1
|
A Genome-Wide Search for Candidate Genes of Meat Production in Jalgin Merino Considering Known Productivity Genes. Genes (Basel) 2022; 13:genes13081337. [PMID: 35893074 PMCID: PMC9331477 DOI: 10.3390/genes13081337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
In a group of Jalgin merino rams with no significant influence on the dispersion of the phenotypes of known productivity genes (MSTN, MEF2B, FABP4, etc.), a genome-wide search for associations of individual polymorphisms with intravital indicators of meat productivity was performed. Using the Ovine Infinium HD BeadChip 600K, 606,000 genome loci were evaluated. Twenty-three substitutions were found to be significantly associated with external measurements of the body and ultrasonic parameters. This made it possible to describe 14 candidate genes, the structural features of which can cause changes in animal phenotypes. No closely spaced genes were found for two substitutions. The identified polymorphisms were found in the exons, introns, and adjacent regions of the following genes and transcripts: CDCA2, ENSOARG00000014477, C4BPA, RIPOR2, ENSOARG00000007198, ENSOARG00000026965 (LincRNA), ENSOARG00000026436 (LincRNA), ENSOARG00000026782 (LincRNA), TENM3, RTL8A, MOSPD1, RTL8С, RIMS2, and P4HA3. The detected genes affect the metabolic pathways of cell differentiation and proliferation and are associated with the regulation of the immune system. This confirms their possible participation in the formation of the phenotypes of productivity parameters in animals and indicates the need for further study of the structure of candidate genes in order to identify their internal polymorphisms.
Collapse
|
2
|
Sousa-Junior LPB, Meira AN, Azevedo HC, Muniz EN, Coutinho LL, Mourão GB, Leão AG, Pedrosa VB, Pinto LFB. Variants in myostatin and MyoD family genes are associated with meat quality traits in Santa Inês sheep. Anim Biotechnol 2020; 33:201-213. [PMID: 32633608 DOI: 10.1080/10495398.2020.1781651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Myostatin and MyoD family genes play vital roles in myogenesis and this study aimed to identify association of variants in MyoD1, MyoG, MyF5, MyF6, and MSTN genes with meat traits in Santa Inês sheep. A dataset with 44 variants and records of seven meat traits in 192 lambs (pH0, pH24, a*, b*, L*, tenderness assessed by shear force, and water-holding capacity) was used. Single-locus and haplotype association analyses were performed, and the significance threshold was established according to Bonferroni's method. Single-locus analysis revealed two associations at a Bonferroni level, where the variant c.935-185C > G in MyoD1 had an additive effect (-4.31 ± 1.08 N) on tenderness, while the variant c.464 + 185G > A in MyoG had an additive effect (-2.86 ± 0.64) on a*. Additionally, the haplotype replacement GT>AC in MSTN was associated with pH0 (1.26 ± 0.31), pH24 (1.07 ± 0.27), a* (-1.40 ± 0.51), and tenderness (3.83 ± 1.22 N), while the replacement GT > AG in MyoD1 was associated with pH0 (1.43 ± 0.26), pH24 (1.25 ± 0.22), b* (-1.06 ± 0.39), and tenderness (-4.13 ± 1.16 N). Our results have demonstrated that some variants in MyoG, MyF6, MyoD1, and MSTN can be associated with physicochemical meat traits in Santa Inês sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | - André Gustavo Leão
- Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Mato Grosso, Rondonópolis, MT, Brazil
| | - Victor Breno Pedrosa
- Departamento de Zootecnia, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | | |
Collapse
|
3
|
Dhorne-Pollet S, Crisci E, Mach N, Renson P, Jaffrézic F, Marot G, Maroilley T, Moroldo M, Lecardonnel J, Blanc F, Bertho N, Bourry O, Giuffra E. The miRNA-targeted transcriptome of porcine alveolar macrophages upon infection with Porcine Reproductive and Respiratory Syndrome Virus. Sci Rep 2019; 9:3160. [PMID: 30816147 PMCID: PMC6395673 DOI: 10.1038/s41598-019-39220-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/18/2019] [Indexed: 12/20/2022] Open
Abstract
