1
|
Bushhouse DZ, Fu J, Lucks JB. RNA folding kinetics control riboswitch sensitivity in vivo. Nat Commun 2025; 16:953. [PMID: 39843437 PMCID: PMC11754884 DOI: 10.1038/s41467-024-55601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity to ligand (EC50) is controlled is critical to explain how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures and regulatory mechanisms demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
Collapse
Affiliation(s)
- David Z Bushhouse
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Jiayu Fu
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Julius B Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Water Research, Northwestern University, Evanston, IL, USA.
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Datta M, Liu J. A DNA Aptamer for 2-Aminopurine: Binding-Induced Fluorescence Quenching. Chem Asian J 2024; 19:e202400817. [PMID: 39251403 PMCID: PMC11613817 DOI: 10.1002/asia.202400817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
2-Aminopurine (2AP) is a fluorescent analog of adenine, and its unique properties make it valuable in various biochemical and biotechnological applications. Its fluorescence property probes local dynamics in DNA and RNA because stacking with the surrounding bases quench its fluorescence. 2AP-labeled DNA or RNA sequences have been used for the detection of genetic mutations, viral RNA, or other nucleic acid-based markers associated with diseases like cancer and infectious diseases. In this study, we isolated aptamers for 2AP using the library immobilization capture-SELEX technique. A dominating aptamer family was isolated after 15 rounds of selection. The Kd values for the most abundant 2AP1 aptamer are 209 nM in a fluorescence assay and 72 nM in an isothermal titration calorimetry test. A 32 nM 2AP limit of detection was tested based on its intrinsic fluorescence change upon aptamer binding. Additionally, we conducted some mutation analysis. Furthermore, we tested the selectivity of this aptamer and discovered that it can bind adenine and adenosine with approximately 100-fold lower affinity than 2AP.
Collapse
Affiliation(s)
- Meheta Datta
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterloo, OntarioN2 L 3G1Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of WaterlooWaterloo, OntarioN2 L 3G1Canada
| |
Collapse
|
3
|
Bushhouse DZ, Fu J, Lucks JB. RNA folding kinetics control riboswitch sensitivity in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587317. [PMID: 38585885 PMCID: PMC10996619 DOI: 10.1101/2024.03.29.587317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Riboswitches are ligand-responsive gene-regulatory RNA elements that perform key roles in maintaining cellular homeostasis. Understanding how riboswitch sensitivity is controlled is critical to understanding how highly conserved aptamer domains are deployed in a variety of contexts with different sensitivity demands. Here we uncover new roles by which RNA folding dynamics control riboswitch sensitivity in cells. By investigating the Clostridium beijerinckii pfl ZTP riboswitch, we identify multiple mechanistic routes of altering expression platform sequence and structure to slow RNA folding, all of which enhance riboswitch sensitivity. Applying these methods to riboswitches with diverse aptamer architectures that regulate transcription and translation with ON and OFF logic demonstrates the generality of our findings, indicating that any riboswitch that operates in a kinetic regime can be sensitized by slowing expression platform folding. Comparison of the most sensitized versions of these switches to equilibrium aptamer:ligand dissociation constants suggests a limit to the sensitivities achievable by kinetic RNA switches. Our results add to the growing suite of knowledge and approaches that can be used to rationally program cotranscriptional RNA folding for biotechnology applications, and suggest general RNA folding principles for understanding dynamic RNA systems in other areas of biology.
Collapse
Affiliation(s)
- David Z. Bushhouse
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Jiayu Fu
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Julius B. Lucks
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Water Research, Northwestern University, Evanston, Illinois 60208, USA
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
4
|
Wu Y, Zhu L, Zhang Y, Xu W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304852. [PMID: 37658499 DOI: 10.1002/smll.202304852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Riboswitches have received significant attention over the last two decades for their multiple functionalities and great potential for applications in various fields. This article highlights and reviews the recent advances in biosensing and biotherapy. These fields involve a wide range of applications, such as food safety detection, environmental monitoring, metabolic engineering, live cell imaging, wearable biosensors, antibacterial drug targets, and gene therapy. The discovery, origin, and optimization of riboswitches are summarized to help readers better understand their multidimensional applications. Finally, this review discusses the multidimensional challenges and development of riboswitches in order to further expand their potential for novel applications.
Collapse
Affiliation(s)
- Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, 100191, China
| |
Collapse
|
5
|
Binding of 30S Ribosome Induces Single-stranded Conformation Within and Downstream of the Expression Platform in a Translational Riboswitch. J Mol Biol 2022; 434:167668. [PMID: 35667471 DOI: 10.1016/j.jmb.2022.167668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
Translational riboswitches are bacterial gene regulatory elements found in the 5'-untranslated region of mRNAs. They operate through a conformational refolding reaction that is triggered by a concentration change of a modulating small molecular ligand. The translation initiation region (TIR) is either released from or incorporated into base pairing interactions through the conformational switch. Hence, initiation of translation is regulated by the accessibility of the Shine-Dalgarno sequence and start codon. Interaction with the 30S ribosome is indispensable for the structural switch between functional OFF and ON states. However, on a molecular level it is still not fully resolved how the ribosome is accommodated near or at the translation initiation region in the context of translational riboswitches. The standby model of translation initiation postulates a binding site where the mRNA enters the ribosome and where it resides until the initiation site becomes unstructured and accessible. We here investigated the adenine-sensing riboswitch from Vibrio vulnificus. By application of a 19F labelling strategy for NMR spectroscopy that utilizes ligation techniques to synthesize differentially 19F labelled riboswitch molecules we show that nucleotides directly downstream of the riboswitch domain are first involved in productive interaction with the 30S ribosomal subunit. Upon the concerted action of ligand and the ribosomal protein rS1 the TIR becomes available and subsequently the 30S ribosome can slide towards the TIR. It will be interesting to see whether this is a general feature in translational riboswitches or if riboswitches exist where this region is structured and represent yet another layer of regulation.
Collapse
|
6
|
St-Pierre P, Shaw E, Jacques S, Dalgarno PA, Perez-Gonzalez C, Picard-Jean F, Penedo JC, Lafontaine DA. A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition. Nucleic Acids Res 2021; 49:5891-5904. [PMID: 33963862 PMCID: PMC8191784 DOI: 10.1093/nar/gkab307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Riboswitches are RNA sequences that regulate gene expression by undergoing structural changes upon the specific binding of cellular metabolites. Crystal structures of purine-sensing riboswitches have revealed an intricate network of interactions surrounding the ligand in the bound complex. The mechanistic details about how the aptamer folding pathway is involved in the formation of the metabolite binding site have been previously shown to be highly important for the riboswitch regulatory activity. Here, a combination of single-molecule FRET and SHAPE assays have been used to characterize the folding pathway of the adenine riboswitch from Vibrio vulnificus. Experimental evidences suggest a folding process characterized by the presence of a structural intermediate involved in ligand recognition. This intermediate state acts as an open conformation to ensure ligand accessibility to the aptamer and folds into a structure nearly identical to the ligand-bound complex through a series of structural changes. This study demonstrates that the add riboswitch relies on the folding of a structural intermediate that pre-organizes the aptamer global structure and the ligand binding site to allow efficient metabolite sensing and riboswitch genetic regulation.
