1
|
Li T, Li L, Hiers NM, Sheng P, Wang Y, Traugot CM, Effinger-Morris JF, Akaphan P, Liu Y, Bian J, Fujii K, Xie M. Translation suppresses exogenous target RNA-mediated microRNA decay. Nat Commun 2025; 16:5257. [PMID: 40480978 PMCID: PMC12144122 DOI: 10.1038/s41467-025-60374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/21/2025] [Indexed: 06/11/2025] Open
Abstract
MicroRNAs (miRNAs) interact with the target mRNAs to induce translational repression and mRNA degradation. Interestingly, miRNAs themselves can turnover rapidly when binding to a target RNA with extensive complementarity, a phenomenon called target-directed miRNA degradation (TDMD). To date, all validated TDMD "triggers" can induce miRNA degradation reside in non-coding regions of the RNA. We found that TDMD triggers placed in the 3' untranslated region (UTR) of a reporter degraded miRNAs more effectively than those in the coding sequence (CDS). Inhibiting translation of the reporter enhanced miRNA degradation by the CDS trigger, indicating that ribosome-free CDS triggers are more accessible to miRNAs. By small RNA sequencing, we explored mammalian miRNAs sensitive to global translation status. Yet, no endogenous CDS trigger could be confidently assigned to these miRNAs. Our work revealed the intricate relationship between translation and TDMD, and explains the paucity of effective TDMD triggers in the CDS.
Collapse
Affiliation(s)
- Tianqi Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Yuzhi Wang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Conner M Traugot
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jessi F Effinger-Morris
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Pitchaporn Akaphan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
| | - Yanyan Liu
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Jiang Bian
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, 32610, USA
| | - Kotaro Fujii
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Badal AK, Nayek A, Dhar R, Karmakar S. MicroRNA nanoformulation: a promising approach to anti-tumour activity. Invest New Drugs 2025:10.1007/s10637-025-01534-7. [PMID: 40366533 DOI: 10.1007/s10637-025-01534-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
Cancer is a major cause of morbidity and mortality, making it one of the most debilitating diseases in our time. Despite advancements in therapeutic strategies, the development of chemoresistance and the occurrence of secondary tumours pose significant challenges. While several promising anti-tumour agents have been identified, their clinical utility is often limited due to toxicity and associated side effects. MicroRNAs (mi-RNAs) are critical regulators of gene expression, and their altered levels are closely linked to cancer development and progression. Although some microRNAs have shown potential as biomarkers for cancer detection, their integration into routine clinical practice has yet to be realized. Numerous candidate microRNAs exhibit therapeutic potential for cancer treatment; however, further research is needed to create efficient, patient-compliant, and customized drug delivery systems. In recent decades, various nanotechnology platforms have successfully transitioned to clinical trials, particularly in the field of RNA nanotechnology. Several RNA nanoparticles have been developed to address key challenges in vivo for targeting cancer, demonstrating favourable biodistribution characteristics. Studies have shown that RNA nanoparticles, characterized by precise stoichiometry and homogeneity, can effectively target tumour cells while avoiding aggregation in normal, healthy tissues following systemic injection. Animal models have demonstrated that RNA nanoparticles can deliver therapeutics such as siRNA and anti-microRNA, effectively inhibiting tumour growth. Using nanoparticles conjugated with antibodies and/or peptides enhances the targeted delivery and sustained release of microRNAs and anti-microRNAs, which may reduce the required therapeutic dosage and minimize systemic and cellular damage. This review focuses on developing microRNA nanoformulations to improve cellular uptake, bioavailability, and accumulation at tumour sites, assessing their potential anti-tumour efficacy against various types of malignancies. The significance of these advancements in clinical oncology cannot be overstated.
Collapse
Affiliation(s)
| | - Arnab Nayek
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ruby Dhar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | - Subhradip Karmakar
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
3
|
Gao F, Wang F, Chen Y, Deng B, Yang F, Cao H, Chen J, Chen H, Qi F, Kapranov P. The human genome encodes a multitude of novel miRNAs. Nucleic Acids Res 2025; 53:gkaf070. [PMID: 39964476 PMCID: PMC11833695 DOI: 10.1093/nar/gkaf070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
Human cells generate a vast complexity of noncoding RNAs, the "RNA dark matter," which includes a vast small RNA (sRNA) transcriptome. The biogenesis, biological relevance, and mechanisms of action of most of these transcripts remain unknown, and they are widely assumed to represent degradation products. Here, we aimed to functionally characterize human sRNA transcriptome by attempting to answer the following question-can a significant number of novel sRNAs correspond to novel members of known classes, specifically, microRNAs (miRNAs)? By developing and validating a miRNA discovery pipeline, we show that at least 2726 novel canonical miRNAs, majority of which represent novel miRNA families, exist in just one human cell line compared to just 1914 known miRNA loci. Moreover, potentially tens of thousands of miRNAs remain to be discovered. Strikingly, many novel miRNAs map to exons of protein-coding genes emphasizing a complex and interleaved architecture of the genome. The existence of so many novel members of a functional class of sRNAs suggest that the human sRNA transcriptome harbors a multitude of novel regulatory molecules. Overall, these results suggest that we are at the very beginning of understanding the true functional complexity of the sRNA component of the "RNA dark matter."
Collapse
Affiliation(s)
- Fan Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Xiamen Institute for Food and Drug Quality Control, 33 Haishan Road, Xiamen 361012, China
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Chen
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Bolin Deng
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Fujian Yang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Junjie Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Huiling Chen
- Xiamen Institute for Food and Drug Quality Control, 33 Haishan Road, Xiamen 361012, China
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Chu CP, Nabity MB. Technical considerations and review of urinary microRNAs as biomarkers for chronic kidney disease in dogs and cats. Vet Clin Pathol 2025. [PMID: 39865558 DOI: 10.1111/vcp.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025]
Abstract
MicroRNAs (miRNAs or miRs) are small, non-coding RNAs that play a crucial role in gene regulation, making them potential biomarkers for various diseases. In the field of veterinary medicine, there is a growing interest in exploring the diagnostic and therapeutic potential of miRNAs in kidney diseases affecting dogs and cats. This review focuses on the use of urinary miRNAs as biomarkers for chronic kidney disease (CKD) in these companion animals. We introduce miRNAs, their biogenesis, and their presence in biofluids, particularly within exosomes, and discuss studies investigating miRNAs in kidney tissue and urine. We acknowledge the challenges associated with miRNA studies, including preanalytical factors such as biological variation, sample collection/processing, storage conditions, and experimental design. We highlight the importance of technical considerations, such as sample pooling, sequencing depth, multiplexing, and the various steps of the miRNA experimental workflow. Furthermore, we discuss RNA isolation methods, small RNA sequencing data analysis, and the use of quantitative reverse transcription PCR (qRT-PCR) and droplet digital PCR for verification. We emphasize the importance of internal controls, spike-ins, and normalization methods to minimize technical variation and ensure reliable results in qRT-PCR analysis. This review concludes that while urinary miRNAs hold promise as non-invasive biomarkers for CKD in dogs and cats, addressing the challenges and standardization of protocols is vital for the successful translation of this research into clinical practice.
Collapse
Affiliation(s)
- Candice P Chu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mary B Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Wang Q, Zhao C, Du Q, Cao Z, Pan J. Non-coding RNA in infantile hemangioma. Pediatr Res 2024; 96:1594-1602. [PMID: 38750296 DOI: 10.1038/s41390-024-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 01/29/2025]
Abstract
Infantile hemangioma (IH) is the most common benign vascular tumor of infancy, but its pathogenesis has not been fully discovered. From the cellular perspective, CD133+ stem cells orchestrate the proliferation and development of IH. Regarding molecular mechanisms, hypoxia inducible factor-1α, renin-angiotensin system, and vascular endothelial growth factor are current study hotspots, while non-coding RNAs (ncRNAs) might be essential factors participating in this network. Therefore, this article reviewed published studies concerning the roles of ncRNAs in IH and listed noted miRNAs, lncRNAs, and circRNAs. Other ncRNAs, such as snRNAs, snoRNAs, and tsRNAs, though have not been examined in IH, are mentioned as well to discuss their potential functions. Due to the continuous development of sequencing technologies and computational pipelines for ncRNAs annotation, relevant studies will provide evidence to gradually enhance acknowledgments of ncRNAs' role in IH. The pathogenesis of IH might be revealed and the treatment protocol would be optimized in the future. IMPACT: Non-coding RNAs (ncRNAs) play critical roles in infantile hemangioma. This article thoroughly reviewed all ncRNAs (miRNAs, lncRNAs, and circRNAs) mentioned in previous studies regarding the pathogenesis of infantile hemangioma. Other ncRNAs are promising subjects for further investigation. This review introduced the emerging ncRNAs that need to be explored in IH.
Collapse
Affiliation(s)
- Qizhang Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianxin Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Usul G, Kelten Talu EC, Yılmaz İ, Issın GN, Bektaş S, Can Trabulus D. The Association of Neuroendocrine Differentiation with MicroRNA 21 and MicroRNA let7f Expression and the Clinicopathological Parameters in Primary Invasive Breast Carcinomas with Neuroendocrine Features. Diagnostics (Basel) 2024; 14:2211. [PMID: 39410615 PMCID: PMC11475674 DOI: 10.3390/diagnostics14192211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
MiRNAs have been reported as biomarkers with diagnostic, prognostic, and predictive value for many different diseases. Therapeutic agents targeting some miRNAs are currently being developed. We aimed to compare BC-NEFs (carcinoma of the breast with neuroendocrine features) with IDC (invasive ductal carcinoma) cases without neuroendocrine features in terms of the level of miRNA expression known to show the oncogenic (miR-21) and tumor-suppressor effects (miR-let7f) and the clinicopathological features. A total of 29 patients with a diagnosis of BC-NEFs (15 cases with neuroendocrine differentiation >50% of the whole section of tumor and 14 cases with neuroendocrine differentiation 10-50% of the tumor) and 30 patients with a diagnosis of IDC (no neuroendocrine differentiation) were retrospectively re-evaluated. Expression levels of miR-21 and miR-let7f were determined by the qRT-PCR method in paraffin tissue blocks. MiR-21 expression was significantly higher in the IDC group than in the group with BC-NEFs. miR-let7f expression was significantly lower in the group with BC-NEFs compared to the IDC group. A high expression level of miR-21 was found to be associated with progesterone receptor (PR) negativity. Our findings show that the presence of NEFs in breast carcinomas makes a significant difference in the expression levels of the investigated oncogenic (miR-21) and tumor-suppressor (miR-let7f) miRNAs. These findings suggest that miRNAs may be a potential biomarker in BC-NEFs and would benefit from targeted therapy.
