic insights into rRNA processing and surveillance. The long form of the 5' end of 5.8S rRNA is converted to the short form and represents an intermediate of a unified processing pathway. The initial 3' end processing of 5.8S rRNA involves trimming by Rex1 and Rex2 and Trf4-mediated polyadenylation. The 3' end of 25S rRNA is formed by sequential digestion by four Rex proteins. Intermediates with an extended A1 site are generated during 5' degradation of aberrant 18S rRNA precursors. We determined precise polyadenylation profiles for pre-rRNAs and show that the degradation efficiency of polyadenylated 20S pre-rRNA critically depends on poly(A) lengths and degradation intermediates released from the exosome are often extensively re-polyadenylated.
Collapse
MESH Headings
- RNA Processing, Post-Transcriptional
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- RNA Precursors/metabolism
- RNA Precursors/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 18S/genetics
- Polyadenylation
- RNA, Fungal/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- Exosome Multienzyme Ribonuclease Complex/metabolism
- Exosome Multienzyme Ribonuclease Complex/genetics
- High-Throughput Nucleotide Sequencing
- RNA Stability
Collapse
Affiliation(s)
- Weidong An
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxiao Yan
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Gerhalter M, Kofler L, Zisser G, Merl-Pham J, Hauck SM, Bergler H. The novel pre-rRNA detection workflow "Riboprobing" allows simple identification of undescribed RNA species. RNA (NEW YORK, N.Y.) 2024; 30:807-823. [PMID: 38580456 PMCID: PMC11182013 DOI: 10.1261/rna.079912.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/16/2024] [Indexed: 04/07/2024]
Abstract
Ribosomes translate mRNA into proteins and are essential for every living organism. In eukaryotes, both ribosomal subunits are rapidly assembled in a strict hierarchical order, starting in the nucleolus with the transcription of a common precursor ribosomal RNA (pre-rRNA). This pre-rRNA encodes three of the four mature rRNAs, which are formed by several, consecutive endonucleolytic and exonucleolytic processing steps. Historically, northern blots are used to analyze the variety of different pre-rRNA species, only allowing rough length estimations. Although this limitation can be overcome with primer extension, both approaches often use radioactivity and are time-consuming and costly. Here, we present "Riboprobing," a linker ligation-based workflow followed by reverse transcription and PCR for easy and fast detection and characterization of pre-rRNA species and their 5' as well as 3' ends. Using standard molecular biology laboratory equipment, "Riboprobing" allows reliable discrimination of pre-rRNA species not resolved by northern blot (e.g., 27SA2, 27SA3, and 27SB pre-rRNA). The method can successfully be used for the analysis of total cell extracts as well as purified pre-ribosomes for a straightforward evaluation of the impact of mutant gene versions or inhibitors. In the course of method development, we identified and characterized a hitherto undescribed aberrant pre-rRNA arising from LiCl inhibition. This pre-rRNA fragment spans from processing site A1 to E, forming a small RNP that lacks most early joining assembly factors. This finding expands our knowledge of how the cell deals with severe pre-rRNA processing defects and demonstrates the strict requirement for the 5'ETS (external transcribed spacer) for the assembly process.
Collapse
Affiliation(s)
| | - Lisa Kofler
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich 80939, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich 80939, Germany
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| |
Collapse
|
3
|
Zhou B, Wan F, Lei KX, Lan P, Wu J, Lei M. Coevolution of RNA and protein subunits in RNase P and RNase MRP, two RNA processing enzymes. J Biol Chem 2024; 300:105729. [PMID: 38336296 PMCID: PMC10966300 DOI: 10.1016/j.jbc.2024.105729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
RNase P and RNase mitochondrial RNA processing (MRP) are ribonucleoproteins (RNPs) that consist of a catalytic RNA and a varying number of protein cofactors. RNase P is responsible for precursor tRNA maturation in all three domains of life, while RNase MRP, exclusive to eukaryotes, primarily functions in rRNA biogenesis. While eukaryotic RNase P is associated with more protein cofactors and has an RNA subunit with fewer auxiliary structural elements compared to its bacterial cousin, the double-anchor precursor tRNA recognition mechanism has remarkably been preserved during evolution. RNase MRP shares evolutionary and structural similarities with RNase P, preserving the catalytic core within the RNA moiety inherited from their common ancestor. By incorporating new protein cofactors and RNA elements, RNase MRP has established itself as a distinct RNP capable of processing ssRNA substrates. The structural information on RNase P and MRP helps build an evolutionary trajectory, depicting how emerging protein cofactors harmonize with the evolution of RNA to shape different functions for RNase P and MRP. Here, we outline the structural and functional relationship between RNase P and MRP to illustrate the coevolution of RNA and protein cofactors, a key driver for the extant, diverse RNP world.
Collapse
Affiliation(s)
- Bin Zhou
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China
| | - Futang Wan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China
| | - Kevin X Lei
- Shanghai High School International Division, Shanghai, China
| | - Pengfei Lan
- Shanghai Institute of Precision Medicine, Shanghai, China; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China.
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Precision Medicine, Shanghai, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Watt KE, Macintosh J, Bernard G, Trainor PA. RNA Polymerases I and III in development and disease. Semin Cell Dev Biol 2023; 136:49-63. [PMID: 35422389 PMCID: PMC9550887 DOI: 10.1016/j.semcdb.2022.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.
