1
|
Yim MK, Stuart CJ, Pond MI, van Hoof A, Johnson SJ. Conserved Residues at the Mtr4 C-Terminus Coordinate Helicase Activity and Exosome Interactions. Biochemistry 2024; 63:159-170. [PMID: 38085597 PMCID: PMC10984559 DOI: 10.1021/acs.biochem.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Mtr4 is an essential RNA helicase involved in nuclear RNA processing and degradation and is a member of the Ski2-like helicase family. Ski2-like helicases share a common core architecture that includes two RecA-like domains, a winged helix, and a helical bundle (HB) domain. In Mtr4, a short C-terminal tail immediately follows the HB domain and is positioned at the interface of the RecA-like domains. The tail ends with a SLYΦ sequence motif that is highly conserved in a subset of Ski2-like helicases. Here, we show that this sequence is critical for Mtr4 function. Mutations in the C-terminus result in decreased RNA unwinding activity. Mtr4 is a key activator of the RNA exosome complex, and mutations in the SLYΦ motif produce a slow growth phenotype when combined with a partial exosome defect in S. cerevisiae, suggesting an important role of the C-terminus of Mtr4 and the RNA exosome. We further demonstrate that C-terminal mutations impair RNA degradation activity by the major RNA exosome nuclease Rrp44 in vitro. These data demonstrate a role for the Mtr4 C-terminus in regulating helicase activity and coordinating Mtr4-exosome interactions.
Collapse
Affiliation(s)
- Matthew K. Yim
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Catherine J. Stuart
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Markell I. Pond
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Sean J. Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
2
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Tasak M, Phizicky EM. Initiator tRNA lacking 1-methyladenosine is targeted by the rapid tRNA decay pathway in evolutionarily distant yeast species. PLoS Genet 2022; 18:e1010215. [PMID: 35901126 PMCID: PMC9362929 DOI: 10.1371/journal.pgen.1010215] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/09/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
All tRNAs have numerous modifications, lack of which often results in growth defects in the budding yeast Saccharomyces cerevisiae and neurological or other disorders in humans. In S. cerevisiae, lack of tRNA body modifications can lead to impaired tRNA stability and decay of a subset of the hypomodified tRNAs. Mutants lacking 7-methylguanosine at G46 (m7G46), N2,N2-dimethylguanosine (m2,2G26), or 4-acetylcytidine (ac4C12), in combination with other body modification mutants, target certain mature hypomodified tRNAs to the rapid tRNA decay (RTD) pathway, catalyzed by 5’-3’ exonucleases Xrn1 and Rat1, and regulated by Met22. The RTD pathway is conserved in the phylogenetically distant fission yeast Schizosaccharomyces pombe for mutants lacking m7G46. In contrast, S. cerevisiae trm6/gcd10 mutants with reduced 1-methyladenosine (m1A58) specifically target pre-tRNAiMet(CAU) to the nuclear surveillance pathway for 3’-5’ exonucleolytic decay by the TRAMP complex and nuclear exosome. We show here that the RTD pathway has an unexpected major role in the biology of m1A58 and tRNAiMet(CAU) in both S. pombe and S. cerevisiae. We find that S. pombe trm6Δ mutants lacking m1A58 are temperature sensitive due to decay of tRNAiMet(CAU) by the RTD pathway. Thus, trm6Δ mutants had reduced levels of tRNAiMet(CAU) and not of eight other tested tRNAs, overexpression of tRNAiMet(CAU) restored growth, and spontaneous suppressors that restored tRNAiMet(CAU) levels had mutations in dhp1/RAT1 or tol1/MET22. In addition, deletion of cid14/TRF4 in the nuclear surveillance pathway did not restore growth. Furthermore, re-examination of S. cerevisiae trm6 mutants revealed a major role of the RTD pathway in maintaining tRNAiMet(CAU) levels, in addition to the known role of the nuclear surveillance pathway. These findings provide evidence for the importance of m1A58 in the biology of tRNAiMet(CAU) throughout eukaryotes, and fuel speculation that the RTD pathway has a major role in quality control of body modification mutants throughout fungi and other eukaryotes.
