1
|
Llinas RJ, Xiong JQ, Clark NM, Burkhart SE, Bartel B. An Arabidopsis pre-RNA processing8a (prp8a) missense allele restores splicing of a subset of mis-spliced mRNAs. PLANT PHYSIOLOGY 2022; 189:2175-2192. [PMID: 35608297 PMCID: PMC9342983 DOI: 10.1093/plphys/kiac221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic precursor mRNAs often harbor noncoding introns that must be removed prior to translation. Accurate splicing of precursor messenger RNA depends on placement and assembly of small nuclear ribonucleoprotein (snRNP) sub-complexes of the spliceosome. Yeast (Saccharomyces cerevisiae) studies established a role in splice-site selection for PRE-RNA PROCESSING8 (PRP8), a conserved spliceosome scaffolding protein of the U5 snRNP. However, analogous splice-site selection studies in multicellular eukaryotes are lacking. Such studies are crucial for a comprehensive understanding of alternative splicing, which is extensive in plants and animals but limited in yeast. In this work, we describe an Arabidopsis (Arabidopsis thaliana) prp8a mutant that modulates splice-site selection. We isolated prp8a-14 from a screen for suppressors of pex14-6, which carries a splice-site mutation in the PEROXIN14 (PEX14) peroxisome biogenesis gene. To elucidate Arabidopsis PRP8A function in spliceosome fidelity, we combined prp8a-14 with various pex14 splice-site mutations and monitored the double mutants for physiological and molecular consequences of dysfunctional and functional peroxisomes that correspond to impaired and recovered splicing, respectively. prp8a-14 restored splicing and PEX14 function to alleles with mutations in the exonic guanine of the 5'-splice site but did not restore splicing or function to alleles with mutations in the intronic guanine of 5'- or 3'-splice sites. We used RNA-seq to reveal the systemic impact of prp8a-14 and found hundreds of differentially spliced transcripts and thousands of transcripts with significantly altered levels. Among differentially spliced transcripts, prp8a-14 significantly altered 5'- and 3'-splice-site utilization to favor sites resulting in shorter introns. This study provides a genetic platform for probing splicing in plants and hints at a role for plant PRP8 in splice-site selection.
Collapse
Affiliation(s)
- Roxanna J Llinas
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | | | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Sarah E Burkhart
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
2
|
Bao J, Zhang Y, Zhang L, Wang X. Effects of maternal exposure to PFOA on testes of male offspring mice. CHEMOSPHERE 2021; 272:129585. [PMID: 33465609 DOI: 10.1016/j.chemosphere.2021.129585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This study was conducted to explore the effects of maternal exposure to perfluorooctanoic acid (PFOA) on testicular development of male offspring mice. 20 pregnant Kunming mice were randomly divided into control group and PFOA exposure group with 10 mice of each. In PFOA exposure group, pregnant mice were given 5 mg/kg BW PFOA daily by gavage during gestation. Male offspring mice were killed to separate serum and collect testis at postpartum day 21, then tested the experimental indicators. The results showed that compared with control group, the content of PFOA in the serum of PFOA-exposed mice increased significantly and testosterone content is significantly reduced. Histological observations revealed architectural damages in testis in PFOA exposed groups and the apoptosis was increased. Transcriptome sequencing results showed that the U4/U6 snRNA coding genes snu13 and prp19 complex coding genes HSP73 were up-regulated and the U5 snRNA coding genes Brr2, Prp8 and EJC/TREX coding THOC genes were down-regulated after PFOA exposure Real-time PCR confirmed this result. These results indicate that the exposure of pregnant mice to perfluorooctanoic acid will have a damaging effect on the development of testes in male offspring mice, which may be due to blocked activation of the shear body, changes in structural functions, and inability to perform shear functions.
Collapse
Affiliation(s)
- Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Linchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
3
|
Kück U, Schmitt O. The Chloroplast Trans-Splicing RNA-Protein Supercomplex from the Green Alga Chlamydomonas reinhardtii. Cells 2021; 10:cells10020290. [PMID: 33535503 PMCID: PMC7912774 DOI: 10.3390/cells10020290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
In eukaryotes, RNA trans-splicing is a significant RNA modification process for the end-to-end ligation of exons from separately transcribed primary transcripts to generate mature mRNA. So far, three different categories of RNA trans-splicing have been found in organisms within a diverse range. Here, we review trans-splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. We discuss the origin of intronic sequences and the evolutionary relationship between chloroplast ribonucleoprotein complexes and the nuclear spliceosome. Finally, we focus on the ribonucleoprotein supercomplex involved in trans-splicing of chloroplast group II introns from the green alga Chlamydomonas reinhardtii. This complex has been well characterized genetically and biochemically, resulting in a detailed picture of the chloroplast ribonucleoprotein supercomplex. This information contributes substantially to our understanding of the function of RNA-processing machineries and might provide a blueprint for other splicing complexes involved in trans- as well as cis-splicing of organellar intron RNAs.
Collapse
|
4
|
Abstract
The spliceosome removes introns from messenger RNA precursors (pre-mRNA). Decades of biochemistry and genetics combined with recent structural studies of the spliceosome have produced a detailed view of the mechanism of splicing. In this review, we aim to make this mechanism understandable and provide several videos of the spliceosome in action to illustrate the intricate choreography of splicing. The U1 and U2 small nuclear ribonucleoproteins (snRNPs) mark an intron and recruit the U4/U6.U5 tri-snRNP. Transfer of the 5' splice site (5'SS) from U1 to U6 snRNA triggers unwinding of U6 snRNA from U4 snRNA. U6 folds with U2 snRNA into an RNA-based active site that positions the 5'SS at two catalytic metal ions. The branch point (BP) adenosine attacks the 5'SS, producing a free 5' exon. Removal of the BP adenosine from the active site allows the 3'SS to bind, so that the 5' exon attacks the 3'SS to produce mature mRNA and an excised lariat intron.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| | - Clément Charenton
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
5
|
Wu NY, Cheng SC. Functional analysis of Cwc24 ZF-domain in 5' splice site selection. Nucleic Acids Res 2019; 47:10327-10339. [PMID: 31504764 PMCID: PMC6821175 DOI: 10.1093/nar/gkz733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
The essential splicing factor Cwc24 contains a zinc-finger (ZF) domain required for its function in splicing. Cwc24 binds over the 5' splice site after the spliceosome is activated, and its binding prior to Prp2-mediated spliceosome remodeling is important for proper interactions of U5 and U6 with the 5' splice site sequence and selection of the 5' splice site. Here, we show that Cwc24 transiently interacts with the 5' splice site in formation of the functional RNA catalytic core during spliceosome remodeling, and the ZF-motif is required for specific interaction of Cwc24 with the 5' splice site. Deletion of the ZF domain or mutation of the conserved ZF residues greatly weakened the association of Cwc24 with the spliceosome, and lowered the affinity and specificity of its interaction with the 5' splice site, resulting in atypical interactions of U5, U6 and Prp8 with the 5' splice site, and aberrant cleavage at the 5' splice site. Our results reveal a crucial role of the Cwc24 ZF-motif for defining 5' splice site selection in the first splicing step.