Collapse
Affiliation(s)
- Gamze Usul
- Department of Pathology, Istanbul Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34098, Türkiye
| | - Esra Canan Kelten Talu
- Department of Pathology, Istanbul Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34098, Türkiye
- Department of Molecular Pathology, Faculty of Medicine, Institute of Health Sciences, Dokuz Eylul University, İzmir 35410, Türkiye
| | - İsmail Yılmaz
- Department of Pathology, Sultan Abdülhamid Han Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34668, Türkiye
| | - Gizem Narlı Issın
- Mengücek Gazi Education and Research Hospital, Faculty of Medicine, Binali Yıldırım University, Erzincan 24180, Türkiye
| | - Sibel Bektaş
- Department of Pathology, Gaziosmanpaşa Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34255, Türkiye
| | - Didem Can Trabulus
- Department of General Surgery, Istanbul Training and Research Hospital, Hamidiye Faculty of Medicine, University of Health Sciences, Istanbul 34098, Türkiye
| |
Collapse
|
7
|
Thivierge C, Bellefeuille M, Diwan SS, Dyakov BJA, Leventis R, Perron G, Najafabadi HS, Gravel SP, Gingras AC, Duchaine TF. Paraspeckle-independent co-transcriptional regulation of nuclear microRNA biogenesis by SFPQ. Cell Rep 2024; 43:114695. [PMID: 39250314 DOI: 10.1016/j.celrep.2024.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in physiological functions and disease, but the regulation of their nuclear biogenesis remains poorly understood. Here, BioID on Drosha, the catalytic subunit of the microprocessor complex, reveals its proximity to splicing factor proline- and glutamine (Q)-rich (SFPQ), a multifunctional RNA-binding protein (RBP) involved in forming paraspeckle nuclear condensates. SFPQ depletion impacts both primary and mature miRNA expression, while other paraspeckle proteins (PSPs) or the paraspeckle scaffolding RNA NEAT1 do not, indicating a paraspeckle-independent role. Comprehensive transcriptomic analyses show that SFPQ loss broadly affects RNAs and miRNA host gene (HG) expression, influencing both their transcription and the stability of their products. Notably, SFPQ protects the oncogenic miR-17∼92 polycistron from degradation by the nuclear exosome targeting (NEXT)-exosome complex and is tightly linked with its overexpression across a broad variety of cancers. Our findings reveal a dual role for SFPQ in regulating miRNA HG transcription and stability, as well as its significance in cancers.
Collapse
Affiliation(s)
- Caroline Thivierge
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Maxime Bellefeuille
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Sarah-Slim Diwan
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Boris J A Dyakov
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Rania Leventis
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Gabrielle Perron
- McGill Genome Centre & Department of Human Genetics, McGill University, Montréal, QC H3A 0G1, Canada
| | - Hamed S Najafabadi
- McGill Genome Centre & Department of Human Genetics, McGill University, Montréal, QC H3A 0G1, Canada
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Thomas F Duchaine
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
8
|
McJunkin K, Gottesman S. What goes up must come down: off switches for regulatory RNAs. Genes Dev 2024; 38:597-613. [PMID: 39111824 PMCID: PMC11368247 DOI: 10.1101/gad.351934.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.
Collapse
Affiliation(s)
- Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, Maryland 20892, USA;
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
9
|
Ahmad MA, Ghaleb SS, Zaki AR, Kamel AO, Eid A. The role of miRNA-21 and hypoxia inducible factor-1 in predicting post mortem interval in cardiac muscles of aluminum phosphide deaths. J Forensic Leg Med 2024; 106:102726. [PMID: 39094352 DOI: 10.1016/j.jflm.2024.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The assessment of the postmortem interval (PMI) represents one of the major challenges in forensic pathology. Because of their stability, microRNAs, or miRNAs, are anticipated to be helpful in forensic research. OBJECTIVE To see if estimation of PMI is possible using miRNA-21 and Hypoxia-inducible factor-1α (HIF-1α) expression levels in the heart samples from aluminum phosphide toxicity (Alpt). METHODS This was a cross sectional study on 60 post-mortem samples (heart tissues) collected at different intervals during forensic autopsies. The two groups were allocated equally according to the cause of death into Group I (non-toxicated deaths, n = 30): Deaths caused by other than toxicity, and Group II (toxicated deaths, n = 30): Deaths due to Alpt. MDA (Malondialdehyde) and GSH (Glutathione), were measured in heart tissues using ELIZA. MiRNA- 21and HIF-1α expression levels were measured in heart tissues at different PMI using RT-Q PCR. ROC curve for detection of toxicated deaths using miRNA-21 and HIF was carried out. RESULTS miRNA-21 and HIF-1α expression levels in Alp deaths were up regulated while GSH was downregulated with statistically significant difference. There was positive correlation between miRNA-21, HIF-1α and MDA with PMI while there was negative correlation between GSH and PMI in Alp deaths. In prediction of post mortem interval in Alp deaths miRNA-21 sensitivity and specificity were (75.9 %, 51.7 %, respectively) while HIF-1α sensitivity and specificity were 100 %. CONCLUSION PMI can be calculated using the degree to which particular miRNA-21 and HIF-1α are expressed in the heart tissue. The combination of miRNA-21 with HIF-1α in post mortem estimation is precious indicators.
Collapse
Affiliation(s)
- Manar A Ahmad
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Sherien S Ghaleb
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Cairo, 11511, Egypt
| | - Amr R Zaki
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Abeer O Kamel
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, 65211, Egypt.
| | - Amir Eid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, 65211, Egypt
| |
Collapse
|
10
|
Morgunova A, Teixeira M, Flores C. Perspective on adolescent psychiatric illness and emerging role of microRNAs as biomarkers of risk. J Psychiatry Neurosci 2024; 49:E282-E288. [PMID: 39209460 PMCID: PMC11374446 DOI: 10.1503/jpn.240072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Alice Morgunova
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| | - Maxime Teixeira
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| | - Cecilia Flores
- From the Douglas Mental Health University Institute, Montreal, Que. (Morgunova, Flores); the Department of Psychiatry, McGill University, Montreal, Que. (Morgunova, Flores); the Integrated Program in Neuroscience, McGill University, Montreal, Que. (Teixeira); the Department of Neurology and Neurosurgery, McGill University, Montreal, Que. (Flores); the Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Que. (Flores)
| |
Collapse
|
11
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
12
|
Daniel Thomas S, Vijayakumar K, John L, Krishnan D, Rehman N, Revikumar A, Kandel Codi JA, Prasad TSK, S S V, Raju R. Machine Learning Strategies in MicroRNA Research: Bridging Genome to Phenome. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:213-233. [PMID: 38752932 DOI: 10.1089/omi.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
MicroRNAs (miRNAs) have emerged as a prominent layer of regulation of gene expression. This article offers the salient and current aspects of machine learning (ML) tools and approaches from genome to phenome in miRNA research. First, we underline that the complexity in the analysis of miRNA function ranges from their modes of biogenesis to the target diversity in diverse biological conditions. Therefore, it is imperative to first ascertain the miRNA coding potential of genomes and understand the regulatory mechanisms of their expression. This knowledge enables the efficient classification of miRNA precursors and the identification of their mature forms and respective target genes. Second, and because one miRNA can target multiple mRNAs and vice versa, another challenge is the assessment of the miRNA-mRNA target interaction network. Furthermore, long-noncoding RNA (lncRNA)and circular RNAs (circRNAs) also contribute to this complexity. ML has been used to tackle these challenges at the high-dimensional data level. The present expert review covers more than 100 tools adopting various ML approaches pertaining to, for example, (1) miRNA promoter prediction, (2) precursor classification, (3) mature miRNA prediction, (4) miRNA target prediction, (5) miRNA- lncRNA and miRNA-circRNA interactions, (6) miRNA-mRNA expression profiling, (7) miRNA regulatory module detection, (8) miRNA-disease association, and (9) miRNA essentiality prediction. Taken together, we unpack, critically examine, and highlight the cutting-edge synergy of ML approaches and miRNA research so as to develop a dynamic and microlevel understanding of human health and diseases.
Collapse
Affiliation(s)
- Sonet Daniel Thomas
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Krithika Vijayakumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Deepak Krishnan
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Thiruvananthapuram, Kerala, India
| | - Jalaluddin Akbar Kandel Codi
- Department of Surgical Oncology, Yenepoya Medical College, Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| | | | - Vinodchandra S S
- Department of Computer Science, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
- Centre for Systems Biology and Molecular Medicine (CSBMM), Yenepoya (Deemed to Be University), Manglore, Karnataka, India
| |
Collapse
|
13
|
Bhadra M, Sachan M, Nara S. Current strategies for early epithelial ovarian cancer detection using miRNA as a potential tool. Front Mol Biosci 2024; 11:1361601. [PMID: 38690293 PMCID: PMC11058280 DOI: 10.3389/fmolb.2024.1361601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Ovarian cancer is one of the most aggressive and significant malignant tumor forms in the female reproductive system. It is the leading cause of death among gynecological cancers owing to its metastasis. Since its preliminary disease symptoms are lacking, it is imperative to develop early diagnostic biomarkers to aid in treatment optimization and personalization. In this vein, microRNAs, which are short sequence non-coding molecules, displayed great potential as highly specific and sensitive biomarker. miRNAs have been extensively advocated and proven to serve an instrumental part in the clinical management of cancer, especially ovarian cancer, by promoting the cancer cell progression, invasion, delayed apoptosis, epithelial-mesenchymal transition, metastasis of cancer cells, chemosensitivity and resistance and disease therapy. Here, we cover our present comprehension of the most up-to-date microRNA-based approaches to detect ovarian cancer, as well as current diagnostic and treatment strategies, the role of microRNAs as oncogenes or tumor suppressor genes, and their significance in ovarian cancer progression, prognosis, and therapy.