Collapse
Affiliation(s)
- Monika Tasak
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Birot A, Kus K, Priest E, Al Alwash A, Castello A, Mohammed S, Vasiljeva L, Kilchert C. RNA-binding protein Mub1 and the nuclear RNA exosome act to fine-tune environmental stress response. Life Sci Alliance 2021; 5:5/2/e202101111. [PMID: 34848435 PMCID: PMC8645331 DOI: 10.26508/lsa.202101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Comparative RNA interactome capture identifies potential regulators of RNA metabolism in fission yeast and reveals RNA exosome–dependent buffering of stress-responsive gene expression networks. The nuclear RNA exosome plays a key role in controlling the levels of multiple protein-coding and non-coding RNAs. Recruitment of the exosome to specific RNA substrates is mediated by RNA-binding co-factors. The transient interaction between co-factors and the exosome as well as the rapid decay of RNA substrates make identification of exosome co-factors challenging. Here, we use comparative poly(A)+ RNA interactome capture in fission yeast expressing three different mutants of the exosome to identify proteins that interact with poly(A)+ RNA in an exosome-dependent manner. Our analyses identify multiple RNA-binding proteins whose association with RNA is altered in exosome mutants, including the zinc-finger protein Mub1. Mub1 is required to maintain the levels of a subset of exosome RNA substrates including mRNAs encoding for stress-responsive proteins. Removal of the zinc-finger domain leads to loss of RNA suppression under non-stressed conditions, altered expression of heat shock genes in response to stress, and reduced growth at elevated temperature. These findings highlight the importance of exosome-dependent mRNA degradation in buffering gene expression networks to mediate cellular adaptation to stress.
Collapse
Affiliation(s)
- Adrien Birot
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Krzysztof Kus
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emily Priest
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ahmad Al Alwash
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, Oxford, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Cornelia Kilchert
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Chung CZ, Jaramillo JE, Ellis MJ, Bour DYN, Seidl LE, Jo DHS, Turk MA, Mann MR, Bi Y, Haniford DB, Duennwald ML, Heinemann IU. RNA surveillance by uridylation-dependent RNA decay in Schizosaccharomyces pombe. Nucleic Acids Res 2019; 47:3045-3057. [PMID: 30715470 PMCID: PMC6451125 DOI: 10.1093/nar/gkz043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Uridylation-dependent RNA decay is a widespread eukaryotic pathway modulating RNA homeostasis. Terminal uridylyltransferases (Tutases) add untemplated uridyl residues to RNA 3'-ends, marking them for degradation by the U-specific exonuclease Dis3L2. In Schizosaccharomyces pombe, Cid1 uridylates a variety of RNAs. In this study, we investigate the prevalence and impact of uridylation-dependent RNA decay in S. pombe by transcriptionally profiling cid1 and dis3L2 deletion strains. We found that the exonuclease Dis3L2 represents a bottleneck in uridylation-dependent mRNA decay, whereas Cid1 plays a redundant role that can be complemented by other Tutases. Deletion of dis3L2 elicits a cellular stress response, upregulating transcription of genes involved in protein folding and degradation. Misfolded proteins accumulate in both deletion strains, yet only trigger a strong stress response in dis3L2 deficient cells. While a deletion of cid1 increases sensitivity to protein misfolding stress, a dis3L2 deletion showed no increased sensitivity or was even protective. We furthermore show that uridylyl- and adenylyltransferases cooperate to generate a 5'-NxAUUAAAA-3' RNA motif on dak2 mRNA. Our studies elucidate the role of uridylation-dependent RNA decay as part of a global mRNA surveillance, and we found that perturbation of this pathway leads to the accumulation of misfolded proteins and elicits cellular stress responses.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Julia E Jaramillo
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Michael J Ellis
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Daniel Y N Bour
- Department of Pathology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Lauren E Seidl
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - David H S Jo
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Matthew A Turk
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Mitchell R Mann
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Yumin Bi
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - David B Haniford
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Martin L Duennwald
- Department of Pathology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5C1, Canada
| |
Collapse
|
6
|