Collapse
Affiliation(s)
- Nan-Ying Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
6
|
Chung CS, Tseng CK, Lai YH, Wang HF, Newman AJ, Cheng SC. Dynamic protein-RNA interactions in mediating splicing catalysis. Nucleic Acids Res 2019; 47:899-910. [PMID: 30395327 PMCID: PMC6344849 DOI: 10.1093/nar/gky1089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022] Open
Abstract
The spliceosome is assembled via sequential interactions of pre-mRNA with five small nuclear RNAs and many proteins. Recent determination of cryo-EM structures for several spliceosomal complexes has provided deep insights into interactions between spliceosomal components and structural changes of the spliceosome between steps, but information on how the proteins interact with pre-mRNA to mediate the reaction is scarce. By systematic analysis of proteins interacting with the splice sites (SSs), we have identified many previously unknown interactions of spliceosomal components with the pre-mRNA. Prp8 directly binds over the 5′SS and the branch site (BS) for the first catalytic step, and the 5′SS and 3′SS for the second step. Switching the Prp8 interaction from the BS to the 3′SS requires Slu7, which interacts dynamically with pre-mRNA first, and then interacts stably with the 3′-exon after Prp16-mediated spliceosome remodeling. Our results suggest that Prp8 plays a key role in positioning the 5′SS and 3′SS, facilitated by Slu7 through interactions with Prp8 and substrate RNA to advance exon ligation. We also provide evidence that Prp16 first docks on the intron 3′ tail, then translocates in the 3′ to 5′ direction on remodeling the spliceosome.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Chi-Kang Tseng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Yung-Hua Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Hui-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China.,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan 112, Republic of China
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
7
|
Jia X, Sun C. Structural dynamics of the N-terminal domain and the Switch loop of Prp8 during spliceosome assembly and activation. Nucleic Acids Res 2019; 46:3833-3840. [PMID: 29635373 PMCID: PMC5934631 DOI: 10.1093/nar/gky242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
Precursor message RNA (pre-mRNA) splicing is executed by the spliceosome, a large ribonucleoprotein (RNP) machinery that is comparable to the ribosome. Driven by the rapid progress of cryo-electron microscopy (cryo-EM) technology, high resolution structures of the spliceosome in its different splicing stages have proliferated over the past three years, which has greatly facilitated the mechanistic understanding of pre-mRNA splicing. As the largest and most conserved protein in the spliceosome, Prp8 plays a pivotal role within this protein-directed ribozyme. Structure determination of different spliceosomal complexes has revealed intimate and dynamic interactions between Prp8 and catalytic RNAs as well as with other protein factors during splicing. Here we review the structural dynamics of two elements of Prp8, the N-terminal domain (N-domain) and the Switch loop, and delineate the dynamic organisation and underlying functional significance of these two elements during spliceosome assembly and activation. Further biochemical and structural dissections of idiographic splicing stages are much needed for a complete understanding of the spliceosome and pre-mRNA splicing.
Collapse
Affiliation(s)
- Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| | - Chengfu Sun
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
8
|
Garcia Garces H, Hamae Yamauchi D, Theodoro RC, Bagagli E. PRP8 Intein in Onygenales: Distribution and Phylogenetic Aspects. Mycopathologia 2019; 185:37-49. [PMID: 31286362 DOI: 10.1007/s11046-019-00355-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022]
Abstract
Inteins (internal proteins) are mobile genetic elements, inserted in housekeeping proteins, with self-splicing properties. Some of these elements have been recently pointed out as modulators of genetic expression or protein function. Herein, we evaluated, in silico, the distribution and phylogenetic patterns of PRP8 intein among 93 fungal strains of the order Onygenales. PRP8 intein(s) are present in most of the species (45/49), mainly as full-length inteins (containing both the Splicing and the Homing Endonuclease domains), and must have transferred vertically in all lineages, since their phylogeny reflects the group phylogeny. While the distribution of PRP8 intein(s) varies among species of Onygenaceae family, being absent in Coccidioides spp. and present as full and mini-intein in other species, they are consistently observed as full-length inteins in all evaluated pathogenic species of the Arthrodermataceae and Ajellomycetaceae families. This conservative and massive PRP8 intein presence in Ajellomycetacean and Arthrodermatecean species reinforces the previous idea that such genetic elements do not decrease the fungal fitness significantly and even might play some role in the host-pathogen relationship, at least in these two fungal groups. We may better position the species Ophidiomyces ophiodiicola (with no intein) in the Onygenaceae family and Onygena corvina (with a full-length intein) as a basal member in the Arthrodermataceae family.
Collapse
Affiliation(s)
- Hans Garcia Garces
- Microbiology and Immunology Department, Biosciences Institute of Botucatu, State University of Sao Paulo (UNESP), Botucatu, São Paulo, Brazil
| | - Danielle Hamae Yamauchi
- Microbiology and Immunology Department, Biosciences Institute of Botucatu, State University of Sao Paulo (UNESP), Botucatu, São Paulo, Brazil
| | - Raquel Cordeiro Theodoro
- Tropical Medicine Institute of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Eduardo Bagagli
- Microbiology and Immunology Department, Biosciences Institute of Botucatu, State University of Sao Paulo (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
9
|
Galej WP, Toor N, Newman AJ, Nagai K. Molecular Mechanism and Evolution of Nuclear Pre-mRNA and Group II Intron Splicing: Insights from Cryo-Electron Microscopy Structures. Chem Rev 2018; 118:4156-4176. [PMID: 29377672 DOI: 10.1021/acs.chemrev.7b00499] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear pre-mRNA splicing and group II intron self-splicing both proceed by two-step transesterification reactions via a lariat intron intermediate. Recently determined cryo-electron microscopy (cryo-EM) structures of catalytically active spliceosomes revealed the RNA-based catalytic core and showed how pre-mRNA substrates and reaction products are positioned in the active site. These findings highlight a strong structural similarity to the group II intron active site, strengthening the notion that group II introns and spliceosomes evolved from a common ancestor. Prp8, the largest and most conserved protein in the spliceosome, cradles the active site RNA. Prp8 and group II intron maturase have a similar domain architecture, suggesting that they also share a common evolutionary origin. The interactions between maturase and key group II intron RNA elements, such as the exon-binding loop and domains V and VI, are recapitulated in the interactions between Prp8 and key elements in the spliceosome's catalytic RNA core. Structural comparisons suggest that the extensive RNA scaffold of the group II intron was gradually replaced by proteins as the spliceosome evolved. A plausible model of spliceosome evolution is discussed.