Collapse
|
14
|
Hiers NM, Li T, Traugot CM, Xie M. Target-directed microRNA degradation: Mechanisms, significance, and functional implications. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1832. [PMID: 38448799 PMCID: PMC11098282 DOI: 10.1002/wrna.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a fundamental role in enabling miRNA-mediated target repression, a post-transcriptional gene regulatory mechanism preserved across metazoans. Loss of certain animal miRNA genes can lead to developmental abnormalities, disease, and various degrees of embryonic lethality. These short RNAs normally guide Argonaute (AGO) proteins to target RNAs, which are in turn translationally repressed and destabilized, silencing the target to fine-tune gene expression and maintain cellular homeostasis. Delineating miRNA-mediated target decay has been thoroughly examined in thousands of studies, yet despite these exhaustive studies, comparatively less is known about how and why miRNAs are directed for decay. Several key observations over the years have noted instances of rapid miRNA turnover, suggesting endogenous means for animals to induce miRNA degradation. Recently, it was revealed that certain targets, so-called target-directed miRNA degradation (TDMD) triggers, can "trigger" miRNA decay through inducing proteolysis of AGO and thereby the bound miRNA. This process is mediated in animals via the ZSWIM8 ubiquitin ligase complex, which is recruited to AGO during engagement with triggers. Since its discovery, several studies have identified that ZSWIM8 and TDMD are indispensable for proper animal development. Given the rapid expansion of this field of study, here, we summarize the key findings that have led to and followed the discovery of ZSWIM8-dependent TDMD. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Conner M Traugot
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, College of Medicine, UF Health Cancer Center, UF Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
15
|
Buhagiar AF, Kleaveland B. To kill a microRNA: emerging concepts in target-directed microRNA degradation. Nucleic Acids Res 2024; 52:1558-1574. [PMID: 38224449 PMCID: PMC10899785 DOI: 10.1093/nar/gkae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
MicroRNAs (miRNAs) guide Argonaute (AGO) proteins to bind mRNA targets. Although most targets are destabilized by miRNA-AGO binding, some targets induce degradation of the miRNA instead. These special targets are also referred to as trigger RNAs. All triggers identified thus far have binding sites with greater complementarity to the miRNA than typical target sites. Target-directed miRNA degradation (TDMD) occurs when trigger RNAs bind the miRNA-AGO complex and recruit the ZSWIM8 E3 ubiquitin ligase, leading to AGO ubiquitination and proteolysis and subsequent miRNA destruction. More than 100 different miRNAs are regulated by ZSWIM8 in bilaterian animals, and hundreds of trigger RNAs have been predicted computationally. Disruption of individual trigger RNAs or ZSWIM8 has uncovered important developmental and physiologic roles for TDMD across a variety of model organisms and cell types. In this review, we highlight recent progress in understanding the mechanistic basis and functions of TDMD, describe common features of trigger RNAs, outline best practices for validating trigger RNAs, and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Amber F Buhagiar
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| | - Benjamin Kleaveland
- Department of Pathology and Lab Medicine, Weill Cornell Medicine, New York, NY10065, USA
| |
Collapse
|
16
|
Bernard EIM, Towler BP, Rogoyski OM, Newbury SF. Characterisation of the in-vivo miRNA landscape in Drosophila ribonuclease mutants reveals Pacman-mediated regulation of the highly conserved let-7 cluster during apoptotic processes. Front Genet 2024; 15:1272689. [PMID: 38444757 PMCID: PMC10912645 DOI: 10.3389/fgene.2024.1272689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
The control of gene expression is a fundamental process essential for correct development and to maintain homeostasis. Many post-transcriptional mechanisms exist to maintain the correct levels of each RNA transcript within the cell. Controlled and targeted cytoplasmic RNA degradation is one such mechanism with the 5'-3' exoribonuclease Pacman (XRN1) and the 3'-5' exoribonuclease Dis3L2 playing crucial roles. Loss of function mutations in either Pacman or Dis3L2 have been demonstrated to result in distinct phenotypes, and both have been implicated in human disease. One mechanism by which gene expression is controlled is through the function of miRNAs which have been shown to be crucial for the control of almost all cellular processes. Although the biogenesis and mechanisms of action of miRNAs have been comprehensively studied, the mechanisms regulating their own turnover are not well understood. Here we characterise the miRNA landscape in a natural developing tissue, the Drosophila melanogaster wing imaginal disc, and assess the importance of Pacman and Dis3L2 on the abundance of miRNAs. We reveal a complex landscape of miRNA expression and show that whilst a null mutation in dis3L2 has a minimal effect on the miRNA expression profile, loss of Pacman has a profound effect with a third of all detected miRNAs demonstrating Pacman sensitivity. We also reveal a role for Pacman in regulating the highly conserved let-7 cluster (containing miR-100, let-7 and miR-125) and present a genetic model outlining a positive feedback loop regulated by Pacman which enhances our understanding of the apoptotic phenotype observed in Pacman mutants.
Collapse
Affiliation(s)
- Elisa I. M. Bernard
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Oliver M. Rogoyski
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
17
|
Khan FA, Fang N, Zhang W, Ji S. The multifaceted role of Fragile X-Related Protein 1 (FXR1) in cellular processes: an updated review on cancer and clinical applications. Cell Death Dis 2024; 15:72. [PMID: 38238286 PMCID: PMC10796922 DOI: 10.1038/s41419-023-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
RNA-binding proteins (RBPs) modulate the expression level of several target RNAs (such as mRNAs) post-transcriptionally through interactions with unique binding sites in the 3'-untranslated region. There is mounting information that suggests RBP dysregulation plays a significant role in carcinogenesis. However, the function of FMR1 autosomal homolog 1(FXR1) in malignancies is just beginning to be unveiled. Due to the diversity of their RNA-binding domains and functional adaptability, FXR1 can regulate diverse transcript processing. Changes in FXR1 interaction with RNA networks have been linked to the emergence of cancer, although the theoretical framework defining these alterations in interaction is insufficient. Alteration in FXR1 expression or localization has been linked to the mRNAs of cancer suppressor genes, cancer-causing genes, and genes involved in genomic expression stability. In particular, FXR1-mediated gene regulation involves in several cellular phenomena related to cancer growth, metastasis, epithelial-mesenchymal transition, senescence, apoptosis, and angiogenesis. FXR1 dysregulation has been implicated in diverse cancer types, suggesting its diagnostic and therapeutic potential. However, the molecular mechanisms and biological effects of FXR1 regulation in cancer have yet to be understood. This review highlights the current knowledge of FXR1 expression and function in various cancer situations, emphasizing its functional variety and complexity. We further address the challenges and opportunities of targeting FXR1 for cancer diagnosis and treatment and propose future directions for FXR1 research in oncology. This work intends to provide an in-depth review of FXR1 as an emerging oncotarget with multiple roles and implications in cancer biology and therapy.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Na Fang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Weijuan Zhang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Shaoping Ji
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
- Zhengzhou Shuqing Medical College, Zhengzhou, China.
| |
Collapse
|
18
|
Berti FCB, Tofolo MV, Nunes-Souza E, Marchi R, Okano LM, Ruthes M, Rosolen D, Malheiros D, Fonseca AS, Cavalli LR. Extracellular vesicles-associated miRNAs in triple-negative breast cancer: from tumor biology to clinical relevance. Life Sci 2024; 336:122332. [PMID: 38070862 DOI: 10.1016/j.lfs.2023.122332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Breast cancer (BC), a heterogeneous group of diseases, is the most frequent type and the leading cause of cancer-related death among women worldwide. Tumor heterogeneity directly impacts cancer progression and treatment, as evidenced by the patients´ diverse prognosis and treatment responses across the distinct molecular subtypes. Triple-negative breast cancer (TNBC), which accounts for 10-20% of all diagnosed BC cases, is an aggressive BC subtype with a challenging prognosis. Current treatment options include systemic chemotherapy and/or target therapies based on PARP and PD-L1 inhibitors for eligible patients. MicroRNAs (miRNAs) are important regulatory non-coding RNAs (ncRNAs) in TNBC tumorigenesis. These molecules are present both intracellularly and released into biofluids, packaged into extracellular vesicles (EVs). Emerging evidence indicates that EVs-associated miRNAs (EVs-miRNAs), transferred from parental to recipient cells, are key mediators of cell-to-cell communication. Considering their stability and abundance in several biofluids, these molecules may reflect the epigenomic composition of their tumors of origin and contribute to mediate tumorigenesis, similar to their intracellular counterparts. This review provides the current knowledge on EVs-miRNAs in the TNBC subtype, focusing on their role in regulating mRNA targets involved in tumor phenotypes and their clinical relevance as promising biomarkers in liquid biopsies.
Collapse
Affiliation(s)
| | - Maria Vitoria Tofolo
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Rafael Marchi
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Larissa Miyuki Okano
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Mayara Ruthes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Daiane Rosolen
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Danielle Malheiros
- Department of Genetics, Universidade Federal do Paraná, Curitiba 80060-000, Brazil.