Schmid M, Jensen TH. The Nuclear RNA Exosome and Its Cofactors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:113-132. [PMID: 31811632 DOI: 10.1007/978-3-030-31434-7_4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The RNA exosome is a highly conserved ribonuclease endowed with 3'-5' exonuclease and endonuclease activities. The multisubunit complex resides in both the nucleus and the cytoplasm, with varying compositions and activities between the two compartments. While the cytoplasmic exosome functions mostly in mRNA quality control pathways, the nuclear RNA exosome partakes in the 3'-end processing and complete decay of a wide variety of substrates, including virtually all types of noncoding (nc) RNAs. To handle these diverse tasks, the nuclear exosome engages with dedicated cofactors, some of which serve as activators by stimulating decay through oligoA addition and/or RNA helicase activities or, as adaptors, by recruiting RNA substrates through their RNA-binding capacities. Most nuclear exosome cofactors contain the essential RNA helicase Mtr4 (MTR4 in humans). However, apart from Mtr4, nuclear exosome cofactors have undergone significant evolutionary divergence. Here, we summarize biochemical and functional knowledge about the nuclear exosome and exemplify its cofactor variety by discussing the best understood model organisms-the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and human cells.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
7
|
Zhai Y, Fan X, Yin Z, Yue X, Men X, Zheng L, Zhang W. Identification and Functional Analysis of Chitin Synthase A in Oriental Armyworm, Mythimna separata. Proteomics 2017; 17. [PMID: 28941069 DOI: 10.1002/pmic.201700165] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/01/2017] [Indexed: 11/09/2022]
Abstract
Chitin synthases are very important enzymes for chitin synthesis in various species, which makes them a specific target of insecticides. In the present study, the function of the chitin synthase A (CHSA) gene isolated from Mythimna separate is investigated. The majority of dsMysCHSA treated larvae (89.50%) exhibit lethal phenotypes, including three phenotypes with severe cuticle deformations. The dsMysCHSA treatment in adult females affects oogenesis, and significantly reduce the ovary size and the oviposition number compared with controls. To determine how MysCHSA affects female fecundity, combined analyses of RNA-sequencing (RNA-Seq) transcriptome and TMT proteome (tandem mass tags) data in M. separata after treatment with MysCHSA-RNAi is performed. The differentially expressed proteins and genes affect fecundity-related proteins, energy metabolism, fatty acid metabolism, amino sugars, and nucleotide sugar metabolism pathways. Taken together, these results suggest that MysCHSA acts on M. separata ecdysis and fecundity, and has the potential as a target gene for pest control.
Collapse
Affiliation(s)
- Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China.,State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaobin Fan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Xiangzhao Yue
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
8
|
Stunnenberg R, Kulasegaran-Shylini R, Keller C, Kirschmann MA, Gelman L, Bühler M. H3K9 methylation extends across natural boundaries of heterochromatin in the absence of an HP1 protein. EMBO J 2015; 34:2789-803. [PMID: 26438724 PMCID: PMC4682641 DOI: 10.15252/embj.201591320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022] Open
Abstract
Proteins of the conserved HP1 family are elementary components of heterochromatin and are generally assumed to play a central role in the creation of a rigid, densely packed heterochromatic network that is inaccessible to the transcription machinery. Here, we demonstrate that the fission yeast HP1 protein Swi6 exists as a single highly dynamic population that rapidly exchanges in cis and in trans between different heterochromatic regions. Binding to methylated H3K9 or to heterochromatic RNA decelerates Swi6 mobility. We further show that Swi6 is largely dispensable to the maintenance of heterochromatin domains. In the absence of Swi6, H3K9 methylation levels are maintained by a mechanism that depends on polymeric self‐association properties of Tas3, a subunit of the RNA‐induced transcriptional silencing complex. Our results disclose a surprising role for Swi6 dimerization in demarcating constitutive heterochromatin from neighboring euchromatin. Thus, rather than promoting maintenance and spreading of heterochromatin, Swi6 appears to limit these processes and appropriately confine heterochromatin.
Collapse
Affiliation(s)
- Rieka Stunnenberg
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | | | - Claudia Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Zhai Y, Sun Z, Zhang J, Kang K, Chen J, Zhang W. Activation of the TOR Signalling Pathway by Glutamine Regulates Insect Fecundity. Sci Rep 2015; 5:10694. [PMID: 26024507 PMCID: PMC4448656 DOI: 10.1038/srep10694] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
The target of rapamycin (TOR) positively controls cell growth in response to nutrients such as amino acids. However, research on the specific nutrients sensed by TOR is limited. Glutamine (Gln), a particularly important amino acid involved in metabolism in organisms, is synthesised and catalysed exclusively by glutamine synthetase (GS), and our previous studies have shown that Gln may regulate fecundity in vivo levels of the brown planthopper (BPH) Nilaparvata lugens. Until now, it has remained unclear whether Gln activates or inhibits the TOR signalling pathway. Here, we performed the combined analyses of iTRAQ (isobaric tags for relative and absolute quantification) and DGE (tag-based digital gene expression) data in N. lugens at the protein and transcript levels after GS RNAi, and we found that 52 pathways overlap, including the TOR pathway. We further experimentally demonstrate that Gln activates the TOR pathway by promoting the serine/threonine protein kinase AKT and inhibiting the 5'AMP-activated protein kinase AMPK phosphorylation activity in the pest. Furthermore, TOR regulates the fecundity of N. lugens probably by mediating vitellogenin (Vg) expression. This work is the first report that Gln activates the TOR pathway in vivo.