Collapse
Affiliation(s)
- Kristin En Watt
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
6
|
Liu H, Xiu Z, Yang H, Ma Z, Yang D, Wang H, Tan BC. Maize Shrek1 encodes a WD40 protein that regulates pre-rRNA processing in ribosome biogenesis. THE PLANT CELL 2022; 34:4028-4044. [PMID: 35867001 PMCID: PMC9516035 DOI: 10.1093/plcell/koac216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Ribosome biogenesis is a fundamental and highly orchestrated process that involves hundreds of ribosome biogenesis factors. Despite advances that have been made in yeast, the molecular mechanism of ribosome biogenesis remains largely unknown in plants. We uncovered a WD40 protein, Shrunken and Embryo Defective Kernel 1 (SHREK1), and showed that it plays a crucial role in ribosome biogenesis and kernel development in maize (Zea mays). The shrek1 mutant shows an aborted embryo and underdeveloped endosperm and embryo-lethal in maize. SHREK1 localizes mainly to the nucleolus and accumulates to high levels in the seed. Depleting SHREK1 perturbs pre-rRNA processing and causes imbalanced profiles of mature rRNA and ribosome. The expression pattern of ribosomal-related genes is significantly altered in shrek1. Like its yeast (Saccharomyces cerevisiae) ortholog Periodic tryptophan protein 1 (PWP1), SHREK1 physically interacts with ribosomal protein ZmRPL7a, a transient component of the PWP1-subcomplex involved in pre-rRNA processing in yeast. Additionally, SHREK1 may assist in the A3 cleavage of the pre-rRNA in maize by interacting with the nucleolar protein ZmPOP4, a maize homolog of the yeast RNase mitochondrial RNA-processing complex subunit. Overall, our work demonstrates a vital role of SHREK1 in pre-60S ribosome maturation, and reveals that impaired ribosome function accounts for the embryo lethality in shrek1.
Collapse
Affiliation(s)
- Hui Liu
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Zhihui Xiu
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Huanhuan Yang
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Zhaoxing Ma
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Dalin Yang
- School of Life Sciences, The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong University, Qingdao 266237, China
| | - Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | | |
Collapse
|
7
|
Lindahl L. Increasing Complexity of Ribosomes and Their Biogenesis. Int J Mol Sci 2022; 23:ijms23158264. [PMID: 35897840 PMCID: PMC9332792 DOI: 10.3390/ijms23158264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
8
|
Li X, Zengel JM, Lindahl L. A Novel Model for the RNase MRP-Induced Switch between the Formation of Different Forms of 5.8S rRNA. Int J Mol Sci 2021; 22:6690. [PMID: 34206573 PMCID: PMC8268776 DOI: 10.3390/ijms22136690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/12/2023] Open
Abstract
Processing of the RNA polymerase I pre-rRNA transcript into the mature 18S, 5.8S, and 25S rRNAs requires removing the "spacer" sequences. The canonical pathway for the removal of the ITS1 spacer involves cleavages at the 3' end of 18S rRNA and at two sites inside ITS1. The process can generate either a long or a short 5.8S rRNA that differs in the number of ITS1 nucleotides retained at the 5.8S 5' end. Here we document a novel pathway to the long 5.8S, which bypasses cleavage within ITS1. Instead, the entire ITS1 is degraded from its 5' end by exonuclease Xrn1. Mutations in RNase MRP increase the accumulation of long relative to short 5.8S rRNA. Traditionally this is attributed to a decreased rate of RNase MRP cleavage at its target in ITS1, called A3. However, results from this work show that the MRP-induced switch between long and short 5.8S rRNA formation occurs even when the A3 site is deleted. Based on this and our published data, we propose that the link between RNase MRP and 5.8S 5' end formation involves RNase MRP cleavage at unknown sites elsewhere in pre-rRNA or in RNA molecules other than pre-rRNA.
Collapse
MESH Headings
- DNA, Ribosomal Spacer
- Endoribonucleases
- Gene Expression Regulation, Fungal
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Fungal
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Sequence Deletion
Collapse
Affiliation(s)
- Xiao Li
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA; (X.L.); (J.M.Z.)
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Janice M. Zengel
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA; (X.L.); (J.M.Z.)
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA; (X.L.); (J.M.Z.)