Collapse
Affiliation(s)
- Patrick St-Pierre
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Euan Shaw
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Samuel Jacques
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul A Dalgarno
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Cibran Perez-Gonzalez
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Frédéric Picard-Jean
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - J Carlos Penedo
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
7
|
Binas O, Schamber T, Schwalbe H. The conformational landscape of transcription intermediates involved in the regulation of the ZMP-sensing riboswitch from Thermosinus carboxydivorans. Nucleic Acids Res 2020; 48:6970-6979. [PMID: 32479610 PMCID: PMC7337938 DOI: 10.1093/nar/gkaa427] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/29/2020] [Indexed: 01/30/2023] Open
Abstract
Recently, prokaryotic riboswitches have been identified that regulate transcription in response to change of the concentration of secondary messengers. The ZMP (5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR))-sensing riboswitch from Thermosinus carboxydivorans is a transcriptional ON-switch that is involved in purine and carbon-1 metabolic cycles. Its aptamer domain includes the pfl motif, which features a pseudoknot, impeding rho-independent terminator formation upon stabilization by ZMP interaction. We herein investigate the conformational landscape of transcriptional intermediates including the expression platform of this riboswitch and characterize the formation and unfolding of the important pseudoknot structure in the context of increasing length of RNA transcripts. NMR spectroscopic data show that even surprisingly short pre-terminator stems are able to disrupt ligand binding and thus metabolite sensing. We further show that the pseudoknot structure, a prerequisite for ligand binding, is preformed in transcription intermediates up to a certain length. Our results describe the conformational changes of 13 transcription intermediates of increasing length to delineate the change in structure as mRNA is elongated during transcription. We thus determine the length of the key transcription intermediate to which addition of a single nucleotide leads to a drastic drop in ZMP affinity.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
8
|
McGovern-Gooch KR, Baird NJ. Fluorescence-based investigations of RNA-small molecule interactions. Methods 2019; 167:54-65. [PMID: 31129289 DOI: 10.1016/j.ymeth.2019.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Interrogating non-coding RNA structures and functions with small molecules is an area of rapidly increasing interest among biochemists and chemical biologists. However, many biochemical approaches to monitoring RNA structures are time-consuming and low-throughput, and thereby are only of limited utility for RNA-small molecule studies. Fluorescence-based techniques are powerful tools for rapid investigation of RNA conformations, dynamics, and interactions with small molecules. Many fluorescence methods are amenable to high-throughput analysis, enabling library screening for small molecule binders. In this review, we summarize numerous fluorescence-based approaches for identifying and characterizing RNA-small molecule interactions. We describe in detail a high-information content dual-reporter FRET assay we developed to characterize small molecule-induced conformational and stability changes. Our assay is uniquely suited as a platform for both small molecule discovery and thorough characterization of RNA-small molecule binding mechanisms. Given the growing recognition of non-coding RNAs as attractive targets for therapeutic intervention, we anticipate our FRET assay and other fluorescence-based techniques will be indispensable for the development of potent and specific small molecule inhibitors targeting RNA.
Collapse
Affiliation(s)
- Kayleigh R McGovern-Gooch
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104 United States
| | - Nathan J Baird
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, PA 19104 United States.
| |
Collapse
|
9
|
Tian S, Kladwang W, Das R. Allosteric mechanism of the V. vulnificus adenine riboswitch resolved by four-dimensional chemical mapping. eLife 2018; 7:29602. [PMID: 29446752 PMCID: PMC5847336 DOI: 10.7554/elife.29602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/13/2018] [Indexed: 12/23/2022] Open
Abstract
The structural interconversions that mediate the gene regulatory functions of RNA molecules may be different from classic models of allostery, but the relevant structural correlations have remained elusive in even intensively studied systems. Here, we present a four-dimensional expansion of chemical mapping called lock-mutate-map-rescue (LM2R), which integrates multiple layers of mutation with nucleotide-resolution chemical mapping. This technique resolves the core mechanism of the adenine-responsive V. vulnificus add riboswitch, a paradigmatic system for which both Monod-Wyman-Changeux (MWC) conformational selection models and non-MWC alternatives have been proposed. To discriminate amongst these models, we locked each functionally important helix through designed mutations and assessed formation or depletion of other helices via compensatory rescue evaluated by chemical mapping. These LM2R measurements give strong support to the pre-existing correlations predicted by MWC models, disfavor alternative models, and suggest additional structural heterogeneities that may be general across ligand-free riboswitches.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Rhiju Das
- Department of Physics, Stanford University, Stanford, United States
| |
Collapse
|
10
|
Gong S, Wang Y, Wang Z, Sun Y, Zhang W. Folding behaviors of purine riboswitch aptamers. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s11859-018-1292-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Woods CT, Lackey L, Williams B, Dokholyan NV, Gotz D, Laederach A. Comparative Visualization of the RNA Suboptimal Conformational Ensemble In Vivo. Biophys J 2017. [PMID: 28625696 PMCID: PMC5529173 DOI: 10.1016/j.bpj.2017.05.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When a ribonucleic acid (RNA) molecule folds, it often does not adopt a single, well-defined conformation. The folding energy landscape of an RNA is highly dependent on its nucleotide sequence and molecular environment. Cellular molecules sometimes alter the energy landscape, thereby changing the ensemble of likely low-energy conformations. The effects of these energy landscape changes on the conformational ensemble are particularly challenging to visualize for large RNAs. We have created a robust approach for visualizing the conformational ensemble of RNAs that is well suited for in vitro versus in vivo comparisons. Our method creates a stable map of conformational space for a given RNA sequence. We first identify single point mutations in the RNA that maximally sample suboptimal conformational space based on the ensemble’s partition function. Then, we cluster these diverse ensembles to identify the most diverse partition functions for Boltzmann stochastic sampling. By using, to our knowledge, a novel nestedness distance metric, we iteratively add mutant suboptimal ensembles to converge on a stable 2D map of conformational space. We then compute the selective 2′ hydroxyl acylation by primer extension (SHAPE)-directed ensemble for the RNA folding under different conditions, and we project these ensembles on the map to visualize. To validate our approach, we established a conformational map of the Vibrio vulnificus add adenine riboswitch that reveals five classes of structures. In the presence of adenine, projection of the SHAPE-directed sampling correctly identified the on-conformation; without the ligand, only off-conformations were visualized. We also collected the whole-transcript in vitro and in vivo SHAPE-MaP for human β-actin messenger RNA that revealed similar global folds in both conditions. Nonetheless, a comparison of in vitro and in vivo data revealed that specific regions exhibited significantly different SHAPE-MaP profiles indicative of structural rearrangements, including rearrangement consistent with binding of the zipcode protein in a region distal to the stop codon.
Collapse
Affiliation(s)
- Chanin T Woods
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Benfeard Williams
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Gotz
- Carolina Health Informatics Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; School of Information and Library Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alain Laederach
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
12
|
Kirchner M, Schneider S. Gene expression control by Bacillus anthracis purine riboswitches. RNA (NEW YORK, N.Y.) 2017; 23:762-769. [PMID: 28209633 PMCID: PMC5393184 DOI: 10.1261/rna.058792.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
In all kingdoms of life, cellular replication relies on the presence of nucleosides and nucleotides, the building blocks of nucleic acids and the main source of energy. In bacteria, the availability of metabolites sometimes directly regulates the expression of enzymes and proteins involved in purine salvage, biosynthesis, and uptake through riboswitches. Riboswitches are located in bacterial mRNAs and can control gene expression by conformational changes in response to ligand binding. We have established an inverse reporter gene system in Bacillus subtilis that allows us to monitor riboswitch-controlled gene expression. We used it to investigate the activity of five potential purine riboswitches from Bacillus anthracis in response to different purines and pyrimidines. Furthermore, in vitro studies on the aptamer domains of the riboswitches reveal their variation in guanine binding affinity ranging from namomolar to micromolar. These data do not only provide insight into metabolite sensing but can also aid in engineering artificial cell regulatory systems.