Collapse
Affiliation(s)
- Yifan Zhai
- 1] State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China [2] Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhongxiang Sun
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Chen
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Lemay JF, Larochelle M, Marguerat S, Atkinson S, Bähler J, Bachand F. The RNA exosome promotes transcription termination of backtracked RNA polymerase II. Nat Struct Mol Biol 2014; 21:919-26. [DOI: 10.1038/nsmb.2893] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/26/2014] [Indexed: 11/09/2022]
|
11
|
Falk S, Weir JR, Hentschel J, Reichelt P, Bonneau F, Conti E. The molecular architecture of the TRAMP complex reveals the organization and interplay of its two catalytic activities. Mol Cell 2014; 55:856-867. [PMID: 25175027 DOI: 10.1016/j.molcel.2014.07.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 11/19/2022]
Abstract
The TRAMP complex is involved in the nuclear surveillance and turnover of noncoding RNAs and intergenic transcripts. TRAMP is associated with the nuclear exosome and consists of a poly(A)polymerase subcomplex (Trf4-Air2) and a helicase (Mtr4). We found that N-terminal low-complexity regions of Trf4 and Air2 bind Mtr4 in a cooperative manner. The 2.4 Å resolution crystal structure of the corresponding ternary complex reveals how Trf4 and Air2 wrap around the DExH core of the helicase. Structure-based mutations on the DExH core impair binding to Trf4 and Air2, and also to Trf5 and Air1. The combination of structural, biochemical, and biophysical data suggests that the poly(A)polymerase core of Trf4-Air2 is positioned below the base of the helicase, where the unwound 3' end of an RNA substrate is expected to emerge. The results reveal conceptual similarities between the two major regulators of the exosome, the nuclear TRAMP and cytoplasmic Ski complexes.
Collapse
Affiliation(s)
- Sebastian Falk
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - John R Weir
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Jendrik Hentschel
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Peter Reichelt
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Fabien Bonneau
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Elena Conti
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
12
|
Egan ED, Braun CR, Gygi SP, Moazed D. Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex. RNA (NEW YORK, N.Y.) 2014; 20:867-81. [PMID: 24713849 PMCID: PMC4024641 DOI: 10.1261/rna.044479.114] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/03/2014] [Indexed: 05/24/2023]
Abstract
RNA is a central component of gene-silencing pathways that regulate diverse cellular processes. In the fission yeast Schizosaccharomyces pombe, an RNA-based mechanism represses meiotic gene expression during vegetative growth. This pathway depends on the zinc finger protein Red1, which is required to degrade meiotic mRNAs as well as to target histone H3 lysine 9 (H3K9) methylation, a repressive chromatin mark, to a subset of meiotic genes. However, the mechanism of Red1 function is unknown. Here we use affinity purification and mass spectrometry to identify a Red1-containing nuclear RNA silencing (NURS) complex. In addition to Red1, this complex includes the Mtl1, Red5, Ars2, Rmn1, and Iss10 proteins and associates with several other complexes that are involved in either signaling or mediating RNA silencing. By analyzing the effects of gene knockouts and inducible knockdown alleles, we show that NURS subunits regulate RNA degradation and H3K9 methylation at meiotic genes. We also identify roles for individual NURS subunits in interactions with Mmi1, an RNA-binding protein that marks meiotic RNAs for destruction, and the nuclear exosome RNA degradation complex. Finally, we show that the levels of H3K9 methylation at meiotic genes are not sufficient to restrict RNA polymerase II access or repress gene expression during vegetative growth. Our results demonstrate that Red1 partners with other proteins to silence meiotic gene expression at the post-transcriptional level. Conservation of a NURS-like complex in human cells suggests that this pathway plays an ancient and fundamental role in RNA silencing.