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil.
| | - Luciane Regina Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, Brazil; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.
| |
Collapse
|
19
|
Chandra J, Molugulu N, Annadurai S, Wahab S, Karwasra R, Singh S, Shukla R, Kesharwani P. Hyaluronic acid-functionalized lipoplexes and polyplexes as emerging nanocarriers for receptor-targeted cancer therapy. ENVIRONMENTAL RESEARCH 2023; 233:116506. [PMID: 37369307 DOI: 10.1016/j.envres.2023.116506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Cancer is an intricate disease that develops as a response to a combination of hereditary and environmental risk factors, which then result in a variety of changes to the genome. The cluster of differentiation (CD44) is a type of transmembrane glycoprotein that serves as a potential biomarker for cancer stem cells (CSC) and viable targets for therapeutic intervention in the context of cancer therapy. Hyaluronic acid (HA) is a linear polysaccharide that exhibits a notable affinity for the CD44 receptor. This characteristic renders it a promising candidate for therapeutic interventions aimed at selectively targeting CD44-positive cancer cells. Treating cancer via non-viral vector-based gene delivery has changed the notion of curing illness through the incorporation of therapeutic genes into the organism. The objective of this review is to provide an overview of various hyaluronic acid-modified lipoplexes and polyplexes as potential drug delivery methods for specific forms of cancer by effectively targeting CD44.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nagashekhara Molugulu
- School of Pharmacy, Monash University, Bandar Sunway, Jalan Lagoon Selatan, 47500, Malaysia
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Government of India, Janakpuri, New Delhi 110058, India
| | - Surender Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
20
|
Chin DD, Patel N, Lee W, Kanaya S, Cook J, Chung EJ. Long-term, in vivo therapeutic effects of a single dose of miR-145 micelles for atherosclerosis. Bioact Mater 2023; 27:327-336. [PMID: 37122900 PMCID: PMC10140752 DOI: 10.1016/j.bioactmat.2023.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the build-up of lipid-rich plaques in the arterial walls. The standard treatment for patients with atherosclerosis is statin therapy aimed to lower serum lipid levels. Despite its widespread use, many patients taking statins continue to experience acute events. Thus, to develop improved and alternative therapies, we previously reported on microRNA-145 (miR-145 micelles) and its ability to inhibit atherosclerosis by targeting vascular smooth muscle cells (VSMCs). Importantly, one dose of miR-145 micelles significantly abrogated disease progression when evaluated two weeks post-administration. Thus, in this study, to evaluate how long the sustained effects of miR-145 micelles can be maintained and towards identifying a dosing regimen that is practical for patients with chronic disease, the therapeutic effects of a single dose of miR-145 micelles were evaluated for up to two months in vivo. After one and two months post-treatment, miR-145 micelles were found to reduce plaque size and overall lesion area compared to all other controls including statins without causing adverse effects. Furthermore, a single dose of miR-145 micelle treatment inhibited VSMC transdifferentiation into pathogenic macrophage-like and osteogenic cells in plaques. Together, our data shows the long-term efficacy and sustained effects of miR-145 micelles that is amenable using a dosing frequency relevant to chronic disease patients.
Collapse
Affiliation(s)
- Deborah D. Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Neil Patel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Woori Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Sonali Kanaya
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Jackson Cook
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| |
Collapse
|
21
|
Jones BT, Han J, Zhang H, Hammer RE, Evers BM, Rakheja D, Acharya A, Mendell JT. Target-directed microRNA degradation regulates developmental microRNA expression and embryonic growth in mammals. Genes Dev 2023; 37:661-674. [PMID: 37553261 PMCID: PMC10499020 DOI: 10.1101/gad.350906.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8, which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in the heart and lungs, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in cotranscribed clusters and examples in which TDMD underlies "arm switching," a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8-null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.
Collapse
Affiliation(s)
- Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
22
|
Jones BT, Han J, Zhang H, Hammer RE, Evers BM, Rakheja D, Acharya A, Mendell JT. Target-directed microRNA degradation regulates developmental microRNA expression and embryonic growth in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546601. [PMID: 37425885 PMCID: PMC10327180 DOI: 10.1101/2023.06.26.546601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression that play critical roles in development and disease. Target-directed miRNA degradation (TDMD), a pathway in which miRNAs that bind to specialized targets with extensive complementarity are rapidly decayed, has emerged as a potent mechanism of controlling miRNA levels. Nevertheless, the biological role and scope of miRNA regulation by TDMD in mammals remains poorly understood. To address these questions, we generated mice with constitutive or conditional deletion of Zswim8 , which encodes an essential TDMD factor. Loss of Zswim8 resulted in developmental defects in heart and lung, growth restriction, and perinatal lethality. Small RNA sequencing of embryonic tissues revealed widespread miRNA regulation by TDMD and greatly expanded the known catalog of miRNAs regulated by this pathway. These experiments also uncovered novel features of TDMD-regulated miRNAs, including their enrichment in co-transcribed clusters and examples in which TDMD underlies 'arm switching', a phenomenon wherein the dominant strand of a miRNA precursor changes in different tissues or conditions. Importantly, deletion of two miRNAs, miR-322 and miR-503, rescued growth of Zswim8 null embryos, directly implicating the TDMD pathway as a regulator of mammalian body size. These data illuminate the broad landscape and developmental role of TDMD in mammals.
Collapse
Affiliation(s)
- Benjamin T Jones
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bret M. Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Atic AI, Thiele M, Munk A, Dalgaard LT. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2023; 324:C588-C602. [PMID: 36645666 DOI: 10.1152/ajpcell.00253.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are secreted from cells as either protein-bound or enclosed in extracellular vesicles. Circulating liver-derived miRNAs are modifiable by weight-loss or insulin-sensitizing treatments, indicating that they could be important biomarker candidates for diagnosis, monitoring, and prognosis in nonalcoholic liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Unfortunately, the noninvasive diagnosis of NASH and fibrosis remains a key challenge, which limits case finding. Current diagnostic guidelines, therefore, recommend liver biopsies, with risks of pain and bleeding for the patient and substantial healthcare costs. Here, we summarize mechanisms of RNA secretion and review circulating RNAs associated with NAFLD and NASH for their biomarker potential. Few circulating miRNAs are consistently associated with NAFLD/NASH: miR-122, miR-21, miR-34a, miR-192, miR-193, and the miR-17-92 miRNA-cluster. The hepatocyte-enriched miRNA-122 is consistently increased in NAFLD and NASH but decreased in liver cirrhosis. Circulating miR-34a, part of an existing diagnostic algorithm for NAFLD, and miR-21 are consistently increased in NAFLD and NASH. MiR-192 appears to be prominently upregulated in NASH compared with NAFDL, whereas miR-193 was reported to distinguish NASH from fibrosis. Various members of miRNA cluster miR-17-92 are reported to be associated with NAFLD and NASH, although with less consistency. Several other circulating miRNAs have been reported to be associated with fatty liver in a few studies, indicating the existence of more circulating miRNAs with relevant as diagnostic markers for NAFLD or NASH. Thus, circulating miRNAs show potential as biomarkers of fatty liver disease, but more information about phenotype specificity and longitudinal regulation is needed.
Collapse
Affiliation(s)
- Amila Iriskic Atic
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Novo Nordisk A/S, Obesity Research, Måløv, Denmark
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, Center for Liver Research, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
24
|
Han J, Mendell JT. MicroRNA turnover: a tale of tailing, trimming, and targets. Trends Biochem Sci 2023; 48:26-39. [PMID: 35811249 PMCID: PMC9789169 DOI: 10.1016/j.tibs.2022.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) post-transcriptionally repress gene expression by guiding Argonaute (AGO) proteins to target mRNAs. While much is known about the regulation of miRNA biogenesis, miRNA degradation pathways are comparatively poorly understood. Although miRNAs generally exhibit slow turnover, they can be rapidly degraded through regulated mechanisms that act in a context- or sequence-specific manner. Recent work has revealed a particularly important role for specialized target interactions in controlling rates of miRNA degradation. Engagement of these targets is associated with the addition and removal of nucleotides from the 3' ends of miRNAs, a process known as tailing and trimming. Here we review these mechanisms of miRNA modification and turnover, highlighting the contexts in which they impact miRNA stability and discussing important questions that remain unanswered.
Collapse
Affiliation(s)
- Jaeil Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
25
|
Distefano R, Tomasello L, Rampioni Vinciguerra GL, Gasparini P, Xiang Y, Bagnoli M, Marceca GP, Fadda P, Laganà A, Acunzo M, Ma Q, Nigita G, Croce CM. Pan-Cancer Analysis of Canonical and Modified miRNAs Enhances the Resolution of the Functional miRNAome in Cancer. Cancer Res 2022; 82:3687-3700. [PMID: 36040379 PMCID: PMC9574374 DOI: 10.1158/0008-5472.can-22-0240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
UNLABELLED Epitranscriptomic studies of miRNAs have added a new layer of complexity to the cancer field. Although there is fast-growing interest in adenosine-to-inosine (A-to-I) miRNA editing and alternative cleavage that shifts miRNA isoforms, simultaneous evaluation of both modifications in cancer is still missing. Here, we concurrently profiled multiple miRNA modification types, including A-to-I miRNA editing and shifted miRNA isoforms, in >13,000 adult and pediatric tumor samples across 38 distinct cancer cohorts from The Cancer Genome Atlas and The Therapeutically Applicable Research to Generate Effective Treatments data sets. The differences between canonical miRNAs and the wider miRNAome in terms of expression, clustering, dysregulation, and prognostic standpoint were investigated. The combination of canonical miRNAs and modified miRNAs boosted the quality of clustering results, outlining unique clinicopathologic features among cohorts. Certain modified miRNAs showed opposite expression from their canonical counterparts in cancer, potentially impacting their targets and function. Finally, a shifted and edited miRNA isoform was experimentally validated to directly bind and suppress a unique target. These findings outline the importance of going beyond the well-established paradigm of one mature miRNA per miRNA arm to elucidate novel mechanisms related to cancer progression. SIGNIFICANCE Modified miRNAs may act as cancer biomarkers and function as allies or antagonists of their canonical counterparts in gene regulation, suggesting the concurrent consideration of canonical and modified miRNAs can boost patient stratification.