| |
Collapse
|
9
|
Perederina A, Li D, Lee H, Bator C, Berezin I, Hafenstein SL, Krasilnikov AS. Cryo-EM structure of catalytic ribonucleoprotein complex RNase MRP. Nat Commun 2020; 11:3474. [PMID: 32651392 PMCID: PMC7351766 DOI: 10.1038/s41467-020-17308-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
RNase MRP is an essential eukaryotic ribonucleoprotein complex involved in the maturation of rRNA and the regulation of the cell cycle. RNase MRP is related to the ribozyme-based RNase P, but it has evolved to have distinct cellular roles. We report a cryo-EM structure of the S. cerevisiae RNase MRP holoenzyme solved to 3.0 Å. We describe the structure of this 450 kDa complex, interactions between its components, and the organization of its catalytic RNA. We show that some of the RNase MRP proteins shared with RNase P undergo an unexpected RNA-driven remodeling that allows them to bind to divergent RNAs. Further, we reveal how this RNA-driven protein remodeling, acting together with the introduction of new auxiliary elements, results in the functional diversification of RNase MRP and its progenitor, RNase P, and demonstrate structural underpinnings of the acquisition of new functions by catalytic RNPs.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Di Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Carol Bator
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA.,Department of Medicine, Pennsylvania State University, Hershey, 17033, PA, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, PA, USA. .,Center for RNA Biology, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
10
|
Lan P, Zhou B, Tan M, Li S, Cao M, Wu J, Lei M. Structural insight into precursor ribosomal RNA processing by ribonuclease MRP. Science 2020; 369:656-663. [PMID: 32586950 DOI: 10.1126/science.abc0149] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Ribonuclease (RNase) MRP is a conserved eukaryotic ribonucleoprotein complex that plays essential roles in precursor ribosomal RNA (pre-rRNA) processing and cell cycle regulation. In contrast to RNase P, which selectively cleaves transfer RNA-like substrates, it has remained a mystery how RNase MRP recognizes its diverse substrates. To address this question, we determined cryo-electron microscopy structures of Saccharomyces cerevisiae RNase MRP alone and in complex with a fragment of pre-rRNA. These structures and the results of biochemical studies reveal that coevolution of both protein and RNA subunits has transformed RNase MRP into a distinct ribonuclease that processes single-stranded RNAs by recognizing a short, loosely defined consensus sequence. This broad substrate specificity suggests that RNase MRP may have myriad yet unrecognized substrates that could play important roles in various cellular contexts.
Collapse
Affiliation(s)
- Pengfei Lan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Bin Zhou
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Ming Tan
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Shaobai Li
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Mi Cao
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Jian Wu
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. .,Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Ming Lei
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. .,Shanghai Institute of Precision Medicine, Shanghai 200125, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
Gregory B, Rahman N, Bommakanti A, Shamsuzzaman M, Thapa M, Lescure A, Zengel JM, Lindahl L. The small and large ribosomal subunits depend on each other for stability and accumulation. Life Sci Alliance 2019; 2:e201800150. [PMID: 30837296 PMCID: PMC6402506 DOI: 10.26508/lsa.201800150] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The 1:1 balance between the numbers of large and small ribosomal subunits can be disturbed by mutations that inhibit the assembly of only one of the subunits. Here, we have investigated if the cell can counteract an imbalance of the number of the two subunits. We show that abrogating 60S assembly blocks 40S subunit accumulation. In contrast, cessation of the 40S pathways does not prevent 60S accumulation, but does, however, lead to fragmentation of the 25S rRNA in 60S subunits and formation of a 55S ribosomal particle derived from the 60S. We also present evidence suggesting that these events occur post assembly and discuss the possibility that the turnover of subunits is due to vulnerability of free subunits not paired with the other subunit to form 80S ribosomes.
Collapse
MESH Headings
- Cell Survival/physiology
- Galactokinase/genetics
- Gene Expression Regulation, Fungal
- Promoter Regions, Genetic
- Protein Stability
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/metabolism
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Trans-Activators/genetics
Collapse
Affiliation(s)
- Brian Gregory
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Nusrat Rahman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Ananth Bommakanti
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Md Shamsuzzaman
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Mamata Thapa
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Alana Lescure
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Janice M Zengel
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| | - Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
12
|
Hopper AK, Nostramo RT. tRNA Processing and Subcellular Trafficking Proteins Multitask in Pathways for Other RNAs. Front Genet 2019; 10:96. [PMID: 30842788 PMCID: PMC6391926 DOI: 10.3389/fgene.2019.00096] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/29/2019] [Indexed: 01/28/2023] Open
Abstract
This article focuses upon gene products that are involved in tRNA biology, with particular emphasis upon post-transcriptional RNA processing and nuclear-cytoplasmic subcellular trafficking. Rather than analyzing these proteins solely from a tRNA perspective, we explore the many overlapping functions of the processing enzymes and proteins involved in subcellular traffic. Remarkably, there are numerous examples of conserved gene products and RNP complexes involved in tRNA biology that multitask in a similar fashion in the production and/or subcellular trafficking of other RNAs, including small structured RNAs such as snRNA, snoRNA, 5S RNA, telomerase RNA, and SRP RNA as well as larger unstructured RNAs such as mRNAs and RNA-protein complexes such as ribosomes. Here, we provide examples of steps in tRNA biology that are shared with other RNAs including those catalyzed by enzymes functioning in 5' end-processing, pseudoU nucleoside modification, and intron splicing as well as steps regulated by proteins functioning in subcellular trafficking. Such multitasking highlights the clever mechanisms cells employ for maximizing their genomes.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
13
|
Small Non-Coding RNAs Derived From Eukaryotic Ribosomal RNA. Noncoding RNA 2019; 5:ncrna5010016. [PMID: 30720712 PMCID: PMC6468398 DOI: 10.3390/ncrna5010016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
The advent of RNA-sequencing (RNA-Seq) technologies has markedly improved our knowledge and expanded the compendium of small non-coding RNAs, most of which derive from the processing of longer RNA precursors. In this review article, we will present a nonexhaustive list of referenced small non-coding RNAs (ncRNAs) derived from eukaryotic ribosomal RNA (rRNA), called rRNA fragments (rRFs). We will focus on the rRFs that are experimentally verified, and discuss their origin, length, structure, biogenesis, association with known regulatory proteins, and potential role(s) as regulator of gene expression. This relatively new class of ncRNAs remained poorly investigated and underappreciated until recently, due mainly to the a priori exclusion of rRNA sequences-because of their overabundance-from RNA-Seq datasets. The situation surrounding rRFs resembles that of microRNAs (miRNAs), which used to be readily discarded from further analyses, for more than five decades, because no one could believe that RNA of such a short length could bear biological significance. As if we had not yet learned our lesson not to restrain our investigative, scientific mind from challenging widely accepted beliefs or dogmas, and from looking for the hidden treasures in the most unexpected places.