Collapse
Affiliation(s)
- Marion Kirchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Sabine Schneider
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| |
Collapse
|
13
|
Parlea L, Puri A, Kasprzak W, Bindewald E, Zakrevsky P, Satterwhite E, Joseph K, Afonin KA, Shapiro BA. Cellular Delivery of RNA Nanoparticles. ACS COMBINATORIAL SCIENCE 2016; 18:527-47. [PMID: 27509068 PMCID: PMC6345529 DOI: 10.1021/acscombsci.6b00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA nanostructures can be programmed to exhibit defined sizes, shapes and stoichiometries from naturally occurring or de novo designed RNA motifs. These constructs can be used as scaffolds to attach functional moieties, such as ligand binding motifs or gene expression regulators, for nanobiology applications. This review is focused on four areas of importance to RNA nanotechnology: the types of RNAs of particular interest for nanobiology, the assembly of RNA nanoconstructs, the challenges of cellular delivery of RNAs in vivo, and the delivery carriers that aid in the matter. The available strategies for the design of nucleic acid nanostructures, as well as for formulation of their carriers, make RNA nanotechnology an important tool in both basic research and applied biomedical science.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Anu Puri
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Paul Zakrevsky
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily Satterwhite
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kenya Joseph
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
14
|
Perez-Gonzalez C, Lafontaine DA, Penedo JC. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front Chem 2016; 4:33. [PMID: 27536656 PMCID: PMC4971091 DOI: 10.3389/fchem.2016.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
| | - Daniel A. Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de SherbrookeSherbrooke, QC, Canada
| | - J. Carlos Penedo
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
- Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. AndrewsSt. Andrews, UK
| |
Collapse
|
15
|
Perez-Gonzalez C, Grondin JP, Lafontaine DA, Carlos Penedo J. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:157-91. [PMID: 27193543 DOI: 10.1007/978-3-319-32189-9_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The last decade has witnessed the discovery of a variety of non-coding RNA sequences that perform a broad range of crucial biological functions. Among these, the ability of certain RNA sequences, so-called riboswitches, has attracted considerable interest. Riboswitches control gene expression in response to the concentration of particular metabolites to which they bind without the need for any protein. These RNA switches not only need to adopt a very specific tridimensional structure to perform their function, but also their sequence has been evolutionary optimized to recognize a particular metabolite with high affinity and selectivity. Thus, riboswitches offer a unique opportunity to get fundamental insights into RNA plasticity and how folding dynamics and ligand recognition mechanisms have been efficiently merged to control gene regulation. Because riboswitch sequences have been mostly found in bacterial organisms controlling the expression of genes associated to the synthesis, degradation or transport of crucial metabolites for bacterial survival, they offer exciting new routes for antibiotic development in an era where bacterial resistance is more than ever challenging conventional drug discovery strategies. Here, we give an overview of the architecture, diversity and regulatory mechanisms employed by riboswitches with particular emphasis on the biophysical methods currently available to characterise their structure and functional dynamics.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | - Jonathan P Grondin
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| | - J Carlos Penedo
- SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
16
|
Tyrrell J, Weeks KM, Pielak GJ. Challenge of mimicking the influences of the cellular environment on RNA structure by PEG-induced macromolecular crowding. Biochemistry 2015; 54:6447-53. [PMID: 26430778 DOI: 10.1021/acs.biochem.5b00767] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are large differences between the cellular environment and the conditions widely used to study RNA in vitro. SHAPE RNA structure probing in Escherichia coli cells has shown that the cellular environment stabilizes both long-range and local tertiary interactions in the adenine riboswitch aptamer domain. Synthetic crowding agents are widely used to understand the forces that stabilize RNA structure and in efforts to recapitulate the cellular environment under simplified experimental conditions. Here, we studied the structure and ligand binding ability of the adenine riboswitch in the presence of the macromolecular crowding agent, polyethylene glycol (PEG). Ethylene glycol and low-molecular mass PEGs destabilized RNA structure and caused the riboswitch to sample secondary structures different from those observed in simple buffered solutions or in cells. In the presence of larger PEGs, longer-range loop-loop interactions were more similar to those in cells than in buffer alone, consistent with prior work showing that larger PEGs stabilize compact RNA states. Ligand affinity was weakened by low-molecular mass PEGs but increased with high-molecular mass PEGs, indicating that PEG cosolvents exert complex chemical and steric effects on RNA structure. Regardless of polymer size, however, nucleotide-resolution structural characteristics observed in cells were not recapitulated in PEG solutions. Our results reveal that the cellular environment is difficult to recapitulate in vitro; mimicking the cellular state will likely require a combination of crowding agents and other chemical species.
Collapse
Affiliation(s)
- Jillian Tyrrell
- Department of Chemistry, ‡Department of Biochemistry and Biophysics, and §Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Kevin M Weeks
- Department of Chemistry, ‡Department of Biochemistry and Biophysics, and §Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | - Gary J Pielak
- Department of Chemistry, ‡Department of Biochemistry and Biophysics, and §Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
17
|
Qi X, Xia T. Structure, dynamics, and mechanism of the lead-dependent ribozyme. Biomol Concepts 2015; 2:305-14. [PMID: 25962038 DOI: 10.1515/bmc.2011.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/06/2011] [Indexed: 12/24/2022] Open
Abstract
Leadzyme is a small catalytic RNA that was identified by in vitro selection for Pb2+-dependent cleavage from a tRNA library. Leadzyme employs a unique two-step Pb2+-specific mechanism to cleave within its active site. NMR and crystal structures of the active site revealed different folding patterns, but neither features the in-line alignment for attack by the 2'-OH nucleophilic group. These experimentally determined structures most likely represent ground states and are catalytically inactive. There are significant dynamics of the active site and the motif samples multiple conformations at the ground states. Various metal ion binding sites have been identified, including one that may be occupied by a catalytic Pb2+. Based on functional group analysis, a computational model of the transition state has been proposed. This model features a unique base triple that is consistent with sequence and functional group requirements for catalysis. This structure is likely only populated transiently, but imposing appropriate conformational constraints may significantly stabilize this state thereby promoting catalysis. Other ions may inhibit the cleavage by competing for the Pb2+ binding site, or by stabilizing the ground state thereby suppressing its transition to the catalytically active conformation. Some rare earth ions can enhance the reaction via an unknown mechanism. Because of its unique chemistry and dynamic behavior, leadzyme can continue to serve as an excellent model system for teaching us RNA biology and chemistry.
Collapse
|
18
|
Di Palma F, Colizzi F, Bussi G. Using reweighted pulling simulations to characterize conformational changes in riboswitches. Methods Enzymol 2015; 553:139-62. [PMID: 25726464 DOI: 10.1016/bs.mie.2014.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Riboswitches are RNA sequences located in noncoding portions of mRNA that can sense specific ligands and subsequently control gene expression. The ligand-binding event induces conformational changes in the riboswitch that are then transmitted to the gene expression apparatus. Probing the mechanisms of such a fine regulation at atomic resolution is very difficult experimentally and molecular dynamics (MD) could be used to quantify the ligand-dependent behavior of a riboswitch. However, since the accessible time scale of fully atomistic simulations is limited, this can only be done using enhanced sampling techniques. Here, we discuss the application of steered MD to the characterization of the ligand-dependent stability of the aptamer terminal helix in the add adenine-sensing riboswitch. The employed techniques are discussed in detail and sample input files are provided. We show that with a limited computational effort it is possible to quantify, in terms of free energy, the stacking interaction between the ligand and the terminal helix, obtaining results in agreement with thermodynamic experiments.