Collapse
Affiliation(s)
- Wojciech P Galej
- EMBL Grenoble , 71 Avenue des Martyrs , 38042 Grenoble Cedex 09 , France
| | - Navtej Toor
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge CB2 0QH , U.K
| |
Collapse
|
10
|
Vosseberg J, Snel B. Domestication of self-splicing introns during eukaryogenesis: the rise of the complex spliceosomal machinery. Biol Direct 2017; 12:30. [PMID: 29191215 PMCID: PMC5709842 DOI: 10.1186/s13062-017-0201-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022] Open
Abstract
ᅟ The spliceosome is a eukaryote-specific complex that is essential for the removal of introns from pre-mRNA. It consists of five small nuclear RNAs (snRNAs) and over a hundred proteins, making it one of the most complex molecular machineries. Most of this complexity has emerged during eukaryogenesis, a period that is characterised by a drastic increase in cellular and genomic complexity. Although not fully resolved, recent findings have started to shed some light on how and why the spliceosome originated. In this paper we review how the spliceosome has evolved and discuss its origin and subsequent evolution in light of different general hypotheses on the evolution of complexity. Comparative analyses have established that the catalytic core of this ribonucleoprotein (RNP) complex, as well as the spliceosomal introns, evolved from self-splicing group II introns. Most snRNAs evolved from intron fragments and the essential Prp8 protein originated from the protein that is encoded by group II introns. Proteins that functioned in other RNA processes were added to this core and extensive duplications of these proteins substantially increased the complexity of the spliceosome prior to the eukaryotic diversification. The splicing machinery became even more complex in animals and plants, yet was simplified in eukaryotes with streamlined genomes. Apparently, the spliceosome did not evolve its complexity gradually, but in rapid bursts, followed by stagnation or even simplification. We argue that although both adaptive and neutral evolution have been involved in the evolution of the spliceosome, especially the latter was responsible for the emergence of an enormously complex eukaryotic splicing machinery from simple self-splicing sequences. Reviewers This article was reviewed by W. Ford Doolittle, Eugene V. Koonin and Vivek Anantharaman.
Collapse
Affiliation(s)
- Julian Vosseberg
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
11
|
Wilkinson ME, Fica SM, Galej WP, Norman CM, Newman AJ, Nagai K. Postcatalytic spliceosome structure reveals mechanism of 3'-splice site selection. Science 2017; 358:1283-1288. [PMID: 29146871 DOI: 10.1126/science.aar3729] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 12/27/2022]
Abstract
Introns are removed from eukaryotic messenger RNA precursors by the spliceosome in two transesterification reactions-branching and exon ligation. The mechanism of 3'-splice site recognition during exon ligation has remained unclear. Here we present the 3.7-angstrom cryo-electron microscopy structure of the yeast P-complex spliceosome immediately after exon ligation. The 3'-splice site AG dinucleotide is recognized through non-Watson-Crick pairing with the 5' splice site and the branch-point adenosine. After the branching reaction, protein factors work together to remodel the spliceosome and stabilize a conformation competent for 3'-splice site docking, thereby promoting exon ligation. The structure accounts for the strict conservation of the GU and AG dinucleotides at the 5' and 3' ends of introns and provides insight into the catalytic mechanism of exon ligation.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Sebastian M Fica
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | | | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
12
|
Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 2017; 18:655-670. [DOI: 10.1038/nrm.2017.86] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Zhao C, Pyle AM. Structural Insights into the Mechanism of Group II Intron Splicing. Trends Biochem Sci 2017; 42:470-482. [PMID: 28438387 PMCID: PMC5492998 DOI: 10.1016/j.tibs.2017.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
Abstract
While the major architectural features and active-site components of group II introns have been known for almost a decade, information on the individual stages of splicing has been lacking. Recent advances in crystallography and cryo-electron microscopy (cryo-EM) have provided major new insights into the structure of intact lariat introns. Conformational changes that mediate the steps of splicing and retrotransposition are being elucidated, revealing the dynamic, highly coordinated motions that are required for group II intron activity. Finally, these ribozymes can now be viewed in their larger, more natural context as components of holoenzymes that include encoded maturase proteins. These studies expand our understanding of group II intron structural diversity and evolution, while setting the stage for rigorous mechanistic analysis of RNA splicing machines.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
14
|
Role of Cwc24 in the First Catalytic Step of Splicing and Fidelity of 5' Splice Site Selection. Mol Cell Biol 2017; 37:MCB.00580-16. [PMID: 27994011 DOI: 10.1128/mcb.00580-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/11/2016] [Indexed: 12/17/2022] Open
Abstract
Cwc24 is an essential splicing factor but only transiently associates with the spliceosome, with an unknown function. The protein contains a RING finger and a zinc finger domain in the carboxyl terminus. The human ortholog of Cwc24, RNF113A, has been associated with the disorder trichothiodystrophy. Here, we show that the zinc finger domain is essential for Cwc24 function, while the RING finger domain is dispensable. Cwc24 binds to the spliceosome after the Prp19-associated complex and is released upon Prp2 action. Cwc24 is not required for Prp2-mediated remodeling of the spliceosome, but the spliceosome becomes inactive if remodeling occurs before the addition of Cwc24. Cwc24 binds directly to pre-mRNA at the 5' splice site, spanning the splice junction. In the absence of Cwc24, U5 and U6 modes of interaction with the 5' splice site are altered, and splicing is very inefficient, with aberrant cleavage at the 5' splice site. Our data suggest roles for Cwc24 in orchestrating organization of the spliceosome into an active configuration prior to Prp2-mediated spliceosome remodeling and in promoting specific interaction of U5 and U6 with the 5' splice site for fidelity of 5' splice site selection.
Collapse
|
15
|
Abstract
Group II introns are self-splicing catalytic RNAs found in bacteria and the organelles of fungi and plants. They are thought to share a common ancestor with the spliceosome, which catalyzes the removal of nuclear introns from pre-mRNAs in eukaryotes. Recent structural and biochemical evidence supports the hypothesis that the spliceosome has a catalytic RNA core homologous to that found in group II introns. The crystal structure of a eukaryotic group IIB intron was recently determined and reveals the architecture of a branched lariat RNA that is also formed by the spliceosome. Here we describe the active site components of this intron and propose a model for RNA splicing involving dynamic base triples in the catalytic triad. Based on this structure, we draw analogies to the U2/U6 snRNA pairing and RNA-protein interactions that form in the active site of the spliceosome.