Collapse
Affiliation(s)
- Emily D. Egan
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Craig R. Braun
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
Schmidt K, Butler JS. Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:217-31. [PMID: 23417976 DOI: 10.1002/wrna.1155] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The advent of high-throughput sequencing technologies has revealed that pervasive transcription generates RNAs from nearly all regions of eukaryotic genomes. Normally, these transcripts undergo rapid degradation by a nuclear RNA surveillance system primarily featuring the RNA exosome. This multimeric protein complex plays a critical role in the efficient turnover and processing of a vast array of RNAs in the nucleus. Despite its initial discovery over a decade ago, important questions remain concerning the mechanisms that recruit and activate the nuclear exosome. Specificity and modulation of exosome activity requires additional protein cofactors, including the conserved TRAMP polyadenylation complex. Recent studies suggest that helicase and RNA-binding subunits of TRAMP direct RNA substrates for polyadenylation, which enhances their degradation by Dis3/Rrp44 and Rrp6, the two exosome-associated ribonucleases. These findings indicate that the exosome and TRAMP have evolved highly flexible functions that allow recognition of a wide range of RNA substrates. This flexibility provides the nuclear RNA surveillance system with the ability to regulate the levels of a broad range of coding and noncoding RNAs, which results in profound effects on gene expression, cellular development, gene silencing, and heterochromatin formation. This review summarizes recent findings on the nuclear RNA surveillance complexes, and speculates upon possible mechanisms for TRAMP-mediated substrate recognition and exosome activation.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
14
|
Abstract
In order to control and/or enhance the specificity and activity of nuclear surveillance and degradation, exosomes cooperate with the polyadenylation complex called TRAMP. Two forms of TRAMP operate in budding yeast, TRAMP4 and TRAMP5. They oligoadenylate defective or precursor forms of RNAs and promote trimming or complete degradation by exosomes. TRAMPs target a wide variety of nuclear transcripts. The known substrates include the noncoding RNAs originating from pervasive transcription from diverse parts of the yeast genome. Although TRAMP and exosomes can be triggered to a subset of their targets via the RNA-binding complex Nrd1, it is still not completely understood how TRAMP recognizes other aberrant RNAs. The existence of TRAMP-like complexes in other organisms indicates the importance of nuclear surveillance for general cell biology. In this chapter, we review the current understanding of TRAMP function and substrate repertoire. We discuss the advances in TRAMP biochemistry with respect to its catalytic activities and RNA recognition. Finally, we speculate about the possible mechanisms by which TRAMP activates exosomes.
Collapse
Affiliation(s)
- Peter Holub
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| | - Stepanka Vanacova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 625 00, Czech Republic
| |
Collapse
|
15
|
Johnson SJ, Jackson RN. Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 2012; 10:33-43. [PMID: 22995828 DOI: 10.4161/rna.22101] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ski2-like RNA helicases are large multidomain proteins involved in a variety of RNA processing and degradation events. Recent structures of Mtr4, Ski2 and Brr2 provide our first view of these intricate helicases. Here we review these structures, which reveal a conserved ring-like architecture that extends beyond the canonical RecA domains to include a winged helix and ratchet domain. Comparison of apo- and RNA-bound Mtr4 structures suggests a role for the winged helix domain as a molecular hub that coordinates RNA interacting events throughout the helicase. Unique accessory domains provide expanded diversity and functionality to each Ski2-like family member. A common theme is the integration of Ski2-like RNA helicases into larger protein assemblies. We describe the central role of Mtr4 and Ski2 in formation of complexes that activate RNA decay by the eukaryotic exosome. The current structures provide clues into what promises to be a fascinating view of these dynamic assemblies.