Host miRNAs are known to modulate the cell response to virus infections. We characterized the miRNA-targeted transcriptome of porcine alveolar macrophages (PAMs) at early times after infection with a subtype 1.1 strain of PRRSV (Porcine Reproductive and Respiratory Syndrome Virus). We performed the immunoprecipitation of RISC (RNA-induced Silencing Complex) followed by microarray analysis of the RISC-bound miRNA targets (RIP-Chip) to evaluate the relative enrichment or depletion of expressed genes in RISC. The miRNA-mediated regulation occurred early after PRRSV infection and decreased fast (1,241 and 141 RISC-bound genes at 7 h and 10 h post-infection, respectively); it affected several cell functions with evidence of miRNA buffering of upregulated interferon-related genes. Eight miRNAs were highly enriched in RISC of both control and infected cells with no evidence of differential expression. Although miR-335-5p was the miRNA with most predicted targets among enriched RISC-bound genes, no effects on surface markers, cytokine expression and PRRSV replication were detected upon miR-335-5p mimics of primary PAMs. Our results do not point to specific miRNA-driven mechanisms regulating the early response to infection with this PRRSV 1.1 strain and indicate that the miRNome expressed by steady-state PAMs reacts promptly to counterbalance PRRSV infection by a pervasive modulation of host functions.
Collapse
Affiliation(s)
- Sophie Dhorne-Pollet
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, 78350, France
| | - Elisa Crisci
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, 78350, France.,Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Nuria Mach
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, 78350, France
| | - Patricia Renson
- ANSES, Unité Virologie Immunologie Porcines, Ploufragan, 22440, France
| | - Florence Jaffrézic
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, 78350, France
| | - Guillemette Marot
- EA 2694 Biostatistiques, Université de Lille, Inria Lille Nord Europe, MODAL, Villeneuve d'Ascq, 59650, France
| | - Tatiana Maroilley
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, 78350, France.,Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute (ACHRI), Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Marco Moroldo
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, 78350, France
| | - Jérôme Lecardonnel
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, 78350, France
| | - Fany Blanc
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, 78350, France
| | - Nicolas Bertho
- Virologie et Immunologie Moléculaire, Institut National de la Recherche Agronomique, Université Paris-Saclay, Jouy-en-Josas, France.,PIPAE, BIOEPAR, INRA, ONIRIS, Nantes Atlantic National College of Veterinary Medicine, Nantes, 44307, France
| | - Olivier Bourry
- ANSES, Unité Virologie Immunologie Porcines, Ploufragan, 22440, France
| | - Elisabetta Giuffra
- GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, 78350, France.
| |
Collapse
|
4
|
Cheng H, Xu X, Hadfield T, Cockett N, Charlier C, Georges M, Takeda H. Experimental evaluation does not reveal a direct effect of microRNA from the callipyge locus on DLK1 expression. BMC Genomics 2014; 15:944. [PMID: 25359221 PMCID: PMC4226911 DOI: 10.1186/1471-2164-15-944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/16/2014] [Indexed: 01/10/2023] Open
Abstract
Background Polar overdominance at the ovine callipyge (CLPG) locus involves the post-transcriptional trans-inhibition of DLK1 in skeletal muscle of CLPG/CLPG sheep. The abundant maternally expressed microRNAs (miRNAs) mapping to the imprinted DLK1-GTL2 domain are prime candidate mediators of this trans-effect. Results We have tested the affinity of 121 miRNAs processed from this locus for DLK1 by co-transfecting COS1 cells with a vector expressing the full-length ovine DLK1 with corresponding mimic miRNAs. None of the tested miRNAs was able to down regulate DLK1 to the extent observed in vivo. Conclusions This suggests that other factors, with or without these miRNAs, are involved in mediating the observed trans-effect. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-944) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haruko Takeda
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège (B34), 1 Avenue de l'Hôpital, 4000 Liège, Belgium.