Collapse
Affiliation(s)
- Jessica K Peters
- a Department of Chemistry and Biochemistry ; University of California, San Diego ; La Jolla , CA USA
| | - Navtej Toor
- a Department of Chemistry and Biochemistry ; University of California, San Diego ; La Jolla , CA USA
| |
Collapse
|
16
|
Abstract
This review focuses on recent developments in our understanding of group II intron function, the relationships of these introns to retrotransposons and spliceosomes, and how their common features have informed thinking about bacterial group II introns as key elements in eukaryotic evolution. Reverse transcriptase-mediated and host factor-aided intron retrohoming pathways are considered along with retrotransposition mechanisms to novel sites in bacteria, where group II introns are thought to have originated. DNA target recognition and movement by target-primed reverse transcription infer an evolutionary relationship among group II introns, non-LTR retrotransposons, such as LINE elements, and telomerase. Additionally, group II introns are almost certainly the progenitors of spliceosomal introns. Their profound similarities include splicing chemistry extending to RNA catalysis, reaction stereochemistry, and the position of two divalent metals that perform catalysis at the RNA active site. There are also sequence and structural similarities between group II introns and the spliceosome's small nuclear RNAs (snRNAs) and between a highly conserved core spliceosomal protein Prp8 and a group II intron-like reverse transcriptase. It has been proposed that group II introns entered eukaryotes during bacterial endosymbiosis or bacterial-archaeal fusion, proliferated within the nuclear genome, necessitating evolution of the nuclear envelope, and fragmented giving rise to spliceosomal introns. Thus, these bacterial self-splicing mobile elements have fundamentally impacted the composition of extant eukaryotic genomes, including the human genome, most of which is derived from close relatives of mobile group II introns.
Collapse
|
17
|
Nguyen THD, Galej WP, Bai XC, Oubridge C, Newman AJ, Scheres SHW, Nagai K. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution. Nature 2016; 530:298-302. [PMID: 26829225 PMCID: PMC4762201 DOI: 10.1038/nature16940] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Abstract
U4/U6.U5 tri-snRNP represents a substantial part of the spliceosome before activation. A cryoEM structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at 3.7Å resolution led to an essentially complete atomic model comprising 30 proteins plus U4/U6 and U5 snRNAs. The structure reveals striking interweaving interactions of the protein and RNA components including extended polypeptides penetrating into subunit interfaces. The invariant ACAGAGA sequence of U6 snRNA, which base-pairs with the 5′-splice site during catalytic activation, forms a hairpin stabilised by Dib1 and Prp8 while the adjacent nucleotides interact with the exon binding loop 1 of U5 snRNA. Snu114 harbours GTP but its putative catalytic histidine is held away from the γ-phosphate by hydrogen bonding to a tyrosine in Prp8’s N-terminal domain. Mutation of this histidine to alanine has no detectable effect on yeast growth. The structure provides important new insights into the spliceosome activation process leading to the formation of the catalytic centre.
Collapse
Affiliation(s)
| | - Wojciech P Galej
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Chris Oubridge
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK
| |
Collapse
|
18
|
CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast. Curr Opin Struct Biol 2016; 36:48-57. [PMID: 26803803 PMCID: PMC4830896 DOI: 10.1016/j.sbi.2015.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
Recent advances in cryoEM are revolutionizing our understanding of how molecular machines function. The structure of Saccharomyces cerevisiae U4/U6.U5 tri-snRNP has been revealed. The structure of Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex has been revealed. These structures greatly advanced our understanding of the mechanism of pre-mRNA splicing.
The spliceosome is formed on pre-mRNA substrates from five small nuclear ribonucleoprotein particles (U1, U2, U4/U6 and U5 snRNPs), and numerous non-snRNP factors. Saccharomyces cerevisiae U4/U6.U5 tri-snRNP comprises U5 snRNA, U4/U6 snRNA duplex and approximately 30 proteins and represents a substantial part of the spliceosome before activation. Schizosaccharomyces pombe U2.U6.U5 spliceosomal complex is a post-catalytic intron lariat spliceosome containing U2 and U5 snRNPs, NTC (nineteen complex), NTC-related proteins (NTR), U6 snRNA, and an RNA intron lariat. Two recent papers describe near-complete atomic structures of these complexes based on cryoEM single-particle analysis. The U4/U6.U5 tri-snRNP structure provides crucial insight into the activation mechanism of the spliceosome. The U2.U6.U5 complex reveals the striking architecture of NTC and NTR and important features of the group II intron-like catalytic RNA core remaining after spliced mRNA is released. These two structures greatly advance our understanding of the mechanism of pre-mRNA splicing.
Collapse
|
19
|
Nguyen THD, Galej WP, Bai XC, Savva CG, Newman AJ, Scheres SHW, Nagai K. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature 2015; 523:47-52. [PMID: 26106855 PMCID: PMC4536768 DOI: 10.1038/nature14548] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
U4/U6.U5 tri-snRNP is a 1.5-megadalton pre-assembled spliceosomal complex comprising U5 small nuclear RNA (snRNA), extensively base-paired U4/U6 snRNAs and more than 30 proteins, including the key components Prp8, Brr2 and Snu114. The tri-snRNP combines with a precursor messenger RNA substrate bound to U1 and U2 small nuclear ribonucleoprotein particles (snRNPs), and transforms into a catalytically active spliceosome after extensive compositional and conformational changes triggered by unwinding of the U4 and U6 (U4/U6) snRNAs. Here we use cryo-electron microscopy single-particle reconstruction of Saccharomyces cerevisiae tri-snRNP at 5.9 Å resolution to reveal the essentially complete organization of its RNA and protein components. The single-stranded region of U4 snRNA between its 3' stem-loop and the U4/U6 snRNA stem I is loaded into the Brr2 helicase active site ready for unwinding. Snu114 and the amino-terminal domain of Prp8 position U5 snRNA to insert its loop I, which aligns the exons for splicing, into the Prp8 active site cavity. The structure provides crucial insights into the activation process and the active site of the spliceosome.