Collapse
Affiliation(s)
- Francesco Di Palma
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Francesco Colizzi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
19
|
Gong S, Wang Y, Zhang W. Kinetic regulation mechanism of pbuE riboswitch. J Chem Phys 2015; 142:015103. [DOI: 10.1063/1.4905214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sha Gong
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Yujie Wang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Wenbing Zhang
- Department of Physics, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| |
Collapse
|
20
|
Perez-Gonzalez DC, Penedo JC. Single-Molecule Strategies for DNA and RNA Diagnostics. RNA TECHNOLOGIES 2015. [DOI: 10.1007/978-3-319-17305-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Marcano-Velázquez JG, Batey RT. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context. J Biol Chem 2014; 290:4464-75. [PMID: 25550163 DOI: 10.1074/jbc.m114.613497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Riboswitches are a broadly distributed form of RNA-based gene regulation in Bacteria and, more rarely, Archaea and Eukarya. Most often found in the 5'-leader sequence of bacterial mRNAs, they are generally composed of two functional domains: a receptor (aptamer) domain that binds an effector molecule and a regulatory domain (or expression platform) that instructs the expression machinery. One of the most studied riboswitches is the Bacillus subtilis adenine-responsive pbuE riboswitch, which regulates gene expression at the transcriptional level, up-regulating expression in response to increased intracellular effector concentrations. In this work, we analyzed sequence and structural elements that contribute to efficient ligand-dependent regulatory activity in a co-transcriptional and cellular context. Unexpectedly, we found that the P1 helix, which acts as the antitermination element of the switch in this RNA, supported ligand-dependent activation of a reporter gene over a broad spectrum of lengths from 3 to 10 bp. This same trend was also observed using a minimal in vitro single-turnover transcription assay, revealing that this behavior is intrinsic to the RNA sequence. We also found that the sequences at the distal tip of the terminator not directly involved in alternative secondary structure formation are highly important for efficient regulation. These data strongly support a model in which the switch is highly localized to the P1 helix adjacent to the ligand-binding pocket that likely presents a local kinetic block to invasion of the aptamer by the terminator.
Collapse
Affiliation(s)
- Joan G Marcano-Velázquez
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0596
| | - Robert T Batey
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0596
| |
Collapse
|
22
|
Porter EB, Marcano-Velázquez JG, Batey RT. The purine riboswitch as a model system for exploring RNA biology and chemistry. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:919-930. [PMID: 24590258 PMCID: PMC4148472 DOI: 10.1016/j.bbagrm.2014.02.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 12/11/2022]
Abstract
Over the past decade the purine riboswitch, and in particular its nucleobase-binding aptamer domain, has emerged as an important model system for exploring various aspects of RNA structure and function. Its relatively small size, structural simplicity and readily observable activity enable application of a wide variety of experimental approaches towards the study of this RNA. These analyses have yielded important insights into small molecule recognition, co-transcriptional folding and secondary structural switching, and conformational dynamics that serve as a paradigm for other RNAs. In this article, the current state of understanding of the purine riboswitch family and how this growing knowledge base is starting to be exploited in the creation of novel RNA devices are examined. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Ely B Porter
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Joan G Marcano-Velázquez
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | - Robert T Batey
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
23
|
St-Pierre P, McCluskey K, Shaw E, Penedo JC, Lafontaine DA. Fluorescence tools to investigate riboswitch structural dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1005-1019. [PMID: 24863161 DOI: 10.1016/j.bbagrm.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/15/2022]
Abstract
Riboswitches are novel regulatory elements that respond to cellular metabolites to control gene expression. They are constituted of highly conserved domains that have evolved to recognize specific metabolites. Such domains, so-called aptamers, are folded into intricate structures to enable metabolite recognition. Over the years, the development of ensemble and single-molecule fluorescence techniques has allowed to probe most of the mechanistic aspects of aptamer folding and ligand binding. In this review, we summarize the current fluorescence toolkit available to study riboswitch structural dynamics. We fist describe those methods based on fluorescent nucleotide analogues, mostly 2-aminopurine (2AP), to investigate short-range conformational changes, including some key steady-state and time-resolved examples that exemplify the versatility of fluorescent analogues as structural probes. The study of long-range structural changes by Förster resonance energy transfer (FRET) is mostly discussed in the context of single-molecule studies, including some recent developments based on the combination of single-molecule FRET techniques with controlled chemical denaturation methods. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Patrick St-Pierre
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Kaley McCluskey
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - Euan Shaw
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - J C Penedo
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom; Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom.
| | - D A Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
24
|
Sugimoto N. Noncanonical structures and their thermodynamics of DNA and RNA under molecular crowding: beyond the Watson-Crick double helix. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:205-73. [PMID: 24380597 DOI: 10.1016/b978-0-12-800046-5.00008-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
How does molecular crowding affect the stability of nucleic acid structures inside cells? Water is the major solvent component in living cells, and the properties of water in the highly crowded media inside cells differ from that in buffered solution. As it is difficult to measure the thermodynamic behavior of nucleic acids in cells directly and quantitatively, we recently developed a cell-mimicking system using cosolutes as crowding reagents. The influences of molecular crowding on the structures and thermodynamics of various nucleic acid sequences have been reported. In this chapter, we discuss how the structures and thermodynamic properties of nucleic acids differ under various conditions such as highly crowded environments, compartment environments, and in the presence of ionic liquids, and the major determinants of the crowding effects on nucleic acids are discussed. The effects of molecular crowding on the activities of ribozymes and riboswitches on noncanonical structures of DNA- and RNA-like quadruplexes that play important roles in transcription and translation are also described.
Collapse
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
25
|
Tyrrell J, McGinnis JL, Weeks KM, Pielak GJ. The cellular environment stabilizes adenine riboswitch RNA structure. Biochemistry 2013; 52:8777-85. [PMID: 24215455 DOI: 10.1021/bi401207q] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There are large differences between the intracellular environment and the conditions widely used to study RNA structure and function in vitro. To assess the effects of the crowded cellular environment on RNA, we examined the structure and ligand binding function of the adenine riboswitch aptamer domain in healthy, growing Escherichia coli cells at single-nucleotide resolution on the minute time scale using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension). The ligand-bound aptamer structure is essentially the same in cells and in buffer at 1 mM Mg(2+), the approximate Mg(2+) concentration we measured in cells. In contrast, the in-cell conformation of the ligand-free aptamer is much more similar to the fully folded ligand-bound state. Even adding high Mg(2+) concentrations to the buffer used for in vitro analyses did not yield the conformation observed for the free aptamer in cells. The cellular environment thus stabilizes the aptamer significantly more than does Mg(2+) alone. Our results show that the intracellular environment has a large effect on RNA structure that ultimately favors highly organized conformations.
Collapse
Affiliation(s)
- Jillian Tyrrell
- Department of Chemistry, ‡Department of Biochemistry and Biophysics, and §Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | | | | | | |
Collapse
|
26
|
Di Palma F, Colizzi F, Bussi G. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch. RNA (NEW YORK, N.Y.) 2013; 19:1517-1524. [PMID: 24051105 PMCID: PMC3851719 DOI: 10.1261/rna.040493.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 05/28/2023]
Abstract
Riboswitches are structured mRNA elements that modulate gene expression. They undergo conformational changes triggered by highly specific interactions with sensed metabolites. Among the structural rearrangements engaged by riboswitches, the forming and melting of the aptamer terminal helix, the so-called P1 stem, is essential for genetic control. The structural mechanisms by which this conformational change is modulated upon ligand binding mostly remain to be elucidated. Here, we used pulling molecular dynamics simulations to study the thermodynamics of the P1 stem in the add adenine riboswitch. The P1 ligand-dependent stabilization was quantified in terms of free energy and compared with thermodynamic data. This comparison suggests a model for the aptamer folding in which direct P1-ligand interactions play a minor role on the conformational switch when compared with those related to the ligand-induced aptamer preorganization.