Collapse
|
14
|
Cesaro G, Carneiro FRG, Ávila AR, Zanchin NIT, Guimarães BG. Trypanosoma brucei RRP44 is involved in an early stage of large ribosomal subunit RNA maturation. RNA Biol 2018; 16:133-143. [PMID: 30593255 DOI: 10.1080/15476286.2018.1564463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribosomal RNA precursors undergo a series of structural and chemical modifications to generate matured RNA molecules that will comprise ribosomes. This maturation process involves a large set of accessory proteins as well as ribonucleases, responsible for removal of the external and internal transcribed spacers from the pre-rRNA. Early-diverging eukaryotes belonging to the Kinetoplastida class display several unique characteristics, in particular in terms of RNA synthesis and maturation. These peculiarities include the rRNA biogenesis and the extensive fragmentation of the large ribosomal subunit (LSU) rRNA. The role of specific endo- and exonucleases in the maturation of the unusual rRNA precursor of trypanosomatids remains largely unknown. One of the nucleases involved in rRNA processing is Rrp44, an exosome associated ribonuclease in yeast, which is involved in several metabolic RNA pathways. Here, we investigated the function of Trypanosoma brucei RRP44 orthologue (TbRRP44) in rRNA processing. Our results revealed that TbRRP44 depletion causes unusual polysome profile and accumulation of the complete LSU rRNA precursor, in addition to 5.8S maturation impairment. We also determined the crystal structure of TbRRP44 endonucleolytic domain. Structural comparison with Saccharomyces cerevisiae Rrp44 revealed differences in the catalytic site and substitutions of surface residues, which could provide molecular bases for the lack of interaction of RRP44 with the exosome complex in T. brucei.
Collapse
Affiliation(s)
- Giovanna Cesaro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,b Biochemsitry Postgraduate Program , Federal University of Parana , Curitiba , Brazil
| | - Flávia Raquel Gonçalves Carneiro
- a Carlos Chagas Institute , Oswaldo Cruz Foundation, FIOCRUZ-PR , Curitiba , Brazil.,c Center for Technology Development in Healthcare , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | | | | |
Collapse
|
15
|
Lao JP, Ulrich KM, Johnson JR, Newton BW, Vashisht AA, Wohlschlegel JA, Krogan NJ, Toczyski DP. The Yeast DNA Damage Checkpoint Kinase Rad53 Targets the Exoribonuclease, Xrn1. G3 (BETHESDA, MD.) 2018; 8:3931-3944. [PMID: 30377154 PMCID: PMC6288840 DOI: 10.1534/g3.118.200767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
The highly conserved DNA damage response (DDR) pathway monitors the genomic integrity of the cell and protects against genotoxic stresses. The apical kinases, Mec1 and Tel1 (ATR and ATM in human, respectively), initiate the DNA damage signaling cascade through the effector kinases, Rad53 and Chk1, to regulate a variety of cellular processes including cell cycle progression, DNA damage repair, chromatin remodeling, and transcription. The DDR also regulates other cellular pathways, but direct substrates and mechanisms are still lacking. Using a mass spectrometry-based phosphoproteomic screen in Saccharomyces cerevisiae, we identified novel targets of Rad53, many of which are proteins that are involved in RNA metabolism. Of the 33 novel substrates identified, we verified that 12 are directly phosphorylated by Rad53 in vitro: Xrn1, Gcd11, Rps7b, Ded1, Cho2, Pus1, Hst1, Srv2, Set3, Snu23, Alb1, and Scp160. We further characterized Xrn1, a highly conserved 5' exoribonuclease that functions in RNA degradation and the most enriched in our phosphoproteomics screen. Phosphorylation of Xrn1 by Rad53 does not appear to affect Xrn1's intrinsic nuclease activity in vitro, but may affect its activity or specificity in vivo.
Collapse
Affiliation(s)
- Jessica P Lao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Katie M Ulrich
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Ajay A Vashisht
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles, CA 90095
| | - James A Wohlschlegel
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles, CA 90095
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - David P Toczyski
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| |
Collapse
|
16
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
17
|
Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing. Genes Dev 2017; 31:59-71. [PMID: 28115465 PMCID: PMC5287113 DOI: 10.1101/gad.286963.116] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022]
Abstract
In this study, Goldfarb et al. used CRISPR–Cas9 genome editing to eliminate MRP RNA—a ribonucleoprotein complex with an RNA subunit that is conserved across eukarya—in the majority of cells. Analysis by RNA FISH, Northerns, and RNA sequencing demonstrates an accumulation of ribosomal RNA precursor and thus establishes a role for RNase MRP in human pre-rRNA processing. MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR–Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor—analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing—implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation.