Collapse
Affiliation(s)
| | - Wojciech P Galej
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Xiao-chen Bai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christos G Savva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
20
|
Burke JE, Butcher SE, Brow DA. Spliceosome assembly in the absence of stable U4/U6 RNA pairing. RNA (NEW YORK, N.Y.) 2015; 21:923-34. [PMID: 25762536 PMCID: PMC4408799 DOI: 10.1261/rna.048421.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/10/2015] [Indexed: 05/08/2023]
Abstract
The cycle of spliceosome assembly, intron excision, and spliceosome disassembly involves large-scale structural rearrangements of U6 snRNA that are functionally important. U6 enters the splicing pathway bound to the Prp24 protein, which chaperones annealing of U6 to U4 RNA to form a U4/U6 di-snRNP. During catalytic activation of the assembled spliceosome, U4 snRNP is released and U6 is paired to U2 snRNA. Here we show that point mutations in U4 and U6 that decrease U4/U6 base-pairing in vivo are lethal in combination. However, this synthetic phenotype is rescued by a mutation in U6 that alters a U6-Prp24 contact and stabilizes U2/U6. Remarkably, the resulting viable triple mutant strain lacks detectable U4/U6 base-pairing and U4/U6 di-snRNP. Instead, this strain accumulates free U4 snRNP, protein-free U6 RNA, and a novel complex containing U2/U6 di-snRNP. Further mutational analysis indicates that disruption of the U6-Prp24 interaction rather than stabilization of U2/U6 renders stable U4/U6 di-snRNP assembly nonessential. We propose that an essential function of U4/U6 pairing is to displace Prp24 from U6 RNA, and thus a destabilized U6-Prp24 complex renders stable U4/U6 pairing nonessential.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Epistasis, Genetic
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Mutation
- Nucleic Acid Conformation
- Protein Multimerization
- RNA Splicing/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Jordan E Burke
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
21
|
Gautam A, Grainger RJ, Vilardell J, Barrass JD, Beggs JD. Cwc21p promotes the second step conformation of the spliceosome and modulates 3' splice site selection. Nucleic Acids Res 2015; 43:3309-17. [PMID: 25740649 PMCID: PMC4381068 DOI: 10.1093/nar/gkv159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022] Open
Abstract
Pre-mRNA splicing involves two transesterification steps catalyzed by the spliceosome. How RNA substrates are positioned in each step and the molecular rearrangements involved, remain obscure. Here, we show that mutations in PRP16, PRP8, SNU114 and the U5 snRNA that affect this process interact genetically with CWC21, that encodes the yeast orthologue of the human SR protein, SRm300/SRRM2. Our microarray analysis shows changes in 3′ splice site selection at elevated temperature in a subset of introns in cwc21Δ cells. Considering all the available data, we propose a role for Cwc21p positioning the 3′ splice site at the transition to the second step conformation of the spliceosome, mediated through its interactions with the U5 snRNP. This suggests a mechanism whereby SRm300/SRRM2, might influence splice site selection in human cells.
Collapse
MESH Headings
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Alternative Splicing
- Amino Acid Sequence
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Gene Deletion
- Genes, Fungal
- Humans
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Conformation
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Splice Sites
- RNA Splicing
- RNA Splicing Factors
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/chemistry
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/chemistry
- Ribonucleoprotein, U5 Small Nuclear/genetics
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Spliceosomes/metabolism
Collapse
Affiliation(s)
- Amit Gautam
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Richard J Grainger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - J Vilardell
- Department of Molecular Genomics, Institute of Molecular Biology of Barcelona (IBMB), 08028 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - J David Barrass
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| |
Collapse
|
22
|
Valadkhan S. The role of snRNAs in spliceosomal catalysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 120:195-228. [PMID: 24156945 DOI: 10.1016/b978-0-12-381286-5.00006-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The spliceosomes, large ribonucleoprotein (RNP) assemblies that remove the intervening sequences from pre-mRNAs, contain a large number of proteins and five small nuclear RNAs (snRNAs). One snRNA, U6, contains highly conserved sequences that are thought to be the functional counterparts of the RNA elements that form the active site of self-splicing group II intron ribozymes. An in vitro-assembled, protein-free complex of U6 with U2, the base-pairing partner in the spliceosomal catalytic core, can catalyze a two-step splicing reaction in the absence of all other spliceosomal factors, suggesting that the two snRNAs may form all or a large share of the spliceosomal active site. On the other hand, several spliceosomal proteins are thought to help in the formation of functionally required RNA-RNA interactions in the catalytic core. Whether they also contribute functional groups to the spliceosomal active site, and thus whether the spliceosomes are RNA or RNP enzymes remain uncertain.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Wlodaver AM, Staley JP. The DExD/H-box ATPase Prp2p destabilizes and proofreads the catalytic RNA core of the spliceosome. RNA (NEW YORK, N.Y.) 2014; 20:282-94. [PMID: 24442613 PMCID: PMC3923124 DOI: 10.1261/rna.042598.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/30/2013] [Indexed: 05/25/2023]
Abstract
After undergoing massive RNA and protein rearrangements during assembly, the spliceosome undergoes a final, more subtle, ATP-dependent rearrangement that is essential for catalysis. This rearrangement requires the DEAH-box protein Prp2p, an RNA-dependent ATPase. Prp2p has been implicated in destabilizing interactions between the spliceosome and the protein complexes SF3 and RES, but a role for Prp2p in destabilizing RNA-RNA interactions has not been explored. Using directed molecular genetics in budding yeast, we have found that a cold-sensitive prp2 mutation is suppressed not only by mutations in SF3 and RES components but also by a range of mutations that disrupt the spliceosomal catalytic core element U2/U6 helix I, which is implicated in juxtaposing the 5' splice site and branch site and in positioning metal ions for catalysis within the context of a putative catalytic triplex; indeed, mutations in this putative catalytic triplex also suppressed a prp2 mutation. Remarkably, we also found that prp2 mutations rescue lethal mutations in U2/U6 helix I. These data provide evidence that RNA elements that comprise the catalytic core are already formed at the Prp2p stage and that Prp2p destabilizes these elements, directly or indirectly, both to proofread spliceosome activation and to promote reconfiguration of the spliceosome to a fully competent, catalytic conformation.
Collapse
|
24
|
Galej WP, Nguyen THD, Newman AJ, Nagai K. Structural studies of the spliceosome: zooming into the heart of the machine. Curr Opin Struct Biol 2014; 25:57-66. [PMID: 24480332 PMCID: PMC4045393 DOI: 10.1016/j.sbi.2013.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
Spliceosomes are large, dynamic ribonucleoprotein complexes that catalyse the removal of introns from messenger RNA precursors via a two-step splicing reaction. The recent crystal structure of Prp8 has revealed Reverse Transcriptase-like, Linker and Endonuclease-like domains. The intron branch-point cross-link with the Linker domain of Prp8 in active spliceosomes and together with suppressors of 5' and 3' splice site mutations this unambiguously locates the active site cavity. Structural and mechanistic similarities with group II self-splicing introns have encouraged the notion that the spliceosome is at heart a ribozyme, and recently the ligands for two catalytic magnesium ions were identified within U6 snRNA. They position catalytic divalent metal ions in the same way as Domain V of group II intron RNA, suggesting that the spliceosome and group II intron use the same catalytic mechanisms.