Collapse
|
27
|
Reining A, Nozinovic S, Schlepckow K, Buhr F, Fürtig B, Schwalbe H. Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature 2013; 499:355-9. [PMID: 23842498 DOI: 10.1038/nature12378] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/12/2013] [Indexed: 11/09/2022]
Abstract
Riboswitches are cis-acting gene-regulatory RNA elements that can function at the level of transcription, translation and RNA cleavage. The commonly accepted molecular mechanism for riboswitch function proposes a ligand-dependent conformational switch between two mutually exclusive states. According to this mechanism, ligand binding to an aptamer domain induces an allosteric conformational switch of an expression platform, leading to activation or repression of ligand-related gene expression. However, many riboswitch properties cannot be explained by a pure two-state mechanism. Here we show that the regulation mechanism of the adenine-sensing riboswitch, encoded by the add gene on chromosome II of the human Gram-negative pathogenic bacterium Vibrio vulnificus, is notably different from a two-state switch mechanism in that it involves three distinct stable conformations. We characterized the temperature and Mg(2+) dependence of the population ratios of the three conformations and the kinetics of their interconversion at nucleotide resolution. The observed temperature dependence of a pre-equilibrium involving two structurally distinct ligand-free conformations of the add riboswitch conferred efficient regulation over a physiologically relevant temperature range. Such robust switching is a key requirement for gene regulation in bacteria that have to adapt to environments with varying temperatures. The translational adenine-sensing riboswitch represents the first example, to our knowledge, of a temperature-compensated regulatory RNA element.
Collapse
Affiliation(s)
- Anke Reining
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Allnér O, Nilsson L, Villa A. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study. RNA (NEW YORK, N.Y.) 2013; 19:916-926. [PMID: 23716711 PMCID: PMC3683926 DOI: 10.1261/rna.037549.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/28/2013] [Indexed: 06/01/2023]
Abstract
Riboswitches are mRNA-based molecules capable of controlling the expression of genes. They undergo conformational changes upon ligand binding, and as a result, they inhibit or promote the expression of the associated gene. The close connection between structural rearrangement and function makes a detailed knowledge of the molecular interactions an important step to understand the riboswitch mechanism and efficiency. We have performed all-atom molecular dynamics simulations of the adenine-sensing add A-riboswitch to study the breaking of the kissing loop, one key tertiary element in the aptamer structure. We investigated the aptamer domain of the add A-riboswitch in complex with its cognate ligand and in the absence of the ligand. The opening of the hairpins was simulated using umbrella sampling using the distance between two loops as the reaction coordinate. A two-step process was observed in all the simulated systems. First, a general loss of stacking and hydrogen bond interactions is seen. The last interactions that break are the two base pairs G37-C61 and G38-C60, but the break does not affect the energy profile, indicating their pivotal role in the tertiary structure formation but not in the structure stabilization. The junction area is partially organized before the kissing loop formation and residue A24 anchors together the loop helices. Moreover, when the distance between the loops is increased, one of the hairpins showed more flexibility by changing its orientation in the structure, while the other conserved its coaxial arrangement with the rest of the structure.
Collapse
Affiliation(s)
- Olof Allnér
- Department of Biosciences and Nutrition, Karolinska Institutet, Center for Biosciences, SE-14183 Huddinge, Sweden.
| | | | | |
Collapse
|
29
|
Serganov A, Patel DJ. Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu Rev Biophys 2013; 41:343-70. [PMID: 22577823 DOI: 10.1146/annurev-biophys-101211-113224] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Riboswitches are mRNA elements capable of modulating gene expression in response to specific binding by cellular metabolites. Riboswitches exert their function through the interplay of alternative ligand-free and ligand-bound conformations of the metabolite-sensing domain, which in turn modulate the formation of adjacent gene expression controlling elements. X-ray crystallography and NMR spectroscopy have determined three-dimensional structures of virtually all the major riboswitch classes in the ligand-bound state and, for several riboswitches, in the ligand-free state. The resulting spatial topologies have demonstrated the wide diversity of riboswitch folds and revealed structural principles for specific recognition by cognate metabolites. The available three-dimensional information, supplemented by structure-guided biophysical and biochemical experimentation, has led to an improved understanding of how riboswitches fold, what RNA conformations are required for ligand recognition, and how ligand binding can be transduced into gene expression modulation. These studies have greatly facilitated the dissection of molecular mechanisms underlying riboswitch action and should in turn guide the anticipated development of tools for manipulating gene regulatory circuits.
Collapse
Affiliation(s)
- Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
30
|
Dalgarno PA, Bordello J, Morris R, St-Pierre P, Dubé A, Samuel IDW, Lafontaine DA, Penedo JC. Single-molecule chemical denaturation of riboswitches. Nucleic Acids Res 2013; 41:4253-65. [PMID: 23446276 PMCID: PMC3627600 DOI: 10.1093/nar/gkt128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To date, single-molecule RNA science has been developed almost exclusively around the effect of metal ions as folding promoters and stabilizers of the RNA structure. Here, we introduce a novel strategy that combines single-molecule Förster resonance energy transfer (FRET) and chemical denaturation to observe and manipulate RNA dynamics. We demonstrate that the competing interplay between metal ions and denaturant agents provides a platform to extract information that otherwise will remain hidden with current methods. Using the adenine-sensing riboswitch aptamer as a model, we provide strong evidence for a rate-limiting folding step of the aptamer domain being modulated through ligand binding, a feature that is important for regulation of the controlled gene. In the absence of ligand, the rate-determining step is dominated by the formation of long-range key tertiary contacts between peripheral stem-loop elements. In contrast, when the adenine ligand interacts with partially folded messenger RNAs, the aptamer requires specifically bound Mg2+ ions, as those observed in the crystal structure, to progress further towards the native form. Moreover, despite that the ligand-free and ligand-bound states are indistinguishable by FRET, their different stability against urea-induced denaturation allowed us to discriminate them, even when they coexist within a single FRET trajectory; a feature not accessible by existing methods.
Collapse
Affiliation(s)
- Paul A Dalgarno
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stoddard CD, Widmann J, Trausch JJ, Marcano-Velázquez JG, Knight R, Batey RT. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch. J Mol Biol 2013; 425:1596-611. [PMID: 23485418 DOI: 10.1016/j.jmb.2013.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/31/2013] [Accepted: 02/02/2013] [Indexed: 12/20/2022]
Abstract
Direct sensing of intracellular metabolite concentrations by riboswitch RNAs provides an economical and rapid means to maintain metabolic homeostasis. Since many organisms employ the same class of riboswitch to control different genes or transcription units, it is likely that functional variation exists in riboswitches such that activity is tuned to meet cellular needs. Using a bioinformatic approach, we have identified a region of the purine riboswitch aptamer domain that displays conservation patterns linked to riboswitch activity. Aptamer domain compositions within this region can be divided into nine classes that display a spectrum of activities. Naturally occurring compositions in this region favor rapid association rate constants and slow dissociation rate constants for ligand binding. Using X-ray crystallography and chemical probing, we demonstrate that both the free and bound states are influenced by the composition of this region and that modest sequence alterations have a dramatic impact on activity. The introduction of non-natural compositions result in the inability to regulate gene expression in vivo, suggesting that aptamer domain activity is highly plastic and thus readily tunable to meet cellular needs.
Collapse
Affiliation(s)
- Colby D Stoddard
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado, Boulder, CO 80309-0596, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
A riboswitch is a non-protein coding sequence capable of directly binding a small molecule effector without the assistance of accessory proteins to regulate expression of the mRNA in which it is embedded. Currently, over 20 different classes of riboswitches have been validated in bacteria with the promise of many more to come, making them an important means of regulating the genome in the bacterial kingdom. Strikingly, half of the known riboswitches recognize effector compounds that contain a purine or related moiety. In the last decade, significant progress has been made to determine how riboswitches specifically recognize these compounds against the background of many other similar cellular metabolites and transduce this signal into a regulatory response. Of the known riboswitches, the purine family containing guanine, adenine and 2'-deoxyguanosine-binding classes are the most extensively studied, serving as a simple and useful paradigm for understanding how these regulatory RNAs function. This review provides a comprehensive summary of the current state of knowledge regarding the structure and mechanism of these riboswitches, as well as insights into how they might be exploited as therapeutic targets and novel biosensors.