Collapse
|
18
|
Wnt activated β-catenin and YAP proteins enhance the expression of non-coding RNA component of RNase MRP in colon cancer cells. Oncotarget 2016; 6:34658-68. [PMID: 26415221 PMCID: PMC4741480 DOI: 10.18632/oncotarget.5778] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/01/2015] [Indexed: 11/25/2022] Open
Abstract
RMRP, the RNA component of mitochondrial RNA processing endoribonuclease, is a non-coding RNA (ncRNA) part of the RNase MRP complex functioning in mitochondrial and ribosomal RNA processing. Even though various mutations in the RMRP gene are linked to developmental defects and pathogenesis, its relevance to cancer etiology has not been well established. Here we examined the expression of RMRP and found a significant increase in colorectal and breast cancer patient tissues. So we tested whether the oncogenic signaling pathways, Wnt/β-catenin and Hippo/YAP pathways, are relevant to the enhanced expression of RMRP in cancer cells because of the predicted β-catenin/TCF and YAP/TBX5 elements in the upstream regions of the RMRP gene. As expected, Wnt signal activation significantly induced the RMRP transcription thru β-catenin and YAP transcription factors. More importantly, YAP protein was critical for RMRP transcription by association to the proximal site near the transcription start site of the RMRP gene, a Pol III promoter, along with β-catenin and TBX5 proteins. We propose that the interplay of Wnt and Hippo signaling pathways could regulate target genes, coding or non-coding, by the β-catenin/YAP/TBX5 transcription complex in cancer cells.
Collapse
|
19
|
Shukla S, Parker R. Hypo- and Hyper-Assembly Diseases of RNA-Protein Complexes. Trends Mol Med 2016; 22:615-628. [PMID: 27263464 DOI: 10.1016/j.molmed.2016.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022]
Abstract
A key aspect of cellular function is the proper assembly and utilization of ribonucleoproteins (RNPs). Recent studies have shown that hyper- or hypo-assembly of various RNPs can lead to human diseases. Defects in the formation of RNPs lead to 'RNP hypo-assembly diseases', which can be caused by RNA degradation outcompeting RNP assembly. By contrast, excess RNP assembly, either in higher order RNP granules, or due to the expression of repeat-containing RNAs, can lead to 'RNP hyper-assembly diseases'. Here, we discuss the most recent advances in understanding the cause of disease onset, as well as potential therapies from the aspect of modulating RNP assembly in the cell, which presents a novel route to the treatment of these diseases.
Collapse
Affiliation(s)
- Siddharth Shukla
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
20
|
Splicing-Mediated Autoregulation Modulates Rpl22p Expression in Saccharomyces cerevisiae. PLoS Genet 2016; 12:e1005999. [PMID: 27097027 PMCID: PMC4838235 DOI: 10.1371/journal.pgen.1005999] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/30/2016] [Indexed: 01/07/2023] Open
Abstract
In Saccharomyces cerevisiae, splicing is critical for expression of ribosomal protein genes (RPGs), which are among the most highly expressed genes and are tightly regulated according to growth and environmental conditions. However, knowledge of the precise mechanisms by which RPG pre-mRNA splicing is regulated on a gene-by-gene basis is lacking. Here we show that Rpl22p has an extraribosomal role in the inhibition of splicing of the RPL22B pre-mRNA transcript. A stem loop secondary structure within the intron is necessary for pre-mRNA binding by Rpl22p in vivo and splicing inhibition in vivo and in vitro and can rescue splicing inhibition in vitro when added in trans to splicing reactions. Splicing inhibition by Rpl22p may be partly attributed to the reduction of co-transcriptional U1 snRNP recruitment to the pre-mRNA at the RPL22B locus. We further demonstrate that the inhibition of RPL22B pre-mRNA splicing contributes to the down-regulation of mature transcript during specific stress conditions, and provide evidence hinting at a regulatory role for this mechanism in conditions of suppressed ribosome biogenesis. These results demonstrate an autoregulatory mechanism that fine-tunes the expression of the Rpl22 protein and by extension Rpl22p paralog composition according to the cellular demands for ribosome biogenesis. Ribosomes are responsible for protein production in all living cells, serving as the grounds for the translation of genetic information from RNA to protein. Given the vital role of the ribosome in protein assembly, ribosome components are highly expressed and are subject to tight regulation. Some ribosomal proteins are also known to engage in extra-ribosomal activities. In our study, we demonstrate that the ribosomal protein Rpl22p is able to regulate its own expression by inhibiting the processing of its own RNA transcript, leading to degradation of the RNA. We also show that this self-imposed regulation plays a role in limiting RPL22 transcript levels in specific stress conditions. We suggest that this mechanism may impact the composition of ribosomes by influencing the availability of the Rpl22p paralogs.
Collapse
|
21
|
Muppavarapu M, Huch S, Nissan T. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing. RNA Biol 2016; 13:455-65. [PMID: 26918764 DOI: 10.1080/15476286.2016.1154253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation.
Collapse
Affiliation(s)
- Mridula Muppavarapu
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| | - Susanne Huch
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| | - Tracy Nissan
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| |
Collapse
|
22
|
Fagerlund RD, Perederina A, Berezin I, Krasilnikov AS. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components. RNA (NEW YORK, N.Y.) 2015; 21:1591-605. [PMID: 26135751 PMCID: PMC4536320 DOI: 10.1261/rna.049007.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/03/2015] [Indexed: 05/06/2023]
Abstract
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P.