Collapse
Affiliation(s)
- Wojciech P Galej
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Thi Hoang Duong Nguyen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
25
|
Mas-Oliva J, Navarro-Vidal E, Tapia-Vieyra JV. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells. PLoS One 2014; 9:e86089. [PMID: 24465888 PMCID: PMC3899214 DOI: 10.1371/journal.pone.0086089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 12/11/2013] [Indexed: 12/03/2022] Open
Abstract
Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.
Collapse
Affiliation(s)
- Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Enrique Navarro-Vidal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | | |
Collapse
|
26
|
Nguyen THD, Li J, Galej WP, Oshikane H, Newman AJ, Nagai K. Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. Structure 2014; 21:910-19. [PMID: 23727230 PMCID: PMC3677097 DOI: 10.1016/j.str.2013.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/08/2013] [Accepted: 04/19/2013] [Indexed: 12/12/2022]
Abstract
The U5 small nuclear ribonucleoprotein particle (snRNP) helicase Brr2 disrupts the U4/U6 small nuclear RNA (snRNA) duplex and allows U6 snRNA to engage in an intricate RNA network at the active center of the spliceosome. Here, we present the structure of yeast Brr2 in complex with the Jab1/MPN domain of Prp8, which stimulates Brr2 activity. Contrary to previous reports, our crystal structure and mutagenesis data show that the Jab1/MPN domain binds exclusively to the N-terminal helicase cassette. The residues in the Jab1/MPN domain, whose mutations in human Prp8 cause the degenerative eye disease retinitis pigmentosa, are found at or near the interface with Brr2, clarifying its molecular pathology. In the cytoplasm, Prp8 forms a precursor complex with U5 snRNA, seven Sm proteins, Snu114, and Aar2, but after nuclear import, Brr2 replaces Aar2 to form mature U5 snRNP. Our structure explains why Aar2 and Brr2 are mutually exclusive and provides important insights into the assembly of U5 snRNP. We report the structure of Brr2 helicase in complex with the Jab1/MPN domain of Prp8 Retinitis pigmentosa mutations in the Jab1/MPN domain of Prp8 disrupt this complex Mechanism is proposed for the U4/U6 snRNA duplex unwinding and spliceosome activation The Brr2-Jab1/MPN and Aar2-Prp8 complexes provide insight into U5 snRNP biogenesis
Collapse
|
27
|
Livesay SB, Collier SE, Bitton DA, Bähler J, Ohi MD. Structural and functional characterization of the N terminus of Schizosaccharomyces pombe Cwf10. EUKARYOTIC CELL 2013; 12:1472-89. [PMID: 24014766 PMCID: PMC3837936 DOI: 10.1128/ec.00140-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/03/2013] [Indexed: 01/10/2023]
Abstract
The spliceosome is a dynamic macromolecular machine that catalyzes the removal of introns from pre-mRNA, yielding mature message. Schizosaccharomyces pombe Cwf10 (homolog of Saccharomyces cerevisiae Snu114 and human U5-116K), an integral member of the U5 snRNP, is a GTPase that has multiple roles within the splicing cycle. Cwf10/Snu114 family members are highly homologous to eukaryotic translation elongation factor EF2, and they contain a conserved N-terminal extension (NTE) to the EF2-like portion, predicted to be an intrinsically unfolded domain. Using S. pombe as a model system, we show that the NTE is not essential, but cells lacking this domain are defective in pre-mRNA splicing. Genetic interactions between cwf10-ΔNTE and other pre-mRNA splicing mutants are consistent with a role for the NTE in spliceosome activation and second-step catalysis. Characterization of Cwf10-NTE by various biophysical techniques shows that in solution the NTE contains regions of both structure and disorder. The first 23 highly conserved amino acids of the NTE are essential for its role in splicing but when overexpressed are not sufficient to restore pre-mRNA splicing to wild-type levels in cwf10-ΔNTE cells. When the entire NTE is overexpressed in the cwf10-ΔNTE background, it can complement the truncated Cwf10 protein in trans, and it immunoprecipitates a complex similar in composition to the late-stage U5.U2/U6 spliceosome. These data show that the structurally flexible NTE is capable of independently incorporating into the spliceosome and improving splicing function, possibly indicating a role for the NTE in stabilizing conformational rearrangements during a splice cycle.
Collapse
Affiliation(s)
- S. Brent Livesay
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Scott E. Collier
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danny A. Bitton
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Melanie D. Ohi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
28
|
Anokhina M, Bessonov S, Miao Z, Westhof E, Hartmuth K, Lührmann R. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J 2013; 32:2804-18. [PMID: 24002212 DOI: 10.1038/emboj.2013.198] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/24/2013] [Indexed: 11/09/2022] Open
Abstract
Although U snRNAs play essential roles in splicing, little is known about the 3D arrangement of U2, U6, and U5 snRNAs and the pre-mRNA in active spliceosomes. To elucidate their relative spatial organization and dynamic rearrangement, we examined the RNA structure of affinity-purified, human spliceosomes before and after catalytic step 1 by chemical RNA structure probing. We found a stable 3-way junction of the U2/U6 snRNA duplex in active spliceosomes that persists minimally through step 1. Moreover, the formation of alternating, mutually exclusive, U2 snRNA conformations, as observed in yeast, was not detected in different assembly stages of human spliceosomal complexes (that is, B, B(act), or C complexes). Psoralen crosslinking revealed an interaction during/after step 1 between internal loop 1 of the U5 snRNA, and intron nucleotides immediately downstream of the branchpoint. Using the experimentally derived structural constraints, we generated a model of the RNA network of the step 1 spliceosome, based on the crystal structure of a group II intron through homology modelling. The model is topologically consistent with current genetic, biochemical, and structural data.
Collapse
Affiliation(s)
- Maria Anokhina
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Schellenberg MJ, Wu T, Ritchie DB, Fica S, Staley JP, Atta KA, LaPointe P, MacMillan AM. A conformational switch in PRP8 mediates metal ion coordination that promotes pre-mRNA exon ligation. Nat Struct Mol Biol 2013; 20:728-34. [PMID: 23686287 PMCID: PMC3703396 DOI: 10.1038/nsmb.2556] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/12/2013] [Indexed: 01/05/2023]
Abstract
Splicing of pre-mRNAs in eukaryotes is catalyzed by the spliceosome a large RNA–protein metalloenzyme. The catalytic center of the spliceosome involves a structure comprised of the U2 and U6 snRNAs and includes a metal bound by U6 snRNA. The precise architecture of the splicesome active site however, including the question of whether it includes protein components, remains unresolved. A wealth of evidence places the protein PRP8 at the heart of the spliceosome through assembly and catalysis. Here we provide evidence that the RNase H domain of PRP8 undergoes a conformational switch between the two steps of splicing rationalizing yeast prp8 alleles promoting either the first or second step. We also show that this switch unmasks a metal-binding site involved in the second step. Together these data establish that PRP8 is a metalloprotein that promotes exon ligation within the spliceosome.