Collapse
Affiliation(s)
- Rosario Distefano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Luisa Tomasello
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome “Sapienza,” Santo Andrea Hospital, Rome, Italy
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Yujia Xiang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Marina Bagnoli
- Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Gioacchino P. Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Alessandro Laganà
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mario Acunzo
- Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
26
|
Li H, Gavis ER. Drosophila FMRP controls miR-276-mediated regulation of nejire mRNA for space-filling dendrite development. G3 GENES|GENOMES|GENETICS 2022; 12:6697885. [PMID: 36102801 PMCID: PMC9635640 DOI: 10.1093/g3journal/jkac239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
MicroRNAs are enriched in neurons and play important roles in dendritic spine development and synaptic plasticity. MicroRNA activity is controlled by a wide range of RNA-binding proteins. FMRP, a highly conserved RNA-binding protein, has been linked to microRNA-mediated gene regulation in axonal development and dendritic spine formation. FMRP also participates in dendritic arbor morphogenesis, but whether and how microRNAs contribute to its function in this process remains to be elucidated. Here, using Drosophila larval sensory neurons, we show that a FMRP-associated microRNA, miR-276, functions in FMRP-mediated space-filling dendrite morphogenesis. Using EGFP microRNA sensors, we demonstrate that FMRP likely acts by regulating miR-276a RNA targeting rather than by modulating microRNA levels. Supporting this conclusion, miR-276a coimmunoprecipitated with FMRP and this association was dependent on the FMRP KH domains. By testing putative targets of the FMRP–miR-276a regulatory axis, we identified nejire as a FMRP-associated mRNA and, using EGFP reporters, showed that the nejire 3′ untranslated region is a target of miR-276a in vivo. Genetic analysis places nejire downstream of the FMRP–miR-276a pathway in regulating dendrite patterning. Together, our findings support a model in which FMRP facilitates miR-276a-mediated control of nejire for proper dendrite space-filling morphology and shed light on microRNA-dependent dendrite developmental pathology of fragile X syndrome.
Collapse
Affiliation(s)
- Hui Li
- Department of Molecular Biology, Princeton University , Princeton, NJ 08544, USA
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University , Princeton, NJ 08544, USA
| |
Collapse
|
27
|
Hua X, Xiang D, Guo M, Qian X, Chen R, Li T, Tian Z, Xu J, Huang C, Xie Q, Huang C. Induction of RAC1 protein translation and MKK7/JNK-dependent autophagy through dicer/miR-145/SOX2/miR-365a axis contributes to isorhapontigenin (ISO) inhibition of human bladder cancer invasion. Cell Death Dis 2022; 13:753. [PMID: 36045117 PMCID: PMC9433410 DOI: 10.1038/s41419-022-05205-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Although our previous studies have identified that isorhapontigenin (ISO) is able to initiate autophagy in human bladder cancer (BC) cells by activating JNK/C-Jun/SESN2 axis and possesses an inhibitory effect on BC cell growth, association of autophagy directly with inhibition of BC invasion has never been explored. Also, upstream cascade responsible for ISO activating JNK remains unknown. Thus, we explored both important questions in the current study and discovered that ISO treatment initiated RAC1 protein translation, and its downstream kinase MKK7/JNK phosphorylation/activation, and in turn promoted autophagic responses in human BC cells. Inhibition of autophagy abolished ISO inhibition of BC invasion, revealing that autophagy inhibition was crucial for ISO inhibition of BC invasion. Consistently, knockout of RAC1 also attenuated induction of autophagy and inhibition of BC invasion by ISO treatment. Mechanistic studies showed that upregulation of RAC1 translation was due to ISO inhibition of miR-365a transcription, which reduced miR-365a binding to the 3'-UTR of RAC1 mRNA. Further study indicated that inhibition of miR-365a transcription was caused by downregulation of its transcription factor SOX2, while ISO-promoted Dicer protein translation increased miR-145 maturation, and consequently downregulating SOX2 expression. These findings not only provide a novel insight into the understanding association of autophagy induction with BC invasion inhibition by ISO, but also identify an upstream regulatory cascade, Dicer/miR145/SOX2/miR365a/RAC1, leading to MKK7/JNKs activation and autophagy induction.
Collapse
Affiliation(s)
- Xiaohui Hua
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China ,grid.186775.a0000 0000 9490 772XDepartment of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032 China
| | - Daimin Xiang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Mengxin Guo
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xiaohui Qian
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Ruifan Chen
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Tengda Li
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Zhongxian Tian
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jiheng Xu
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Chao Huang
- grid.33199.310000 0004 0368 7223Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Qipeng Xie
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Chuanshu Huang
- grid.268099.c0000 0001 0348 3990Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| |
Collapse
|
28
|
Potential therapeutic applications of microRNAs in cancer diagnosis and treatment: Sharpening a double-edged sword? Eur J Pharmacol 2022; 932:175210. [PMID: 35981607 DOI: 10.1016/j.ejphar.2022.175210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer is a leading cause of increased morbidity and mortality worldwide despite advancements in diagnosis and treatment. Lack of early detection and diagnosis of different cancers and adverse effects and toxicity associated with conventional cancer treatments, such as chemotherapy and radiation, remains a problem. MicroRNAs can act as oncogenes or tumour suppressors in different types of cancers. Their distinct gene expression in various stages and types of cancerous cells make them attractive targets for cancer diagnosis and therapy. The growing research and clinical interests in gene therapy and nano-drug delivery systems have led to the development of potential miRNA-targeted treatments encompassing miRNA mimics, antagonists, and their use in cancer chemotherapy sensitization. In this review, we discuss the recent advancements in understanding the role of miRNAs in cancer development and their potential use as biomarkers in clinical diagnostics and as targets in chemotherapy of cancer.
Collapse
|
29
|
Donnelly BF, Yang B, Grimme AL, Vieux KF, Liu CY, Zhou L, McJunkin K. The developmentally timed decay of an essential microRNA family is seed-sequence dependent. Cell Rep 2022; 40:111154. [PMID: 35947946 PMCID: PMC9413084 DOI: 10.1016/j.celrep.2022.111154] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/04/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) abundance is tightly controlled by regulation of biogenesis and decay. Here, we show that the mir-35 miRNA family undergoes selective decay at the transition from embryonic to larval development in C. elegans. The seed sequence of the miRNA is necessary and largely sufficient for this regulation. Sequences outside the seed (3' end) regulate mir-35 abundance in the embryo but are not necessary for sharp decay at the transition to larval development. Enzymatic modifications of the miRNA 3' end are neither prevalent nor correlated with changes in decay, suggesting that miRNA 3' end display is not a core feature of this mechanism and further supporting a seed-driven decay model. Our findings demonstrate that seed-sequence-specific decay can selectively and coherently regulate all redundant members of a miRNA seed family, a class of mechanism that has great biological and therapeutic potential for dynamic regulation of a miRNA family's target repertoire.
Collapse
Affiliation(s)
- Bridget F Donnelly
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Karl-Frédéric Vieux
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Chen-Yu Liu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Balaratnam S, Hoque ME, West N, Basu S. Decay of Piwi-Interacting RNAs in Human Cells Is Primarily Mediated by 5' to 3' Exoribonucleases. ACS Chem Biol 2022; 17:1723-1732. [PMID: 35687865 DOI: 10.1021/acschembio.2c00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a group of small noncoding RNA molecules that regulate the activity of transposons and control gene expression. The cellular concentration of RNAs is generally maintained by their rates of biogenesis and degradation. Although the biogenesis pathways of piRNAs have been well defined, their degradation mechanism is still unknown. Here, we show that degradation of human piRNAs is mostly dependent on the 5'-3' exoribonuclease pathway. The presence of 3'-end 2'-O-methylation in piRNAs significantly reduced their degradation through the exosome-mediated decay pathway. The accumulation of piRNAs in XRN1 and XRN2 exoribonuclease-depleted cells further supports the 5'-3' exoribonuclease-mediated decay of piRNAs. Moreover, formation of stable secondary structures in piRNAs slows the rate of XRN1-mediated degradation. Our findings establish a framework for the piRNA degradation mechanism in cells and thus provide crucial information about how the basal level concentration of piRNAs is maintained in cells.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States.,Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mohammed Enamul Hoque
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
31
|
Fernandez-Diaz D, Rodriguez-Vidal C, Silva-Rodríguez P, Paniagua L, Blanco-Teijeiro MJ, Pardo M, Piñeiro A, Bande M. Applications of Non-Coding RNAs in Patients With Retinoblastoma. Front Genet 2022; 13:842509. [PMID: 35432447 PMCID: PMC9008704 DOI: 10.3389/fgene.2022.842509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma (RB) is the most common primary intraocular malignancy in childhood. In the carcinogenic process of neoplasms such as RB, the role of non-coding RNAs (ncRNAs) has been widely demonstrated recently. In this review, we aim to provide a clinical overview of the current knowledge regarding ncRNAs in relation to RB. Although ncRNAs are now considered as potential diagnostic biomarkers, prognostic factors, and therapeutic targets, further studies will facilitate enhanced understanding of ncRNAs in RB physiopathology and define the roles ncRNAs can play in clinical practice.
Collapse
Affiliation(s)
- Daniel Fernandez-Diaz
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Paula Silva-Rodríguez
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, Santiago de Compostela, Spain
| | - Laura Paniagua
- Department of Ophthalmology, University Hospital of Coruña, A Coruña, Spain
| | - María José Blanco-Teijeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - María Pardo
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Antonio Piñeiro
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Manuel Bande
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- *Correspondence: Manuel Bande,
| |
Collapse
|
32
|
Weng C, Dong H, Bai R, Sheng J, Chen G, Ding K, Lin W, Chen J, Xu Z. Angiogenin promotes angiogenesis via the endonucleolytic decay of miR-141 in colorectal cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 27:1010-1022. [PMID: 35228896 PMCID: PMC8844805 DOI: 10.1016/j.omtn.2022.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022]
Abstract
Mature microRNA (miRNA) decay is a key step in miRNA turnover and gene expression regulation. Angiogenin (ANG), the first human tumor-derived angiogenic protein and also a member of the RNase A superfamily, can promote tumor growth and metastasis by regulating rRNA biogenesis and tiRNA production. However, its effect on miRNA has not been explored. In this study, we find that ANG exclusively downregulates mature miR-141 in human umbilical endothelial cells (HUVECs) via its ribonuclease activity and preferably cleaves single-stranded miR-141 at the A5/C6, U7/G8, and U14/A15 sites via endonucleolytic digestion. By downregulating miR-141, ANG promotes HUVECs proliferation, migration, tube formation, and angiogenesis both in vitro and in vivo. Conversely, downregulated ANG inhibits ANG-mediated miR-141 decay, thus decreasing the angiogenesis process of HUVECs. We also find an inverse correlation between ANG and miR-141 expression in colorectal cancer (CRC) tissues. Our study indicates that ANG regulates CRC progression by disrupting miR-141 and its regulation on angiogenesis-related target genes, not only revealing a new mechanism of ANG action but also newly identifying miR-141 as a substrate of ANG. This study suggests that targeting ANG nuclease activity might be valuable in treating angiogenesis-related diseases through coordinately regulating the metabolism of rRNA, tiRNA, and miRNA.