Collapse
Affiliation(s)
- Robert D Fagerlund
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S Krasilnikov
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
23
|
Yelick PC, Trainor PA. Ribosomopathies: Global process, tissue specific defects. Rare Dis 2015; 3:e1025185. [PMID: 26442198 PMCID: PMC4590025 DOI: 10.1080/21675511.2015.1025185] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/18/2015] [Accepted: 02/26/2015] [Indexed: 01/01/2023] Open
Abstract
Disruptions in ribosomal biogenesis would be expected to have global and in fact lethal effects on a developing organism. However, mutations in ribosomal protein genes have been shown in to exhibit tissue specific defects. This seemingly contradictory finding - that globally expressed genes thought to play fundamental housekeeping functions can in fact exhibit tissue and cell type specific functions - provides new insight into roles for ribosomes, the protein translational machinery of the cell, in regulating normal development and disease. Furthermore it illustrates the surprisingly dynamic nature of processes regulating cell type specific protein translation. In this review, we discuss our current knowledge of a variety of ribosomal protein mutations associated with human disease, and models to better understand the molecular mechanisms associated with each. We use specific examples to emphasize both the similarities and differences between the effects of various human ribosomal protein mutations. Finally, we discuss areas of future study that are needed to further our understanding of the role of ribosome biogenesis in normal development, and possible approaches that can be used to treat debilitating ribosomopathy diseases.
Collapse
Affiliation(s)
| | - Paul A Trainor
- Stowers Institute ; Kansas City, MO USA ; University of Kansas Medical Center ; Kansas City, KS USA
| |
Collapse
|
24
|
Burroughs AM, Aravind L. Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis. Front Genet 2014; 5:424. [PMID: 25566315 PMCID: PMC4275035 DOI: 10.3389/fgene.2014.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Ribosomal biogenesis has been extensively investigated, especially to identify the elusive nucleases and cofactors involved in the complex rRNA processing events in eukaryotes. Large-scale screens in yeast identified two biochemically uncharacterized proteins, TSR3 and TSR4, as being key players required for rRNA maturation. Using multiple computational approaches we identify the conserved domains comprising these proteins and establish sequence and structural features providing novel insights regarding their roles. TSR3 is unified with the DTW domain into a novel superfamily of predicted enzymatic domains, with the balance of the available evidence pointing toward an RNase role with the archaeo-eukaryotic TSR3 proteins processing rRNA and the bacterial versions potentially processing tRNA. TSR4, its other eukaryotic homologs PDCD2/rp-8, PDCD2L, Zfrp8, and trus, the predominantly bacterial DUF1963 proteins, and other uncharacterized proteins are unified into a new domain superfamily, which arose from an ancient duplication event of a strand-swapped, dimer-forming all-beta unit. We identify conserved features mediating protein-protein interactions (PPIs) and propose a potential chaperone-like function. While contextual evidence supports a conserved role in ribosome biogenesis for the eukaryotic TSR4-related proteins, there is no evidence for such a role for the bacterial versions. Whereas TSR3-related proteins can be traced to the last universal common ancestor (LUCA) with a well-supported archaeo-eukaryotic branch, TSR4-related proteins of eukaryotes are derived from within the bacterial radiation of this superfamily, with archaea entirely lacking them. This provides evidence for “systems admixture,” which followed the early endosymbiotic event, playing a key role in the emergence of the uniquely eukaryotic ribosome biogenesis process.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
25
|
Goldfarb KC, Cech TR. 3' terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing. BMC Mol Biol 2013; 14:23. [PMID: 24053768 PMCID: PMC3849073 DOI: 10.1186/1471-2199-14-23] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
Background Post-transcriptional 3′ end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3′ RACE coupled with high-throughput sequencing to characterize the 3′ terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. Results The 3′ terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3′ terminus of an in vitro transcribed MRP RNA control and the differing 3′ terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). Conclusions 3′ RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3′ terminal sequences of noncoding RNAs.
Collapse
Affiliation(s)
- Katherine C Goldfarb
- Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
26
|
Esakova O, Perederina A, Berezin I, Krasilnikov AS. Conserved regions of ribonucleoprotein ribonuclease MRP are involved in interactions with its substrate. Nucleic Acids Res 2013; 41:7084-91. [PMID: 23700311 PMCID: PMC3737539 DOI: 10.1093/nar/gkt432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/19/2023] Open
Abstract
Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.
Collapse
Affiliation(s)
| | | | | | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology and Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
27
|
Castle CD, Sardana R, Dandekar V, Borgianini V, Johnson AW, Denicourt C. Las1 interacts with Grc3 polynucleotide kinase and is required for ribosome synthesis in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 41:1135-50. [PMID: 23175604 PMCID: PMC3553937 DOI: 10.1093/nar/gks1086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ribosome biogenesis is a multi-step process that couples cell growth with cell proliferation. Although several large-scale analysis of pre-ribosomal particles have identified numerous trans-acting factors involved in this process, many proteins involved in pre-rRNA processing and ribosomal subunit maturation have yet to be identified. Las1 was originally identified in Saccharomyces cerevisiae as a protein involved in cell morphogenesis. We previously demonstrated that the human homolog, Las1L, is required for efficient ITS2 rRNA processing and synthesis of the 60S ribosomal subunit. Here, we report that the functions of Las1 in ribosome biogenesis are also conserved in S. cerevisiae. Depletion of Las1 led to the accumulation of both the 27S and 7S rRNA intermediates and impaired the synthesis of the 60S subunit. We show that Las1 co-precipitates mainly with the 27S rRNA and associates with an Nsa1 and Rix1-containing pre-60S particle. We further identify Grc3 as a major Las1-interacting protein. We demonstrate that the kinase activity of Grc3 is required for efficient pre-rRNA processing and that depletion of Grc3 leads to rRNA processing defects similar to the ones observed in Las1-depleted cells. We propose that Las1 and Grc3 function together in a conserved mechanism to modulate rRNA processing and eukaryotic ribosome biogenesis.