| |
Collapse
|
5
|
Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol 2013; 1:1603-48. [PMID: 23733655 DOI: 10.1002/cphy.c100059] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This article is devoted to the role of genetic variation and gene-exercise interactions in the biology of adaptation to exercise. There is evidence from genetic epidemiology research that DNA sequence differences contribute to human variation in physical activity level, cardiorespiratory fitness in the untrained state, cardiovascular and metabolic response to acute exercise, and responsiveness to regular exercise. Methodological and technological advances have made it possible to undertake the molecular dissection of the genetic component of complex, multifactorial traits, such as those of interest to exercise biology, in terms of tissue expression profile, genes, and allelic variants. The evidence from animal models and human studies is considered. Data on candidate genes, genome-wide linkage results, genome-wide association findings, expression arrays, and combinations of these approaches are reviewed. Combining transcriptomic and genomic technologies has been shown to be more powerful as evidenced by the development of a recent molecular predictor of the ability to increase VO2max with exercise training. For exercise as a behavior and physiological fitness as a state to be major players in public health policies will require that the role of human individuality and the influence of DNA sequence differences be understood. Likewise, progress in the use of exercise in therapeutic medicine will depend to a large extent on our ability to identify the favorable responders for given physiological properties to a given exercise regimen.
Collapse
Affiliation(s)
- Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
| | | | | |
Collapse
|
6
|
Abstract
MicroRNAs (miRNAs) are a class of ~22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3'-untranslated regions (3'-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.
Collapse
|
7
|
Abstract
miRNAs (microRNAs) are novel post-transcriptional regulators of gene expression. Several miRNAs, expressed exclusively in muscle, play important roles during muscle development, growth and regeneration; other ubiquitously expressed miRNAs are also essential for muscle function. In the present review, we outline the miRNAs involved in embryonic muscle development and those that have been found to be dysregulated in diseases associated with skeletal muscle or are changed during muscle adaptation. miRNAs are promising biomarkers and candidates for potential therapeutic intervention. We discuss the strategies that aim to develop novel therapies through modulating miRNA activity. In time, some of these approaches may become available to treat muscle-associated diseases.
Collapse
|
8
|
|
9
|
Caiment F, Charlier C, Hadfield T, Cockett N, Georges M, Baurain D. Assessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing. Genome Res 2010; 20:1651-62. [PMID: 20944086 DOI: 10.1101/gr.108787.110] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The callipyge phenotype is a monogenic muscular hypertrophy that is only expressed in heterozygous sheep receiving the CLPG mutation from their sire. The wild-type phenotype of CLPG/CLPG animals is thought to result from translational inhibition of paternally expressed DLK1 transcripts by maternally expressed miRNAs. To identify the miRNA responsible for this trans effect, we used high-throughput sequencing to exhaustively catalog miRNAs expressed in skeletal muscle of sheep of the four CLPG genotypes. We have identified 747 miRNA species of which 110 map to the DLK1-GTL2 or callipyge domain. We demonstrate that the latter are imprinted and preferentially expressed from the maternal allele. We show that the CLPG mutation affects their level of expression in cis (∼3.2-fold increase) as well as in trans (∼1.8-fold increase). In CLPG/CLPG animals, miRNAs from the DLK1-GTL2 domain account for ∼20% of miRNAs in skeletal muscle. We show that the CLPG genotype affects the levels of A-to-I editing of at least five pri-miRNAs of the DLK1-GTL2 domain, but that levels of editing of mature miRNAs are always minor. We present suggestive evidence that the miRNAs from the domain target the ORF of DLK1, thereby causing the trans inhibition underlying polar overdominance. We highlight the limitations of high-throughput sequencing for digital gene expression profiling as a result of biased and inconsistent amplification of specific miRNAs.
Collapse
Affiliation(s)
- Florian Caiment
- Department of Animal Production, GIGA-R, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | | | | | | |
Collapse
|