Collapse
|
33
|
Ritz J, Martin JS, Laederach A. Evaluating our ability to predict the structural disruption of RNA by SNPs. BMC Genomics 2012; 13 Suppl 4:S6. [PMID: 22759654 PMCID: PMC3303743 DOI: 10.1186/1471-2164-13-s4-s6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The structure of RiboNucleic Acid (RNA) has the potential to be altered by a Single Nucleotide Polymorphism (SNP). Disease-associated SNPs mapping to non-coding regions of the genome that are transcribed into RiboNucleic Acid (RNA) can potentially affect cellular regulation (and cause disease) by altering the structure of the transcript. We performed a large-scale meta-analysis of Selective 2'-Hydroxyl Acylation analyzed by Primer Extension (SHAPE) data, which probes the structure of RNA. We found that several single point mutations exist that significantly disrupt RNA secondary structure in the five transcripts we analyzed. Thus, every RNA that is transcribed has the potential to be a “RiboSNitch;” where a SNP causes a large conformational change that alters regulatory function. Predicting the SNPs that will have the largest effect on RNA structure remains a contemporary computational challenge. We therefore benchmarked the most popular RNA structure prediction algorithms for their ability to identify mutations that maximally affect structure. We also evaluated metrics for rank ordering the extent of the structural change. Although no single algorithm/metric combination dramatically outperformed the others, small differences in AUC (Area Under the Curve) values reveal that certain approaches do provide better agreement with experiment. The experimental data we analyzed nonetheless show that multiple single point mutations exist in all RNA transcripts that significantly disrupt structure in agreement with the predictions.
Collapse
Affiliation(s)
- Justin Ritz
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
34
|
Boyapati VK, Huang W, Spedale J, Aboul-ela F. Basis for ligand discrimination between ON and OFF state riboswitch conformations: the case of the SAM-I riboswitch. RNA (NEW YORK, N.Y.) 2012; 18:1230-1243. [PMID: 22543867 PMCID: PMC3358645 DOI: 10.1261/rna.032177.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/17/2012] [Indexed: 05/31/2023]
Abstract
Riboswitches are RNA elements that bind to effector ligands and control gene expression. Most consist of two domains. S-Adenosyl Methionine (SAM) binds the aptamer domain of the SAM-I riboswitch and induces conformational changes in the expression domain to form an intrinsic terminator (transcription OFF state). Without SAM the riboswitch forms the transcription ON state, allowing read-through transcription. The mechanistic link between the SAM/aptamer recognition event and subsequent secondary structure rearrangement by the riboswitch is unclear. We probed for those structural features of the Bacillus subtilis yitJ SAM-I riboswitch responsible for discrimination between the ON and OFF states by SAM. We designed SAM-I riboswitch RNA segments forming "hybrid" structures of the ON and OFF states. The choice of segment constrains the formation of a partial P1 helix, characteristic of the OFF state, together with a partial antiterminator (AT) helix, characteristic of the ON state. For most choices of P1 vs. AT helix lengths, SAM binds with micromolar affinity according to equilibrium dialysis. Mutational analysis and in-line probing confirm that the mode of SAM binding by hybrid structures is similar to that of the aptamer. Altogether, binding measurements and in-line probing are consistent with the hypothesis that when SAM is present, stacking interactions with the AT helix stabilize a partially formed P1 helix in the hybrids. Molecular modeling indicates that continuous stacking between the P1 and the AT helices is plausible with SAM bound. Our findings raise the possibility that conformational intermediates may play a role in ligand-induced aptamer folding.
Collapse
Affiliation(s)
- Vamsi Krishna Boyapati
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70802, USA
| | - Wei Huang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70802, USA
| | - Jessica Spedale
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70802, USA
| | - Fareed Aboul-ela
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70802, USA
| |
Collapse
|
35
|
Wacker A, Buck J, Richter C, Schwalbe H, Wöhnert J. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches. RNA Biol 2012; 9:672-80. [PMID: 22647526 DOI: 10.4161/rna.20106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Riboswitches are elements in the 5'-untranslated region of mRNAs that regulate gene expression by directly interacting with metabolites related to their own gene products. A remarkable feature of this gene regulation mechanism is the high specificity of riboswitches for their cognate ligands. In this study, we used a combination of static and time-resolved NMR-spectroscopic methods to investigate the mechanisms for ligand specificity in purine riboswitches. We investigate the xpt-aptamer domain from a guanine-responsive riboswitch and the mfl-aptamer domain from a 2'-deoxyguanosine-responsive riboswitch. The xpt-aptamer binds the purine nucleobases guanine/hypoxanthine with high affinity, but, unexpectedly, also the nucleoside 2'-deoxyguanosine. On the other hand, the mfl-aptamer is highly specific for its cognate ligand 2'-deoxyguanosine, and does not bind purine ligands. We addressed the question of aptamer`s ligand specificity by real-time NMR spectroscopy. Our studies of ligand binding and subsequently induced aptamer folding revealed that the xpt-aptamer discriminates against non-cognate ligands by enhanced life-times of the cognate complex compared with non-cognate complexes, whereas the mfl-aptamer rejects non-cognate ligands at the level of ligand association, employing a kinetic proofreading mechanism.
Collapse
Affiliation(s)
- Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
36
|
Kumar V, Endoh T, Murakami K, Sugimoto N. Dehydration from conserved stem regions is fundamental for ligand-dependent conformational transition of the adenine-specific riboswitch. Chem Commun (Camb) 2012; 48:9693-5. [DOI: 10.1039/c2cc34506d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Structural principles of nucleoside selectivity in a 2'-deoxyguanosine riboswitch. Nat Chem Biol 2011; 7:748-55. [PMID: 21841796 PMCID: PMC3781940 DOI: 10.1038/nchembio.631] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/08/2011] [Indexed: 01/15/2023]
Abstract
Purine riboswitches play an essential role in genetic regulation of bacterial metabolism. This family includes the 2′-deoxyguanosine (dG) riboswitch, involved in feedback control of deoxyguanosine biosynthesis. To understand the principles that define dG selectivity, we determined crystal structures of natural Mesoplasma florum riboswitch bound to cognate dG, as well as non-cognate guanosine, deoxyguanosine monophosphate and guanosine monophosphate. Comparison with related purine riboswitch structures reveals that the dG riboswitch achieves its specificity by modifying key interactions involving the nucleobase and through rearrangement of the ligand-binding pocket, so as to accommodate the additional sugar moiety. In addition, we observe novel conformational changes beyond the junctional binding pocket, extending as far as peripheral loop-loop interactions. It appears that re-engineering riboswitch scaffolds will require consideration of selectivity features dispersed throughout the riboswitch tertiary fold, and that structure-guided drug design efforts targeted to junctional RNA scaffolds need to be addressed within such an expanded framework.
Collapse
|
38
|
Tremblay R, Lemay JF, Blouin S, Mulhbacher J, Bonneau É, Legault P, Dupont P, Penedo JC, Lafontaine DA. Constitutive regulatory activity of an evolutionarily excluded riboswitch variant. J Biol Chem 2011; 286:27406-15. [PMID: 21676871 DOI: 10.1074/jbc.m111.229047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The exquisite specificity of the adenine-responsive riboswitch toward its cognate metabolite has been shown to arise from the formation of a Watson-Crick interaction between the adenine ligand and residue U65. A recent crystal structure of a U65C adenine aptamer variant has provided a rationale for the phylogenetic conservation observed at position 39 for purine aptamers. The G39-C65 variant adopts a compact ligand-free structure in which G39 is accommodated by the ligand binding site and is base-paired to the cytosine at position 65. Here, we demonstrate using a combination of biochemical and biophysical techniques that the G39-C65 base pair not only severely impairs ligand binding but also disrupts the functioning of the riboswitch in vivo by constitutively activating gene expression. Folding studies using single-molecule FRET revealed that the G39-C65 variant displays a low level of dynamic heterogeneity, a feature reminiscent of ligand-bound wild-type complexes. A restricted conformational freedom together with an ability to significantly fold in monovalent ions are exclusive to the G39-C65 variant. This work provides a mechanistic framework to rationalize the evolutionary exclusion of certain nucleotide combinations in favor of sequences that preserve ligand binding and gene regulation functionalities.