Collapse
Affiliation(s)
- Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA.
| | | |
Collapse
|
16
|
Larochelle M, Lemay JF, Bachand F. The THO complex cooperates with the nuclear RNA surveillance machinery to control small nucleolar RNA expression. Nucleic Acids Res 2012; 40:10240-53. [PMID: 22965128 PMCID: PMC3488260 DOI: 10.1093/nar/gks838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
THO is a multi-protein complex that promotes coupling between transcription and mRNA processing. In contrast to its role in mRNA biogenesis, we show here that the fission yeast THO complex negatively controls the expression of non-coding small nucleolar (sno) RNAs. Accordingly, the deletion of genes encoding subunits of the evolutionarily conserved THO complex results in increased levels of mature snoRNAs. We also show physical and functional connections between THO and components of the TRAMP polyadenylation complex, whose loss of function also results in snoRNA accumulation. Consistent with a role in snoRNA expression, we demonstrate that THO and TRAMP complexes are recruited to snoRNA genes, and that a functional THO complex is required to maintain TRAMP occupancy at sites of snoRNA transcription. Our findings suggest that THO promotes exosome-mediated degradation of snoRNA precursors by ensuring the presence of the TRAMP complex at snoRNA genes. This study unveils an unexpected role for THO in the control of snoRNA expression and provides a new link between transcription and nuclear RNA decay.
Collapse
Affiliation(s)
- Marc Larochelle
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | |
Collapse
|
17
|
Keller C, Adaixo R, Stunnenberg R, Woolcock KJ, Hiller S, Bühler M. HP1(Swi6) mediates the recognition and destruction of heterochromatic RNA transcripts. Mol Cell 2012; 47:215-27. [PMID: 22683269 DOI: 10.1016/j.molcel.2012.05.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/21/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
HP1 proteins are major components of heterochromatin, which is generally perceived to be an inert and transcriptionally inactive chromatin structure. Yet, HP1 binding to chromatin is highly dynamic and robust silencing of heterochromatic genes can involve RNA processing. Here, we demonstrate by a combination of in vivo and in vitro experiments that the fission yeast HP1(Swi6) protein guarantees tight repression of heterochromatic genes through RNA sequestration and degradation. Stimulated by positively charged residues in the hinge region, RNA competes with methylated histone H3K9 for binding to the chromodomain of HP1(Swi6). Hence, HP1(Swi6) binding to RNA is incompatible with stable heterochromatin association. We propose a model in which an ensemble of HP1(Swi6) proteins functions as a heterochromatin-specific checkpoint, capturing and priming heterochromatic RNAs for the RNA degradation machinery. Sustaining a functional checkpoint requires continuous exchange of HP1(Swi6) within heterochromatin, which explains the dynamic localization of HP1 proteins on heterochromatin.
Collapse
Affiliation(s)
- Claudia Keller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Holub P, Lalakova J, Cerna H, Pasulka J, Sarazova M, Hrazdilova K, Arce MS, Hobor F, Stefl R, Vanacova S. Air2p is critical for the assembly and RNA-binding of the TRAMP complex and the KOW domain of Mtr4p is crucial for exosome activation. Nucleic Acids Res 2012; 40:5679-93. [PMID: 22402490 PMCID: PMC3384339 DOI: 10.1093/nar/gks223] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trf4/5p-Air1/2p-Mtr4p polyadenylation complex (TRAMP) is an essential component of nuclear RNA surveillance in yeast. It recognizes a variety of nuclear transcripts produced by all three RNA polymerases, adds short poly(A) tails to aberrant or unstable RNAs and activates the exosome for their degradation. Despite the advances in understanding the structural features of the isolated complex subunits or their fragments, the details of complex assembly, RNA recognition and exosome activation remain poorly understood. Here we provide the first understanding of the RNA binding mode of the complex. We show that Air2p is an RNA-binding subunit of TRAMP. We identify the zinc knuckles (ZnK) 2, 3 and 4 as the RNA-binding domains, and reveal the essentiality of ZnK4 for TRAMP4 polyadenylation activity. Furthermore, we identify Air2p as the key component of TRAMP4 assembly providing bridging between Mtr4p and Trf4p. The former is bound via the N-terminus of Air2p, while the latter is bound via ZnK5, the linker between ZnK4 and 5 and the C-terminus of the protein. Finally, we uncover the RNA binding part of the Mtr4p arch, the KOW domain, as the essential component for TRAMP-mediated exosome activation.