Collapse
|
33
|
Extracellular vesicle microRNAs in celiac disease patients under a gluten-free diet, and in lactose intolerant individuals. BBA ADVANCES 2022; 2:100053. [PMID: 37082606 PMCID: PMC10074944 DOI: 10.1016/j.bbadva.2022.100053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder triggered by an abnormal immunological response to gluten ingestion and is associated with deregulated expression of cellular microRNAs (miRNAs) of the gut mucosa. It is frequently misdiagnosed as lactose intolerance (LI) due to symptom resemblance. Microvilli loss may be counteracted by a rigorous gluten-free diet (GFD). AIMS To identify altered extracellular vesicle miRNAs from plasma among CD patients on GFD (n=34), lactose intolerant individuals on restrictive diet (n=14) and controls (n=23), and to predict biological pathways in which these altered miRNAs may play a part. METHODS Five different small RNA samples of each group were pooled twice and then screened by new-generation sequencing. Four miRNAs were selected to be quantified by RT-qPCR in the entire sample. RESULTS The levels of four miRNAs - miR-99b-3p, miR-197-3p, miR-223-3p, and miR-374b-5p - differed between CD patients and controls (P<0.05). Apart from miR-223-3p, all these miRNAs tended to have altered levels also between LI and controls (P<0.10). The results for miR-99b-3p and miR-197-3p between CD and controls were confirmed by RT-qPCR, which also indicated different levels of miR-99b-3p and miR-374b-5p between CD-associated LI and LI (P<0.05). CONCLUSIONS These miRNAs may have targets that affect cell death, cell communication, adhesion, and inflammation modulation pathways. Hence, altered miRNA levels could be associated with CD-related aspects and gut mucosa recovery.
Collapse
|
34
|
Wang C, Xue M, Wu P, Wang H, Liu Z, Wu G, Liu P, Wang K, Xu W, Feng L. Coronavirus transmissible gastroenteritis virus antagonizes the antiviral effect of the microRNA miR-27b via the IRE1 pathway. SCIENCE CHINA. LIFE SCIENCES 2021; 65:1413-1429. [PMID: 34826094 PMCID: PMC8617553 DOI: 10.1007/s11427-021-1967-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022]
Abstract
Although the functional parameters of microRNAs (miRNAs) have been explored to some extent, the roles of these molecules in coronavirus infection and the regulatory mechanism of miRNAs in virus infection are still unclear. Transmissible gastroenteritis virus (TGEV) is an enteropathgenic coronavirus and causes high morbidity and mortality in suckling piglets. Here, we demonstrated that microRNA-27b-3p (miR-27b-3p) suppressed TGEV replication by directly targeting porcine suppressor of cytokine signaling 6 (SOCS6), while TGEV infection downregulated miR-27b-3p expression in swine testicular (ST) cells and in piglets. Mechanistically, the decrease of miR-27b-3p expression during TGEV infection was mediated by the activated inositol-requiring enzyme 1 (IRE1) pathway of the endoplasmic reticulum (ER) stress. Further studies showed that when ER stress was induced by TGEV, IRE1 acted as an RNase activated by autophosphorylation and unconventionally spliced mRNA encoding a potent transcription factor, X-box-binding protein 1 (Xbp1s). Xbp1s inhibited the transcription of miR-27 and ultimately reduced the production of miR-27b-3p. Therefore, our findings indicate that TGEV inhibits the expression of an anti-coronavirus microRNA through the IRE1 pathway and suggest a novel way in which coronavirus regulates the host cell response to infection.
Collapse
Affiliation(s)
- Changlin Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Peng Wu
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Honglei Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Zhongqing Liu
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Guangzheng Wu
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Pinghuang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Keliang Wang
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China. .,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China.
| | - Wanhai Xu
- Department of Urology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China. .,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China.
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
35
|
Vieux KF, Prothro KP, Kelley LH, Palmer C, Maine EM, Veksler-Lublinsky I, McJunkin K. Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans. Nucleic Acids Res 2021; 49:11167-11180. [PMID: 34586415 DOI: 10.1093/nar/gkab840] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
microRNAs are frequently modified by addition of untemplated nucleotides to the 3' end, but the role of this tailing is often unclear. Here we characterize the prevalence and functional consequences of microRNA tailing in vivo, using Caenorhabditis elegans. MicroRNA tailing in C. elegans consists mostly of mono-uridylation of mature microRNA species, with rarer mono-adenylation which is likely added to microRNA precursors. Through a targeted RNAi screen, we discover that the TUT4/TUT7 gene family member CID-1/CDE-1/PUP-1 is required for uridylation, whereas the GLD2 gene family member F31C3.2-here named GLD-2-related 2 (GLDR-2)-is required for adenylation. Thus, the TUT4/TUT7 and GLD2 gene families have broadly conserved roles in miRNA modification. We specifically examine the role of tailing in microRNA turnover. We determine half-lives of microRNAs after acute inactivation of microRNA biogenesis, revealing that half-lives are generally long (median = 20.7 h), as observed in other systems. Although we observe that the proportion of tailed species increases over time after biogenesis, disrupting tailing does not alter microRNA decay. Thus, tailing is not a global regulator of decay in C. elegans. Nonetheless, by identifying the responsible enzymes, this study lays the groundwork to explore whether tailing plays more specialized context- or miRNA-specific regulatory roles.
Collapse
Affiliation(s)
- Karl-Frédéric Vieux
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20815, USA
| | - Katherine P Prothro
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20815, USA.,Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leanne H Kelley
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | - Cameron Palmer
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20815, USA
| | - Eleanor M Maine
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
| | | | - Katherine McJunkin
- National Institutes of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, MD 20815, USA
| |
Collapse
|
36
|
Li S, Liu Y, Tian T, Zhang T, Lin S, Zhou M, Zhang X, Lin Y, Cai X. Bioswitchable Delivery of microRNA by Framework Nucleic Acids: Application to Bone Regeneration. SMALL 2021; 17:e2104359. [PMID: 34716653 DOI: 10.1002/smll.202104359] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRs) play an important role in regulating gene expression. Limited by their instabilities, miR therapeutics require delivery vehicles. Tetrahedral framework nucleic acids (tFNAs) are potentially applicable to drug delivery because they prominently penetrate tissue and are taken up by cells. However, tFNA-based miR delivery strategies have failed to separate the miRs after they enter cells, affecting miR efficiency. In this study, an RNase H-responsive sequence is applied to connect a sticky-end tFNA (stFNA) and miR-2861, which is a model miR, to target the expression of histone deacetylase 5 (HDAC5) in bone marrow mesenchymal stem cells. The resultant bioswitchable nanocomposite (stFNA-miR) enables efficient miR-2861 unloading and deployment after intracellular delivery, thereby inhibiting the expression of HDAC5 and promoting osteogenic differentiation. stFNA-miR also facilitated ideal bone repair via topical injection. In conclusion, a versatile miR delivery strategy is offered for various biomedical applications that necessitate modulation of gene expression.
Collapse
Affiliation(s)
- Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuhao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiyu Lin
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
37
|
Thomas KT, Zakharenko SS. MicroRNAs in the Onset of Schizophrenia. Cells 2021; 10:2679. [PMID: 34685659 PMCID: PMC8534348 DOI: 10.3390/cells10102679] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence implicates microRNAs (miRNAs) in the pathology of schizophrenia. These small noncoding RNAs bind to mRNAs containing complementary sequences and promote their degradation and/or inhibit protein synthesis. A single miRNA may have hundreds of targets, and miRNA targets are overrepresented among schizophrenia-risk genes. Although schizophrenia is a neurodevelopmental disorder, symptoms usually do not appear until adolescence, and most patients do not receive a schizophrenia diagnosis until late adolescence or early adulthood. However, few studies have examined miRNAs during this critical period. First, we examine evidence that the miRNA pathway is dynamic throughout adolescence and adulthood and that miRNAs regulate processes critical to late neurodevelopment that are aberrant in patients with schizophrenia. Next, we examine evidence implicating miRNAs in the conversion to psychosis, including a schizophrenia-associated single nucleotide polymorphism in MIR137HG that is among the strongest known predictors of age of onset in patients with schizophrenia. Finally, we examine how hemizygosity for DGCR8, which encodes an obligate component of the complex that synthesizes miRNA precursors, may contribute to the onset of psychosis in patients with 22q11.2 microdeletions and how animal models of this disorder can help us understand the many roles of miRNAs in the onset of schizophrenia.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
38
|
Komori H, Fujita D, Shirasaki Y, Zhu Q, Iwamoto Y, Nakanishi T, Nakajima M, Tamai I. MicroRNAs in Apple-Derived Nanoparticles Modulate Intestinal Expression of Organic Anion-Transporting Peptide 2B1/ SLCO2B1 in Caco-2 Cells. Drug Metab Dispos 2021; 49:803-809. [PMID: 34162689 DOI: 10.1124/dmd.121.000380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Plant-derived nanoparticles exert cytoprotective effects on intestinal cells by delivering their cargo to intestinal tissues. We previously reported that apple-derived nanoparticles (APNPs) downregulate the mRNA of the human intestinal transporter organic anion-transporting peptide 2B1 (OATP2B1)/SLCO2B1 and that the 3'-untranslated region (3'UTR) is required for the response to APNPs. Here, we investigated the involvement of microRNAs (miRNAs) in APNPs in suppressing OATP2B1 expression to demonstrate that APNP macromolecules directly interact with intestinal tissues. Using in silico analysis, seven apple miRNAs were predicted as candidate miRNAs that interact with the SLCO2B1-3'UTR. The APNP-mediated decrease in luciferase activity of pGL3/SLCO2B1-3'UTR was abrogated by inhibitors of mdm-miR-160a-e, -7121a-c, or -7121d-h. Each miRNA mimic reduced the endogenous expression of SLCO2B1 mRNA in Caco-2 cells. The luciferase activity of the truncated pGL3/SLCO2B1-3'UTR, which contains approximately 200 bp around each miRNA recognition element (MRE), was decreased by the miR-7121d-h mimic but decreased little by the other mimics. APNP also reduced the luciferase activity of truncated pGL3/SLCO2B1-3'UTR containing an MRE for miR-7121d-h. Thus, we demonstrated that mdm-miR-7121d-h contributes to the APNP-mediated downregulation of intestinal OATP2B1. Accordingly, plant macromolecules, such as miRNAs, may directly interact with intestinal tissues via nanoparticles. SIGNIFICANCE STATEMENT: This study demonstrates that mdm-miR7121d-h contained in apple-derived nanoparticles downregulated the mRNA expression of SLCO2B1 by interacting with SLCO2B1-3'-untranslated region directly and that SLCO2B1 mRNA might also be decreased by mdm-miR160a-e and -7121a-c indirectly. This finding that the specific apple-derived microRNAs influence human intestinal transporters provides a novel concept that macromolecules in foods directly interact with and affect the intestinal function of the host.