Collapse
Affiliation(s)
- Renaud Tremblay
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Québec J1K 2R1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Leipply D, Draper DE. Effects of Mg2+ on the free energy landscape for folding a purine riboswitch RNA. Biochemistry 2011; 50:2790-9. [PMID: 21361309 DOI: 10.1021/bi101948k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There are potentially several ways Mg2+ might promote formation of an RNA tertiary structure: by causing a general "collapse" of the unfolded ensemble to more compact conformations, by favoring a reorganization of structure within a domain to a form with specific tertiary contacts, and by enhancing cooperative linkages between different sets of tertiary contacts. To distinguish these different modes of action, we have studied Mg2+ interactions with the adenine riboswitch, in which a set of tertiary interactions that forms around a purine-binding pocket is thermodynamically linked to the tertiary "docking" of two hairpin loops in another part of the molecule. Each of four RNA forms with different extents of tertiary structure were characterized by small-angle X-ray scattering. The free energy of interconversion between different conformations in the absence of Mg2+ and the free energy of Mg2+ interaction with each form have been estimated, yielding a complete picture of the folding energy landscape as a function of Mg2+ concentration. At 1 mM Mg2+ (50 mM K+), the overall free energy of stabilization by Mg2+ is large, -9.8 kcal/mol, and about equally divided between its effect on RNA collapse to a partially folded structure and on organization of the binding pocket. A strong cooperative linkage between the two sets of tertiary contacts is intrinsic to the RNA. This quantitation of the effects of Mg2+ on an RNA with two distinct sets of tertiary interactions suggests ways that Mg2+ may work to stabilize larger and more complex RNA structures.
Collapse
Affiliation(s)
- Desirae Leipply
- Program in Molecular Biophysics and Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
40
|
Lemay JF, Desnoyers G, Blouin S, Heppell B, Bastet L, St-Pierre P, Massé E, Lafontaine DA. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet 2011; 7:e1001278. [PMID: 21283784 PMCID: PMC3024265 DOI: 10.1371/journal.pgen.1001278] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/14/2010] [Indexed: 01/08/2023] Open
Abstract
Many bacterial mRNAs are regulated at the transcriptional or translational level by ligand-binding elements called riboswitches. Although they both bind adenine, the adenine riboswitches of Bacillus subtilis and Vibrio vulnificus differ by controlling transcription and translation, respectively. Here, we demonstrate that, beyond the obvious difference in transcriptional and translational modulation, both adenine riboswitches exhibit different ligand binding properties and appear to operate under different regulation regimes (kinetic versus thermodynamic). While the B. subtilis pbuE riboswitch fully depends on co-transcriptional binding of adenine to function, the V. vulnificus add riboswitch can bind to adenine after transcription is completed and still perform translation regulation. Further investigation demonstrates that the rate of transcription is critical for the B. subtilis pbuE riboswitch to perform efficiently, which is in agreement with a co-transcriptional regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms. Bacterial genetic regulation is mostly performed at the levels of transcription and translation. Recently discovered riboswitches are RNA molecules located in untranslated regions of messenger RNAs that modulate the expression of genes involved in the transport and metabolism of small metabolites. Several riboswitches have recently been shown to employ various regulation mechanisms, but no general rules have yet been deduced from these studies. Here, we have analyzed two adenine-sensing riboswitches of Bacillus subtilis and Vibrio vulnificus that differ by the level at which they control gene expression, which is transcription and translation, respectively. We find that, beyond the obvious difference in transcriptional and translational modulation, riboswitch regulation mechanisms of both adenine riboswitches are fundamentally different. For instance, while the adenine riboswitch from B. subtilis performs co-transcriptional binding for gene regulation, the riboswitch from V. vulnificus relies on reversible ligand binding to achieve gene regulation during mRNA translation. In agreement with co-transcriptional binding of the B. subtilis riboswitch, we find that transcriptional pausing is crucial for gene regulation. Our results suggest that the nature of gene regulation control, that is transcription or translation, may have a high importance in riboswitch regulatory mechanisms.
Collapse
Affiliation(s)
- Jean-François Lemay
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guillaume Desnoyers
- Groupe ARN/RNA Group, Département de Biochimie, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Simon Blouin
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoit Heppell
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Laurène Bastet
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patrick St-Pierre
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Groupe ARN/RNA Group, Département de Biochimie, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail: (EM); (DL)
| | - Daniel A. Lafontaine
- Groupe ARN/RNA Group, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail: (EM); (DL)
| |
Collapse
|
41
|
Blouin S, Chinnappan R, Lafontaine DA. Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation. Nucleic Acids Res 2010; 39:3373-87. [PMID: 21169337 PMCID: PMC3082890 DOI: 10.1093/nar/gkq1247] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Bacillus subtilis lysC lysine riboswitch modulates its own gene expression upon lysine binding through a transcription attenuation mechanism. The riboswitch aptamer is organized around a single five-way junction that provides the scaffold for two long-range tertiary interactions (loop L2–loop L3 and helix P2–loop L4)—all of this for the creation of a specific lysine binding site. We have determined that the interaction P2–L4 is particularly important for the organization of the ligand-binding site and for the riboswitch transcription attenuation control. Moreover, we have observed that a folding synergy between L2–L3 and P2–L4 allows both interactions to fold at lower magnesium ion concentrations. The P2–L4 interaction is also critical for the close juxtaposition involving stems P1 and P5. This is facilitated by the presence of lysine, suggesting an active role of the ligand in the folding transition. We also show that a previously uncharacterized stem–loop located in the expression platform is highly important for the riboswitch activity. Thus, folding elements located in the aptamer and the expression platform both influence the lysine riboswitch gene regulation.
Collapse
Affiliation(s)
- Simon Blouin
- Groupe ARN/RNA Group, Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
42
|
Wachowius F, Höbartner C. Chemical RNA modifications for studies of RNA structure and dynamics. Chembiochem 2010; 11:469-80. [PMID: 20135663 DOI: 10.1002/cbic.200900697] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Falk Wachowius
- Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
43
|
Jain N, Zhao L, Liu JD, Xia T. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches. Biochemistry 2010; 49:3703-14. [PMID: 20345178 DOI: 10.1021/bi1000036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.