Collapse
Affiliation(s)
- Christopher D Castle
- Department of Integrative Biology and Pharmacology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
28
|
Wang SQ, Shi DQ, Long YP, Liu J, Yang WC. GAMETOPHYTE DEFECTIVE 1, a putative subunit of RNases P/MRP, is essential for female gametogenesis and male competence in Arabidopsis. PLoS One 2012; 7:e33595. [PMID: 22509260 PMCID: PMC3324470 DOI: 10.1371/journal.pone.0033595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/13/2012] [Indexed: 01/15/2023] Open
Abstract
RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants.
Collapse
Affiliation(s)
- Si-Qi Wang
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (DQS); (WCY)
| | - Yan-Ping Long
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (DQS); (WCY)
| |
Collapse
|
29
|
Khanova E, Esakova O, Perederina A, Berezin I, Krasilnikov AS. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions. RNA (NEW YORK, N.Y.) 2012; 18:720-8. [PMID: 22332141 PMCID: PMC3312559 DOI: 10.1261/rna.030874.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Elena Khanova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
30
|
Hipp K, Galani K, Batisse C, Prinz S, Böttcher B. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy. Nucleic Acids Res 2012; 40:3275-88. [PMID: 22167472 PMCID: PMC3326328 DOI: 10.1093/nar/gkr1217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 01/01/2023] Open
Abstract
Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.
Collapse
Affiliation(s)
- Katharina Hipp
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kyriaki Galani
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Claire Batisse
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Simone Prinz
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bettina Böttcher
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK and Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
31
|
Perederina A, Khanova E, Quan C, Berezin I, Esakova O, Krasilnikov AS. Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP. RNA (NEW YORK, N.Y.) 2011; 17:1922-31. [PMID: 21878546 PMCID: PMC3185923 DOI: 10.1261/rna.2855511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/27/2011] [Indexed: 05/22/2023]
Abstract
Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Elena Khanova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Chao Quan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Igor Berezin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Corresponding author.E-mail .
| |
Collapse
|
32
|
Esakova O, Perederina A, Quan C, Berezin I, Krasilnikov AS. Substrate recognition by ribonucleoprotein ribonuclease MRP. RNA (NEW YORK, N.Y.) 2011; 17:356-64. [PMID: 21173200 PMCID: PMC3022284 DOI: 10.1261/rna.2393711] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/15/2010] [Indexed: 05/22/2023]
Abstract
The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
33
|
Schneider MD, Bains AK, Rajendra TK, Dominski Z, Matera AG, Simmonds AJ. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene. RNA (NEW YORK, N.Y.) 2010; 16:2120-30. [PMID: 20855541 PMCID: PMC2957052 DOI: 10.1261/rna.2227710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 08/13/2010] [Indexed: 05/25/2023]
Abstract
MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.
Collapse
Affiliation(s)
- Mary D Schneider
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G2H7, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease. Cell Mol Life Sci 2010; 68:2469-80. [PMID: 21053045 PMCID: PMC3121944 DOI: 10.1007/s00018-010-0568-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/08/2010] [Accepted: 10/13/2010] [Indexed: 01/24/2023]
Abstract
RNase MRP is a conserved endoribonuclease, in humans consisting of a 267-nucleotide RNA associated with 7–10 proteins. Mutations in its RNA component lead to several autosomal recessive skeletal dysplasias, including cartilage-hair hypoplasia (CHH). Because the known substrates of mammalian RNase MRP, pre-ribosomal RNA, and RNA involved in mitochondrial DNA replication are not likely involved in CHH, we analyzed the effects of RNase MRP (and the structurally related RNase P) depletion on mRNAs using DNA microarrays. We confirmed the upregulation of the interferon-inducible viperin mRNA by RNAi experiments and this appeared to be independent of the interferon response. We detected two cleavage sites for RNase MRP/RNase P in the coding sequence of viperin mRNA. This is the first study providing direct evidence for the cleavage of a mRNA by RNase MRP/RNase P in human cells. Implications for the involvement in the pathophysiology of CHH are discussed.
Collapse
|
35
|
Lipovich L, Johnson R, Lin CY. MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:597-615. [PMID: 20951849 DOI: 10.1016/j.bbagrm.2010.10.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 08/13/2010] [Accepted: 10/06/2010] [Indexed: 12/19/2022]
Abstract
The central dogma of molecular biology relegates RNAs to the role of "messengers" of genetic information, with proteins as the end products that perform key roles as regulators and effectors of biological processes. Notable exceptions include non-protein-coding RNAs, which function as adaptors (tRNAs) and ribosomal components (rRNAs) during translation, as well as in splicing (snRNAs) and RNA maturation including editing (snoRNAs). Genome and transcriptome projects have revealed, however, a significant number, rivaling the protein-coding transcripts, of non-protein-coding RNAs not related to these previously characterized transcript classes. Non-protein-coding RNA research has primarily focused on microRNAs, a small subclass of non-protein-coding RNAs, and their regulatory roles in gene expression, and these findings have been reviewed extensively. Here, we turn our attention to the larger, in number and size, long non-coding RNAs (lncRNAs), and review their evolutionary complexity and the growing evidence for their diverse mechanisms of action and functional roles in basic molecular and cellular biology and in human disease. In contrast to the focus on in-silico and expression studies in existing lncRNA literature, we emphasize direct evidence for lncRNA function, presenting experimental approaches and strategies for systematic characterization of lncRNA activities, with applications to known gene regulatory networks and diseases.