Collapse
Affiliation(s)
- Peter Holub
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Duncan CDS, Mata J. Widespread cotranslational formation of protein complexes. PLoS Genet 2011; 7:e1002398. [PMID: 22144913 PMCID: PMC3228823 DOI: 10.1371/journal.pgen.1002398] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/11/2011] [Indexed: 12/28/2022] Open
Abstract
Most cellular processes are conducted by multi-protein complexes. However, little is known about how these complexes are assembled. In particular, it is not known if they are formed while one or more members of the complexes are being translated (cotranslational assembly). We took a genomic approach to address this question, by systematically identifying mRNAs associated with specific proteins. In a sample of 31 proteins from Schizosaccharomyces pombe that did not contain RNA–binding domains, we found that ∼38% copurify with mRNAs that encode interacting proteins. For example, the cyclin-dependent kinase Cdc2p associates with the rum1 and cdc18 mRNAs, which encode, respectively, an inhibitor of Cdc2p kinase activity and an essential regulator of DNA replication. Both proteins interact with Cdc2p and are key cell cycle regulators. We obtained analogous results with proteins with different structures and cellular functions (kinesins, protein kinases, transcription factors, proteasome components, etc.). We showed that copurification of a bait protein and of specific mRNAs was dependent on the presence of the proteins encoded by the interacting mRNAs and on polysomal integrity. These results indicate that these observed associations reflect the cotranslational interaction between the bait and the nascent proteins encoded by the interacting mRNAs. Therefore, we show that the cotranslational formation of protein–protein interactions is a widespread phenomenon. Most proteins do not function in isolation. Instead, they associate with other proteins to form complexes. Little is known about the assembly of protein complexes within cells. One possibility is that proteins are completely synthesised before they bind to each other. An alternative is that proteins attach to each other as they are being translated in the ribosome (called cotranslational assembly). To investigate if cells use cotranslational assembly to form complexes, we identified mRNAs associated with specific proteins. The expectation is that if protein A binds to protein B as protein B is being translated, A will associate indirectly to the mRNA encoding B. Indeed, we found that for ∼40% of proteins (out of a sample of over 30) this was the case. Proteins associated with a small number of mRNAs, most of which encoded known or predicted interacting proteins. We found examples of this phenomenon in proteins with different functions and structures, indicating that cotranslational assembly is widespread. Cotranslational assembly might be required for certain proteins to associate, or it might be important in cases where the early formation of a protein complex is beneficial, such as when a protein is toxic or unstable unless bound to a partner.
Collapse
Affiliation(s)
- Caia D. S. Duncan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Fasken MB, Leung SW, Banerjee A, Kodani MO, Chavez R, Bowman EA, Purohit MK, Rubinson ME, Rubinson EH, Corbett AH. Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif are critical for the function and integrity of the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) RNA quality control complex. J Biol Chem 2011; 286:37429-45. [PMID: 21878619 DOI: 10.1074/jbc.m111.271494] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In Saccharomyces cerevisiae, non-coding RNAs, including cryptic unstable transcripts (CUTs), are subject to degradation by the exosome. The Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex in S. cerevisiae is a nuclear exosome cofactor that recruits the exosome to degrade RNAs. Trf4/5 are poly(A) polymerases, Mtr4 is an RNA helicase, and Air1/2 are putative RNA-binding proteins that contain five CCHC zinc knuckles (ZnKs). One central question is how the TRAMP complex, especially the Air1/2 protein, recognizes its RNA substrates. To characterize the function of the Air1/2 protein, we used random mutagenesis of the AIR1/2 gene to identify residues critical for Air protein function. We identified air1-C178R and air2-C167R alleles encoding air1/2 mutant proteins with a substitution in the second cysteine of ZnK5. Mutagenesis of the second cysteine in AIR1/2 ZnK1-5 reveals that Air1/2 ZnK4 and -5 are critical for Air protein function in vivo. In addition, we find that the level of CUT, NEL025c, in air1 ZnK1-5 mutants is stabilized, particularly in air1 ZnK4, suggesting a role for Air1 ZnK4 in the degradation of CUTs. We also find that Air1/2 ZnK4 and -5 are critical for Trf4 interaction and that the Air1-Trf4 interaction and Air1 level are critical for TRAMP complex integrity. We identify a conserved IWRXY motif in the Air1 ZnK4-5 linker that is important for Trf4 interaction. We also find that hZCCHC7, a putative human orthologue of Air1 that contains the IWRXY motif, localizes to the nucleolus in human cells and interacts with both mammalian Trf4 orthologues, PAPD5 and PAPD7 (PAP-associated domain containing 5 and 7), suggesting that hZCCHC7 is the Air component of a human TRAMP complex.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|