Collapse
Affiliation(s)
- Niyati Jain
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080-3021, USA
| | | | | | | |
Collapse
|
44
|
Delfosse V, Bouchard P, Bonneau E, Dagenais P, Lemay JF, Lafontaine DA, Legault P. Riboswitch structure: an internal residue mimicking the purine ligand. Nucleic Acids Res 2009; 38:2057-68. [PMID: 20022916 PMCID: PMC2847212 DOI: 10.1093/nar/gkp1080] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The adenine and guanine riboswitches regulate gene expression in response to their purine ligand. X-ray structures of the aptamer moiety of these riboswitches are characterized by a compact fold in which the ligand forms a Watson–Crick base pair with residue 65. Phylogenetic analyses revealed a strict restriction at position 39 of the aptamer that prevents the G39–C65 and A39–U65 combinations, and mutational studies indicate that aptamers with these sequence combinations are impaired for ligand binding. In order to investigate the rationale for sequence conservation at residue 39, structural characterization of the U65C mutant from Bacillus subtilis pbuE adenine riboswitch aptamer was undertaken. NMR spectroscopy and X-ray crystallography studies demonstrate that the U65C mutant adopts a compact ligand-free structure, in which G39 occupies the ligand-binding site of purine riboswitch aptamers. These studies present a remarkable example of a mutant RNA aptamer that adopts a native-like fold by means of ligand mimicking and explain why this mutant is impaired for ligand binding. Furthermore, this work provides a specific insight into how the natural sequence has evolved through selection of nucleotide identities that contribute to formation of the ligand-bound state, but ensures that the ligand-free state remains in an active conformation.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Prychyna O, Dahabieh MS, Chao J, O'Neill MA. Sequence-dependent folding and unfolding of ligand-bound purine riboswitches. Biopolymers 2009; 91:953-65. [PMID: 19603494 DOI: 10.1002/bip.21283] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Riboswitch regulation of gene expression requires ligand-mediated RNA folding. From the fluorescence lifetime distribution of bound 2-aminopurine ligand, we resolve three RNA conformers (C(o), C(i), C(c)) of the liganded G- and A-sensing riboswitches from Bacillus subtilis. The ligand binding affinities, and sensitivity to Mg(2+), together with results from mutagenesis, suggest that C(o) and C(i) are partially unfolded species compromised in key loop-loop interactions present in the fully folded C(c). These data verify that the ligand-bound riboswitches may dynamically fold and unfold in solution, and reveal differences in the distribution of folded states between two structurally homologous purine riboswitches: Ligand-mediated folding of the G-sensing riboswitch is more effective, less dependent on Mg(2+), and less debilitated by mutation, than the A-sensing riboswitch, which remains more unfolded in its liganded state. We propose that these sequence-dependent RNA dynamics, which adjust the balance of ligand-mediated folding and unfolding, enable different degrees of kinetic discrimination in ligand binding, and fine-tuning of gene regulatory mechanisms.
Collapse
Affiliation(s)
- Oksana Prychyna
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | | | | | | |
Collapse
|
46
|
Gilbert SD, Reyes FE, Edwards AL, Batey RT. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs. Structure 2009; 17:857-68. [PMID: 19523903 DOI: 10.1016/j.str.2009.04.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 12/30/2022]
Abstract
Purine riboswitches discriminate between guanine and adenine by at least 10,000-fold based on the identity of a single pyrimidine (Y74) that forms a Watson-Crick base pair with the ligand. To understand how this high degree of specificity for closely related compounds is achieved through simple pairing, we investigated their interaction with purine analogs with varying functional groups at the 2- and 6-positions that have the potential to alter interactions with Y74. Using a combination of crystallographic and calorimetric approaches, we find that binding these purines is often facilitated by either small structural changes in the RNA or tautomeric changes in the ligand. This work also reveals that, along with base pairing, conformational restriction of Y74 significantly contributes to nucleobase selectivity. These results reveal that compounds that exploit the inherent local flexibility within riboswitch binding pockets can alter their ligand specificity.
Collapse
Affiliation(s)
- Sunny D Gilbert
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Campus Box 215, Boulder, CO 80309-0215, USA
| | | | | | | |
Collapse
|
47
|
Sharma M, Bulusu G, Mitra A. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch. RNA (NEW YORK, N.Y.) 2009; 15:1673-92. [PMID: 19625387 PMCID: PMC2743061 DOI: 10.1261/rna.1675809] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 06/18/2009] [Indexed: 05/23/2023]
Abstract
Riboswitches are structural cis-acting genetic regulatory elements in 5' UTRs of mRNAs, consisting of an aptamer domain that regulates the behavior of an expression platform in response to its recognition of, and binding to, specific ligands. While our understanding of the ligand-bound structure of the aptamer domain of the adenine riboswitches is based on crystal structure data and is well characterized, understanding of the structure and dynamics of the ligand-free aptamer is limited to indirect inferences from physicochemical probing experiments. Here we report the results of 15-nsec-long explicit-solvent molecular dynamics simulations of the add A-riboswitch crystal structure (1Y26), both in the adenine-bound (CLOSED) state and in the adenine-free (OPEN) state. Root-mean-square deviation, root-mean-square fluctuation, dynamic cross-correlation, and backbone torsion angle analyses are carried out on the two trajectories. These, along with solvent accessible surface area analysis of the two average structures, are benchmarked against available experimental data and are shown to constitute the basis for obtaining reliable insights into the molecular level details of the binding and switching mechanism. Our analysis reveals the interaction network responsible for, and conformational changes associated with, the communication between the binding pocket and the expression platform. It further highlights the significance of a, hitherto unreported, noncanonical W:H trans base pairing between A73 and A24, in the OPEN state, and also helps us to propose a possibly crucial role of U51 in the context of ligand binding and ligand discrimination.
Collapse
Affiliation(s)
- Monika Sharma
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad-500032, India
| | | | | |
Collapse
|
48
|
Kadakkuzha BM, Zhao L, Xia T. Conformational distribution and ultrafast base dynamics of leadzyme. Biochemistry 2009; 48:3807-9. [PMID: 19301929 DOI: 10.1021/bi900256q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dynamic nature of ribozymes represents a significant challenge in elucidating their structure-dynamics-function relationship. Here, using femtosecond time-resolved spectroscopy and other biophysical tools, we demonstrate that the active site of leadzyme does not have a unique structure, but rather samples an ensemble of conformations that undergo picosecond structural changes. Various base modifications have a profound context-dependent impact on the catalysis.
Collapse
Affiliation(s)
- Beena M Kadakkuzha
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | | | |
Collapse
|
49
|
Serganov A. The long and the short of riboswitches. Curr Opin Struct Biol 2009; 19:251-9. [PMID: 19303767 DOI: 10.1016/j.sbi.2009.02.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
Abstract
Regulatory mRNA elements or riboswitches specifically control the expression of a large number of genes in response to various cellular metabolites. The basis for selectivity of regulation is programmed in the evolutionarily conserved metabolite-sensing regions of riboswitches, which display a plethora of sequence and structural variants. Recent X-ray structures of two distinct SAM riboswitches and the sensing domains of the Mg(2+), lysine, and FMN riboswitches have uncovered novel recognition principles and provided molecular details underlying the exquisite specificity of metabolite binding by RNA. These and earlier structures constitute the majority of widespread riboswitch classes and, together with riboswitch folding studies, improve our understanding of the mechanistic principles involved in riboswitch-mediated gene expression control.
Collapse
Affiliation(s)
- Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
50
|
Modeling the noncovalent interactions at the metabolite binding site in purine riboswitches. J Mol Model 2009; 15:633-49. [PMID: 19137333 DOI: 10.1007/s00894-008-0384-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 10/08/2008] [Indexed: 12/25/2022]
Abstract
We present gas phase quantum chemical studies on the metabolite binding interactions in two important purine riboswitches, the adenine and guanine riboswitches, at the B3LYP/6-31G(d,p) level of theory. In order to gain insights into the strucutral basis of their discriminative abilities of regulating gene expression, the structural properties and binding energies for the gas phase optimized geometries of the metabolite bound binding pocket are analyzed and compared with their respective crystal geometries. Kitaura-Morokuma analysis has been carried out to calculate and decompose the interaction energy into various components. NBO and AIM analysis has been carried out to understand the strength and nature of binding of the individual aptamer bases with their respective purine metabolites. The Y74 base, U in case of adenine riboswitch and C in case of guanine riboswitch constitutes the only differentiating element between the two binding pockets. As expected, with W:W cis G:C74 interaction contributing more than 50% of the total binding energy, the interaction energy for metabolite binding as calculated for guanine (-46.43 Kcal/mol) is nearly double compared to the corresponding value for that of adenine (-24.73 Kcal/mol) in the crystal context. Variations in the optimized geometries for different models and comparison of relative contribution to metabolite binding involving four conserved bases reveal the possible role of U47:U51 W:H trans pair in the conformational transition of the riboswitch from the metabolite free to metabolite bound state. Our results are also indicative of significant contributions from stacking and magnesium ion interactions toward cooperativity effects in metabolite recognition.
Collapse
|