Collapse
|
30
|
Zhang L, Li X, Zhao R. Structural analyses of the pre-mRNA splicing machinery. Protein Sci 2013; 22:677-92. [PMID: 23592432 DOI: 10.1002/pro.2266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/03/2023]
Abstract
Pre-mRNA splicing is a critical event in the gene expression pathway of all eukaryotes. The splicing reaction is catalyzed by the spliceosome, a huge protein-RNA complex that contains five snRNAs and hundreds of different protein factors. Understanding the structure of this large molecular machinery is critical for understanding its function. Although the highly dynamic nature of the spliceosome, in both composition and conformation, posed daunting challenges to structural studies, there has been significant recent progress on structural analyses of the splicing machinery, using electron microscopy, crystallography, and nuclear magnetic resonance. This review discusses key recent findings in the structural analyses of the spliceosome and its components and how these findings advance our understanding of the function of the splicing machinery.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
31
|
Abstract
Yeast U5 small nuclear ribonucleoprotein particle (snRNP) is assembled via a cytoplasmic precursor that contains the U5-specific Prp8 protein but lacks the U5-specific Brr2 helicase. Instead, pre-U5 snRNP includes the Aar2 protein not found in mature U5 snRNP or spliceosomes. Aar2p and Brr2p bind competitively to a C-terminal region of Prp8p that comprises consecutive RNase H-like and Jab1/MPN-like domains. To elucidate the molecular basis for this competition, we determined the crystal structure of Aar2p in complex with the Prp8p RNase H and Jab1/MPN domains. Aar2p binds on one side of the RNase H domain and extends its C terminus to the other side, where the Jab1/MPN domain is docked onto a composite Aar2p-RNase H platform. Known Brr2p interaction sites of the Jab1/MPN domain remain available, suggesting that Aar2p-mediated compaction of the Prp8p domains sterically interferes with Brr2p binding. Moreover, Aar2p occupies known RNA-binding sites of the RNase H domain, and Aar2p interferes with binding of U4/U6 di-snRNA to the Prp8p C-terminal region. Structural and functional analyses of phospho-mimetic mutations reveal how phosphorylation reduces affinity of Aar2p for Prp8p and allows Brr2p and U4/U6 binding. Our results show how Aar2p regulates both protein and RNA binding to Prp8p during U5 snRNP assembly.
Collapse
|
32
|
Galej WP, Oubridge C, Newman AJ, Nagai K. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 2013; 493:638-43. [PMID: 23354046 PMCID: PMC3672837 DOI: 10.1038/nature11843] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/18/2012] [Indexed: 12/21/2022]
Abstract
The active centre of the spliceosome consists of an intricate network formed by U5, U2 and U6 snRNAs, and a pre-mRNA substrate. Prp8, a component of the U5 snRNP, crosslinks extensively with this RNA catalytic core. We present the crystal structure of yeast Prp8 (residues 885-2413) in complex with the U5 snRNP assembly factor Aar2. The structure reveals new tightly associated domains of Prp8 resembling a bacterial group II intron reverse transcriptase and a type II restriction endonuclease. Suppressors of splice site mutations and an intron branchpoint crosslink map to a large cavity formed by the reverse transcriptase thumb, endonuclease-like and the RNaseH-like domains. This cavity is large enough to accommodate the catalytic core of group II intron RNA. The structure provides crucial insights into the architecture of the spliceosome’s active site and reinforces the notion that nuclear pre-mRNA splicing and group II intron splicing have a common origin.
Collapse
Affiliation(s)
- Wojciech P Galej
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|
33
|
Mozaffari-Jovin S, Santos KF, Hsiao HH, Will CL, Urlaub H, Wahl MC, Lührmann R. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev 2013; 26:2422-34. [PMID: 23124066 DOI: 10.1101/gad.200949.112] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The spliceosomal RNA helicase Brr2 catalyzes unwinding of the U4/U6 snRNA duplex, an essential step for spliceosome catalytic activation. Brr2 is regulated in part by the spliceosomal Prp8 protein by an unknown mechanism. We demonstrate that the RNase H (RH) domain of yeast Prp8 binds U4/U6 small nuclear RNA (snRNA) with the single-stranded regions of U4 and U6 preceding U4/U6 stem I, contributing to its binding. Via cross-linking coupled with mass spectrometry, we identify RH domain residues that contact the U4/U6 snRNA. We further demonstrate that the same single-stranded region of U4 preceding U4/U6 stem I is recognized by Brr2, indicating that it translocates along U4 and first unwinds stem I of the U4/U6 duplex. Finally, we show that the RH domain of Prp8 interferes with U4/U6 unwinding by blocking Brr2's interaction with the U4 snRNA. Our data reveal a novel mechanism whereby Prp8 negatively regulates Brr2 and potentially prevents premature U4/U6 unwinding during splicing. They also support the idea that the RH domain acts as a platform for the exchange of U6 snRNA for U1 at the 5' splice site. Our results provide insights into the mechanism whereby Brr2 unwinds U4/U6 and show how this activity is potentially regulated prior to spliceosome activation.
Collapse
Affiliation(s)
- Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
van der Feltz C, Anthony K, Brilot A, Pomeranz Krummel DA. Architecture of the Spliceosome. Biochemistry 2012; 51:3321-33. [DOI: 10.1021/bi201215r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Clarisse van der Feltz
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Kelsey Anthony
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Axel Brilot
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Daniel A. Pomeranz Krummel
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| |
Collapse
|
35
|
Roca X, Karginov FV. RNA biology in a test tube--an overview of in vitro systems/assays. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:509-27. [PMID: 22447682 DOI: 10.1002/wrna.1115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In vitro systems have provided a wealth of information in the field of RNA biology, as they constitute a superior and sometimes the unique approach to address many important questions. Such cell-free methods can be sorted by the degree of complexity of the preparation of enzymatic and/or regulatory activity. Progress in the study of pre-mRNA processing has largely relied on traditional in vitro methods, as these reactions have been recapitulated in cell-free systems. The pre-mRNA capping, editing, and cleavage/polyadenylation reactions have even been reconstituted using purified components, and the enzymes responsible for catalysis have been characterized by such techniques. In vitro splicing using nuclear or cytoplasmic extracts has yielded clues on spliceosome assembly, kinetics, and mechanisms of splicing and has been essential to elucidate the function of splicing factors. Coupled systems have been important to functionally connect distinct processes, like transcription and splicing. Extract preparation has also been adapted to cells from a variety of tissues and species, revealing general versus species-specific mechanisms. Cell-free assays have also been applied to newly discovered pathways such as those involving small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs). The first two pathways have been well characterized largely by in vitro methods, which need to be developed for piRNAs. Finally, new techniques, such as single-molecule studies, are continuously being established, providing new and important insights into the field. Thus, in vitro approaches have been, are, and will continue being at the forefront of RNA research.