Collapse
Affiliation(s)
- Hisakazu Komori
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Daichi Fujita
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yuma Shirasaki
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Qiunan Zhu
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yui Iwamoto
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Miki Nakajima
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics (H.K., D.F., Y.S., Q.Z., Y.I., T.N., I.T.), Department of Drug Metabolism and Toxicology (M.N.), Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, and WPI Nano Life Science Institute (M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
39
|
Tomasello L, Distefano R, Nigita G, Croce CM. The MicroRNA Family Gets Wider: The IsomiRs Classification and Role. Front Cell Dev Biol 2021; 9:668648. [PMID: 34178993 PMCID: PMC8220208 DOI: 10.3389/fcell.2021.668648] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are the most characterized class of non-coding RNAs and are engaged in many cellular processes, including cell differentiation, development, and homeostasis. MicroRNA dysregulation was observed in several diseases, cancer included. Epitranscriptomics is a branch of epigenomics that embraces all RNA modifications occurring after DNA transcription and RNA synthesis and involving coding and non-coding RNAs. The development of new high-throughput technologies, especially deep RNA sequencing, has facilitated the discovery of miRNA isoforms (named isomiRs) resulting from RNA modifications mediated by enzymes, such as deaminases and exonucleases, and differing from the canonical ones in length, sequence, or both. In this review, we summarize the distinct classes of isomiRs, their regulation and biogenesis, and the active role of these newly discovered molecules in cancer and other diseases.
Collapse
Affiliation(s)
- Luisa Tomasello
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | | | | | | |
Collapse
|
40
|
Plasma Extracellular Vesicle miRNAs Can Identify Lung Cancer, Current Smoking Status, and Stable COPD. Int J Mol Sci 2021; 22:ijms22115803. [PMID: 34071592 PMCID: PMC8198071 DOI: 10.3390/ijms22115803] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer remains the leading cause of cancer related mortality worldwide. We aimed to test whether a simple blood biomarker (extracellular vesicle miRNAs) can discriminate between cases with and without lung cancer. METHODS plasma extracellular vesicles (EVs) were isolated from four cohorts (n = 20 in each): healthy non-smokers, healthy smokers, lung cancer, and stable COPD participants. EV miRNA expression was evaluated using the miRCURY LNA miRNA Serum/Plasma assay for 179 specific targets. Significantly dysregulated miRNAs were assessed for discriminatory power using ROC curve analysis. RESULTS 15 miRNAs were differentially expressed between lung cancer and healthy non-smoking participants, with the greatest single miRNA being miR-205-5p (AUC 0.850), improving to AUC 0.993 in combination with miR-199a-5p. Moreover, 26 miRNAs were significantly dysregulated between lung cancer and healthy smoking participants, with the greatest single miRNA being miR-497-5p (AUC 0.873), improving to AUC 0.953 in combination with miR-22-5p; 14 miRNAs were significantly dysregulated between lung cancer and stable COPD participants, with the greatest single miRNA being miR-27a-3p (AUC 0.803), with two other miRNAs (miR-106b-3p and miR-361-5p) further improving discriminatory power (AUC 0.870). CONCLUSION this case control study suggests miRNAs in EVs from plasma holds key biological information specific for lung cancer and warrants further prospective assessment.
Collapse
|
41
|
Dahm OJ, Sampson GL, Silva AJ, Hellberg RS. Use of Molecular Methods to Authenticate Animal Species and Tissue in Bovine Liver Dietary Supplements. J Diet Suppl 2021; 19:381-394. [PMID: 33615949 DOI: 10.1080/19390211.2021.1887424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dietary supplements containing bovine (subfamily Bovinae) liver are susceptible to fraud due to their high value and the lack of modern detection methods available for processed animal tissues. The objective of this research was to use molecular methods to authenticate dietary supplements claiming to contain bovine liver or beef liver through the verification of animal species and tissue type. A total of 53 bovine/beef liver dietary supplements were purchased from online sources. The presence of liver was verified with reverse transcription and real-time PCR testing for microRNA-122 (miR-122), which is highly expressed in liver tissue. Multiplex real-time PCR targeting domestic cattle (Bos taurus), horse (Equus caballus), sheep (Ovis aries), and pork (Sus scrofa) was used to verify species. Samples that failed species identification with multiplex real-time PCR underwent DNA mini-barcoding. Overall, bovine species were detected in 48/53 liver supplements: 35 samples were confirmed as domestic cattle with multiplex real-time PCR and an additional 13 samples were confirmed as domestic cattle or Bos spp. with DNA mini-barcoding. One of these samples was also positive for sheep/lamb, which was declared on the label. One product contained undeclared pork in addition to beef. MiR-122 was detected in 51 out of 53 supplements, suggesting the presence of liver. While this study demonstrates the potential use of tissue-specific microRNAs in verifying tissues in dietary supplements, more research is needed to evaluate the specificity of these markers.
Collapse
Affiliation(s)
- Olive J Dahm
- Chapman University, Schmid College of Science and Technology, Food Science Program, One University Drive, Orange, CA, USA
| | - Georgia L Sampson
- Chapman University, Schmid College of Science and Technology, Food Science Program, One University Drive, Orange, CA, USA
| | - Anthony J Silva
- Chapman University, Schmid College of Science and Technology, Food Science Program, One University Drive, Orange, CA, USA
| | - Rosalee S Hellberg
- Chapman University, Schmid College of Science and Technology, Food Science Program, One University Drive, Orange, CA, USA
| |
Collapse
|
42
|
Nguyen DND, Chilian WM, Zain SM, Daud MF, Pung YF. MicroRNA regulation of vascular smooth muscle cells and its significance in cardiovascular diseases. Can J Physiol Pharmacol 2021; 99:827-838. [PMID: 33529092 DOI: 10.1139/cjpp-2020-0581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is among the leading causes of death worldwide. MicroRNAs (miRNAs), regulatory molecules that repress protein expression, have attracted considerable attention in CVD research. The vasculature plays a big role in CVD development and progression and dysregulation of vascular cells underlies the root of many vascular diseases. This review provides a brief introduction of the biogenesis of miRNAs and exosomes, followed by overview of the regulatory mechanisms of miRNAs in vascular smooth muscle cells (VSMCs) intracellular signaling during phenotypic switching, senescence, calcification, and neointimal hyperplasia. Evidence of extracellular signaling of VSMCs and other cells via exosomal and circulating miRNAs is also presented. Lastly, current drawbacks and limitations of miRNA studies in CVD research and potential ways to overcome these disadvantages are discussed in detail. In-depth understanding of VSMC regulation via miRNAs will add substantial knowledge and advance research in diagnosis, disease progression, and (or) miRNA-derived therapeutic approaches in CVD research.
Collapse
Affiliation(s)
- Duong Ngoc Diem Nguyen
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| | - William M Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, 4209 St. Rt. 44, P.O. Box 95, Rootstown, OH P.O. Box 95, USA
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, 43000 Selangor, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Semenyih, 43500 Selangor, Malaysia
| |
Collapse
|
43
|
Beversdorf DQ, Shah A, Jhin A, Noel-MacDonnell J, Hecht P, Ferguson BJ, Bruce D, Tilley M, Talebizadeh Z. microRNAs and Gene-Environment Interactions in Autism: Effects of Prenatal Maternal Stress and the SERT Gene on Maternal microRNA Expression. Front Psychiatry 2021; 12:668577. [PMID: 34290629 PMCID: PMC8288023 DOI: 10.3389/fpsyt.2021.668577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Genetics and environment both are critical in autism spectrum disorder (ASD), but their interaction (G × E) is less understood. Numerous studies have shown higher incidence of stress exposures during pregnancies with children later diagnosed with ASD. However, many stress-exposed mothers have unaffected children. The serotonin transporter (SERT) gene affects stress reactivity. Two independent samples have shown that the association between maternal stress exposure and ASD is greatest with maternal presence of the SERT short (S)-allele (deletion in the promoter region). MicroRNAs play a regulatory role in the serotonergic pathway and in prenatal stress and are therefore potential mechanistic targets in this setting. Design/methods: We profiled microRNA expression in blood from mothers of children with ASD, with known stress exposure during pregnancy. Samples were divided into groups based on SERT genotypes (LL/LS/SS) and prenatal stress level (high/low). Results: Two thousand five hundred mature microRNAs were examined. The ANOVA analysis showed differential expression (DE) of 119 microRNAs; 90 were DE in high- vs. low-stress groups (stress-dependent). Two (miR-1224-5p, miR-331-3p) were recently reported by our group to exhibit stress-dependent expression in rodent brain samples from embryos exposed to prenatal stress. Another, miR-145-5p, is associated with maternal stress. Across SERT genotypes, with high stress exposure, 20 significantly DE microRNAs were detected, five were stress-dependent. These microRNAs may be candidates for stress × SERT genotype interactions. This is remarkable as these changes were from mothers several years after stress-exposed pregnancies. Conclusions: Our study provides evidence for epigenetic alterations in relation to a G × E model (prenatal maternal stress × SERT gene) in ASD.