Collapse
Affiliation(s)
- Leonard Lipovich
- Department of Neurology, Wayne State University, Detroit, MI, USA.
| | | | | |
Collapse
|
36
|
Perederina A, Krasilnikov AS. The P3 domain of eukaryotic RNases P/MRP: making a protein-rich RNA-based enzyme. RNA Biol 2010; 7:534-9. [PMID: 20523128 DOI: 10.4161/rna.7.5.12302] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear Ribonuclease (RNase) P is a universal essential RNA-based enzyme made of a catalytic RNA component and a protein part; eukaryotic RNase P is closely related to a universal eukaryotic ribonucleoprotein RNase MRP. The protein part of the eukaryotic RNases P/MRP is dramatically more complex than that in bacterial and archaeal RNases P. The increase in the complexity of the protein part in eukaryotic RNases P/MRP was accompanied by the appearance of a novel structural element in the RNA component: an essential and phylogenetically conserved helix-loop-helix P3 RNA domain. The crystal structure of the P3 RNA domain in a complex with protein components Pop6 and Pop7 has been recently solved. Here we discuss the most salient structural features of the P3 domain as well as its possible role in the evolutionary transition to the protein-rich eukaryotic RNases P/MRP.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
37
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
38
|
Jarrous N, Gopalan V. Archaeal/eukaryal RNase P: subunits, functions and RNA diversification. Nucleic Acids Res 2010; 38:7885-94. [PMID: 20716516 PMCID: PMC3001073 DOI: 10.1093/nar/gkq701] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNase P, a catalytic ribonucleoprotein (RNP), is best known for its role in precursor tRNA processing. Recent discoveries have revealed that eukaryal RNase P is also required for transcription and processing of select non-coding RNAs, thus enmeshing RNase P in an intricate network of machineries required for gene expression. Moreover, the RNase P RNA seems to have been subject to gene duplication, selection and divergence to generate two new catalytic RNPs, RNase MRP and MRP-TERT, which perform novel functions encompassing cell cycle control and stem cell biology. We present new evidence and perspectives on the functional diversification of the RNase P RNA to highlight it as a paradigm for the evolutionary plasticity that underlies the extant broad repertoire of catalytic and unexpected regulatory roles played by RNA-driven RNPs.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
39
|
Mattijssen S, Welting TJM, Pruijn GJM. RNase MRP and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:102-16. [DOI: 10.1002/wrna.9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandy Mattijssen
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Center Maastricht, The Netherlands
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Hands-Taylor KLD, Martino L, Tata R, Babon JJ, Bui TT, Drake AF, Beavil RL, Pruijn GJM, Brown PR, Conte MR. Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA. Nucleic Acids Res 2010; 38:4052-66. [PMID: 20215441 PMCID: PMC2896528 DOI: 10.1093/nar/gkq141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20–Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition.
Collapse
Affiliation(s)
- Katherine L. D. Hands-Taylor
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Renée Tata
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Jeffrey J. Babon
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Tam T. Bui
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Alex F. Drake
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Rebecca L. Beavil
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Paul R. Brown
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
- *To whom correspondence should be addressed. Tel: +44 20 7848 6194; Fax: +44 20 7848 6435;
| |
Collapse
|
41
|
Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. EMBO J 2010; 29:761-9. [PMID: 20075859 DOI: 10.1038/emboj.2009.396] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/08/2009] [Indexed: 11/09/2022] Open
Abstract
Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.
Collapse
|
42
|
Perederina A, Esakova O, Quan C, Khanova E, Krasilnikov AS. Crystallization and preliminary X-ray diffraction analysis of the P3 RNA domain of yeast ribonuclease MRP in a complex with RNase P/MRP protein components Pop6 and Pop7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:76-80. [PMID: 20057077 PMCID: PMC2805543 DOI: 10.1107/s1744309109049707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/19/2009] [Indexed: 11/10/2022]
Abstract
Eukaryotic ribonucleases P and MRP are closely related RNA-based enzymes which contain a catalytic RNA component and several protein subunits. The roles of the protein subunits in the structure and function of eukaryotic ribonucleases P and MRP are not clear. Crystals of a complex that included a circularly permuted 46-nucleotide-long P3 domain of the RNA component of Saccharomyces cerevisiae ribonuclease MRP and selenomethionine derivatives of the shared ribonuclease P/MRP protein components Pop6 (18.2 kDa) and Pop7 (15.8 kDa) were obtained using the sitting-drop vapour-diffusion method. The crystals belonged to space group P4(2)22 (unit-cell parameters a = b = 127.2, c = 76.8 A, alpha = beta = gamma = 90 degrees ) and diffracted to 3.25 A resolution.
Collapse
Affiliation(s)
- Anna Perederina
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Olga Esakova
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Chao Quan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Elena Khanova
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Andrey S. Krasilnikov
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| |
Collapse
|