Collapse
Affiliation(s)
- David Q Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO, United States.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| | - Ayten Shah
- Children's Mercy Hospital, Kansas City, MO, United States
| | - Allison Jhin
- Kansas City University, Kansas City, MO, United States
| | - Janelle Noel-MacDonnell
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Patrick Hecht
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| | - Bradley J Ferguson
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States.,Health Psychology, Radiology, and Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia, MO, United States
| | - Danielle Bruce
- Department of Biology, Central Methodist University, Fayette, MO, United States
| | - Michael Tilley
- Department of Biology, Central Methodist University, Fayette, MO, United States
| | - Zohreh Talebizadeh
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| |
Collapse
|
44
|
Lam NT, Gartz M, Thomas L, Haberman M, Strande JL. Influence of microRNAs and exosomes in muscle health and diseases. J Muscle Res Cell Motil 2020; 41:269-284. [PMID: 31564031 PMCID: PMC7101267 DOI: 10.1007/s10974-019-09555-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
microRNAs are short, (18-22 nt) non-coding RNAs involved in important cellular processes due to their ability to regulate gene expression at the post-transcriptional level. Exosomes are small (50-200 nm) extracellular vesicles, naturally secreted from a variety of living cells and are believed to mediate cell-cell communication through multiple mechanisms, including uptake in destination cells. Circulating microRNAs and exosome-derived microRNAs can have key roles in regulating muscle cell development and differentiation. Several microRNAs are highly expressed in muscle and their regulation is important for myocyte homeostasis. Changes in muscle associated microRNA expression are associated with muscular diseases including muscular dystrophies, inflammatory myopathies, and congenital myopathies. In this review, we aim to highlight the biology of microRNAs and exosomes as well as their roles in muscle health and diseases. We also discuss the potential crosstalk between skeletal and cardiac muscle through exosomes and their contents.
Collapse
Affiliation(s)
- Ngoc Thien Lam
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah Thomas
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Medical College of Wisconsin, CVC/MEB 4679, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
45
|
Study and Preparation of Multifunctional Poly(L-Lysine)@Hyaluronic Acid Nanopolyplexes for the Effective Delivery of Tumor Suppressive MiR-34a into Triple-Negative Breast Cancer Cells. MATERIALS 2020; 13:ma13235309. [PMID: 33255217 PMCID: PMC7727712 DOI: 10.3390/ma13235309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Non-viral gene delivery using exogenous microRNAs is a potential strategy for fighting cancers with poor prognosis and which lack specific therapies, such as triple-negative breast cancer (TNBC). Herein we report the synthesis of six nontoxic electrostatic polymeric nanocapsules (P1 to P6) for microRNA delivery in TNBC cells. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize the nanopolyplexes, synthesized with Poly(L-Lysine) and hyaluronic acid (Ha). Studies on the activity of the ternary HA/PLI/miRNA-34 nanopolyplexes towards TNBC cell line MDA-MB-231 were conducted. The nanopolyplexes mediated intracellular restoration of tumor suppressor miR34a was evaluated by using Western blotting to quantify the expression level of the Bcl-2 protein. The results suggest that the P5, with a ratio PLI/Ha of 0.05, was the most promising for the delivery of miR-34a into TNBC cells; the P5 nanocapsules were able to reduce Bcl-2 expression at a protein level, and had an effect in the overall cell viability after 24 h treatment.
Collapse
|
46
|
Nandan D, Rath CT, Reiner NE. Leishmania regulates host macrophage miRNAs expression by engaging transcription factor c-Myc. J Leukoc Biol 2020; 109:999-1007. [PMID: 33211335 DOI: 10.1002/jlb.4ru0920-614r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Parasites of Leishmania genus have developed sophisticated strategies allowing them to deactivate their host macrophage to promote their survival. It has become clear that miRNAs play important roles in shaping innate and adaptive immune responses toward pathogens. It is not surprising that several pathogens including Leishmania have evolved the ability to regulate host macrophage miRNA expression in order to manipulate host cell phenotypes to their advantage. However, very little is known about the mechanisms used by intracellular pathogens to drive changes in host cell miRNA abundance. In this review, Leishmania exploitation of macrophage transcription factor c-Myc as a critical proxy virulence factor to regulate abundance of macrophage miRNAs influencing macrophage physiology to promote its survival will be discussed.
Collapse
Affiliation(s)
- Devki Nandan
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Torturella Rath
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neil E Reiner
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
47
|
Diener C, Hart M, Kehl T, Rheinheimer S, Ludwig N, Krammes L, Pawusch S, Lenhof K, Tänzer T, Schub D, Sester M, Walch-Rückheim B, Keller A, Lenhof HP, Meese E. Quantitative and time-resolved miRNA pattern of early human T cell activation. Nucleic Acids Res 2020; 48:10164-10183. [PMID: 32990751 PMCID: PMC7544210 DOI: 10.1093/nar/gkaa788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/14/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
T cells are central to the immune response against various pathogens and cancer cells. Complex networks of transcriptional and post-transcriptional regulators, including microRNAs (miRNAs), coordinate the T cell activation process. Available miRNA datasets, however, do not sufficiently dissolve the dynamic changes of miRNA controlled networks upon T cell activation. Here, we established a quantitative and time-resolved expression pattern for the entire miRNome over a period of 24 h upon human T-cell activation. Based on our time-resolved datasets, we identified central miRNAs and specified common miRNA expression profiles. We found the most prominent quantitative expression changes for miR-155-5p with a range from initially 40 molecules/cell to 1600 molecules/cell upon T-cell activation. We established a comprehensive dynamic regulatory network of both the up- and downstream regulation of miR-155. Upstream, we highlight IRF4 and its complexes with SPI1 and BATF as central for the transcriptional regulation of miR-155. Downstream of miR-155-5p, we verified 17 of its target genes by the time-resolved data recorded after T cell activation. Our data provide comprehensive insights into the range of stimulus induced miRNA abundance changes and lay the ground to identify efficient points of intervention for modifying the T cell response.
Collapse
Affiliation(s)
- Caroline Diener
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | | | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Lena Krammes
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Sarah Pawusch
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Kerstin Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Tanja Tänzer
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - David Schub
- Department of Transplant and Infection Immunology, Saarland University, 66421 Homburg, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, 66421 Homburg, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
48
|
Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells 2020; 9:E2228. [PMID: 33023156 PMCID: PMC7601058 DOI: 10.3390/cells9102228] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex biological process that is impaired under diabetes conditions. Chronic non-healing wounds in diabetes are some of the most expensive healthcare expenditures worldwide. Early diagnosis and efficacious treatment strategies are needed. microRNAs (miRNAs), a class of 18-25 nucleotide long RNAs, are important regulatory molecules involved in gene expression regulation and in the repression of translation, controlling protein expression in health and disease. Recently, miRNAs have emerged as critical players in impaired wound healing and could be targets for potential therapies for non-healing wounds. Here, we review and discuss the mechanistic background of miRNA actions in chronic wounds that can shed the light on their utilization as specific wound healing biomarkers.
Collapse
Affiliation(s)
- Marija Petkovic
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| | - Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| |
Collapse
|
49
|
Saha PK, Hamilton MP, Rajapakshe K, Putluri V, Felix JB, Masschelin P, Cox AR, Bajaj M, Putluri N, Coarfa C, Hartig SM. miR-30a targets gene networks that promote browning of human and mouse adipocytes. Am J Physiol Endocrinol Metab 2020; 319:E667-E677. [PMID: 32799658 PMCID: PMC7864240 DOI: 10.1152/ajpendo.00045.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNA-30a (miR-30a) impacts adipocyte function, and its expression in white adipose tissue (WAT) correlates with insulin sensitivity in obesity. Bioinformatic analysis demonstrates that miR-30a expression contributes to 2% of all miRNA expression in human tissues. However, molecular mechanisms of miR-30a function in fat cells remain unclear. Here, we expanded our understanding of how miR-30a expression contributes to antidiabetic peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity and metabolic functions in adipocytes. We found that WAT isolated from diabetic patients shows reduced miR-30a levels and diminished expression of the canonical PPARγ target genes ADIPOQ and FABP4 relative to lean counterparts. In human adipocytes, miR-30a required PPARγ for maximal expression, and the PPARγ agonist rosiglitazone robustly induced miR-30a but not other miR-30 family members. Transcriptional activity studies in human adipocytes also revealed that ectopic expression of miR-30a enhanced the activity of rosiglitazone coupled with higher expression of fatty acid and glucose metabolism markers. Diabetic mice that overexpress ectopic miR-30a in subcutaneous WAT display durable reductions in serum glucose and insulin levels for more than 30 days. In agreement with our in vitro findings, RNA-seq coupled with Gene Set Enrichment Analysis (GSEA) suggested that miR-30a enabled activation of the beige fat program in vivo, as evidenced by enhanced mitochondrial biogenesis and induction of UCP1 expression. Metabolomic and gene expression profiling established that the long-term effects of ectopic miR-30a expression enable accelerated glucose metabolism coupled with subcutaneous WAT hyperplasia. Together, we establish a putative role of miR-30a in mediating PPARγ activity and advancing metabolic programs of white to beige fat conversion.
Collapse
Affiliation(s)
- Pradip K Saha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jessica B Felix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Peter Masschelin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mandeep Bajaj
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
50
|
Shah V, Shah J. Recent trends in targeting miRNAs for cancer therapy. J Pharm Pharmacol 2020; 72:1732-1749. [PMID: 32783235 DOI: 10.1111/jphp.13351] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES MicroRNAs (miRNAs) are a type of small noncoding RNA employed by the cells for gene regulation. A single miRNA, typically 22 nucleotides in length, can regulate the expression of numerous genes. Over the past decade, the study of miRNA biology in the context of cancer has led to the development of new diagnostic and therapeutic opportunities. KEY FINDINGS MicroRNA dysregulation is commonly associated with cancer, in part because miRNAs are actively involved in the mechanisms like genomic instabilities, aberrant transcriptional control, altered epigenetic regulation and biogenesis machinery defects. MicroRNAs can regulate oncogenes or tumour suppressor genes and thus when altered can lead to tumorigenesis. Expression profiling of miRNAs has boosted the possibilities of application of miRNAs as potential cancer biomarkers and therapeutic targets, although the feasibility of these approaches will require further validation. SUMMARY In this review, we will focus on how miRNAs regulate tumour development and the potential applications of targeting miRNAs for cancer therapy.
Collapse
Affiliation(s)
- Vandit Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|