Collapse
Affiliation(s)
- Xavier Roca
- Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | | |
Collapse
|
36
|
Horowitz DS. The mechanism of the second step of pre-mRNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:331-50. [PMID: 22012849 DOI: 10.1002/wrna.112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The molecular mechanisms of the second step of pre-mRNA splicing in yeast and higher eukaryotes are reviewed. The important elements in the pre-mRNA, the participating proteins, and the proposed secondary structures and roles of the snRNAs are described. The sequence of events in the second step is presented, focusing on the actions of the proteins in setting up and facilitating the second reaction. Mechanisms for avoiding errors in splicing are discussed.
Collapse
Affiliation(s)
- David S Horowitz
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
37
|
Dlakić M, Mushegian A. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA (NEW YORK, N.Y.) 2011; 17:799-808. [PMID: 21441348 PMCID: PMC3078730 DOI: 10.1261/rna.2396011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prp8 is the largest and most highly conserved protein of the spliceosome, encoded by all sequenced eukaryotic genomes but missing from prokaryotes and viruses. Despite all evidence that Prp8 is an integral part of the spliceosomal catalytic center, much remains to be learned about its molecular functions and evolutionary origin. By analyzing sequence and structure similarities between Prp8 and other protein domains, we show that its N-terminal region contains a putative bromodomain. The central conserved domain of Prp8 is related to the catalytic domain of reverse transcriptases (RTs) and is most similar to homologous enzymes encoded by prokaryotic retroelements. However, putative catalytic residues in this RT domain are only partially conserved and may not be sufficient for the nucleotidyltransferase activity. The RT domain is followed by an uncharacterized sequence region with relatives found in fungal RT-like proteins. This part of Prp8 is predicted to adopt an α-helical structure and may be functionally equivalent to diverse maturase/X domains of retroelements and to the thumb domain of retroviral RTs. Together with a previously identified C-terminal domain that has an RNaseH-like fold, our results suggest evolutionary connections between Prp8 and ancient mobile elements. Prp8 may have evolved by acquiring nucleic acid-binding domains from inactivated retroelements, and their present-day role may be in maintaining proper conformation of the bound RNA cofactors and substrates of the splicing reaction. This is only the second example-the other one being telomerase-of the RT recruitment from a genomic parasite to serve an essential cellular function.
Collapse
Affiliation(s)
- Mensur Dlakić
- Department of Microbiology, Montana State University, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
38
|
Valadkhan S, Jaladat Y. The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics 2010; 10:4128-41. [PMID: 21080498 DOI: 10.1002/pmic.201000354] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Almost all primary transcripts in higher eukaryotes undergo several splicing events and alternative splicing is a major factor in generating proteomic diversity. Thus, the spliceosome, the ribonucleoprotein assembly that performs splicing, is a highly critical cellular machine and as expected, a very complex one. Indeed, the spliceosome is one of the largest, if not the largest, molecular machine in the cell with over 150 different components in human. A large fraction of the spliceosomal proteome is organized into small nuclear ribonucleoprotein particles by associating with one of the small nuclear RNAs, and the function of many spliceosomal proteins revolve around their association or interaction with the spliceosomal RNAs or the substrate pre-messenger RNAs. In addition to the complex web of protein-RNA interactions, an equally complex network of protein-protein interactions exists in the spliceosome, which includes a number of large, conserved proteins with critical functions in the spliceosomal catalytic core. These include the largest conserved nuclear protein, Prp8, which plays a critical role in spliceosomal function in a hitherto unknown manner. Taken together, the large spliceosomal proteome and its dynamic nature has made it a highly challenging system to study, and at the same time, provides an exciting example of the evolution of a proteome around a backbone of primordial RNAs likely dating from the RNA World.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH 44113, USA.
| | | |
Collapse
|
39
|
Kershaw CJ, Barrass JD, Beggs JD, O'Keefe RT. Mutations in the U5 snRNA result in altered splicing of subsets of pre-mRNAs and reduced stability of Prp8. RNA (NEW YORK, N.Y.) 2009; 15:1292-304. [PMID: 19447917 PMCID: PMC2704078 DOI: 10.1261/rna.1347409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 03/27/2009] [Indexed: 05/04/2023]
Abstract
The U5 snRNA loop 1 aligns the 5' and 3' exons for ligation during the second step of pre-mRNA splicing. U5 is intimately associated with Prp8, which mediates pre-mRNA repositioning within the catalytic core of the spliceosome and interacts directly with U5 loop 1. The genome-wide effect of three U5 loop 1 mutants has been assessed by microarray analysis. These mutants exhibited impaired and improved splicing of subsets of pre-mRNAs compared to wild-type U5. Analysis of pre-mRNAs that accumulate revealed a change in base prevalence at specific positions near the splice sites. Analysis of processed pre-mRNAs exhibiting mRNA accumulation revealed a bias in base prevalence at one position within the 5' exon. While U5 loop 1 can interact with some of these positions the base bias is not directly related to sequence changes in loop 1. All positions that display a bias in base prevalence are at or next to positions known to interact with Prp8. Analysis of Prp8 in the presence of the three U5 loop 1 mutants revealed that the most severe mutant displayed reduced Prp8 stability. Depletion of U5 snRNA in vivo also resulted in reduced Prp8 stability. Our data suggest that certain mutations in U5 loop 1 perturb the stability of Prp8 and may affect interactions of Prp8 with a subset of pre-mRNAs influencing their splicing. Therefore, the integrity of U5 is important for the stability of Prp8 during splicing and provides one possible explanation for why U5 loop 1 and Prp8 are so highly conserved.
Collapse
Affiliation(s)
- Christopher J Kershaw
- Faculty of Life Sciences, The University of Manchester, Manchester M139PT, United Kingdom
| | | | | | | |
Collapse
|
40
|
Ivings L, Towns KV, Matin M, Taylor C, Ponchel F, Grainger RJ, Ramesar RS, Mackey DA, Inglehearn CF. Evaluation of splicing efficiency in lymphoblastoid cell lines from patients with splicing-factor retinitis pigmentosa. Mol Vis 2008; 14:2357-66. [PMID: 19096719 PMCID: PMC2603472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/24/2008] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is caused by mutations in a variety of genes, most of which have known functions in the retina. However, one of the most perplexing findings of recent retinal genetics research was the discovery of mutations causing dominant RP in four ubiquitously expressed splicing factors. The aim of this study was to use lymphoblast cell lines derived from RP patients to determine whether mutations in two of these splicing factors, PRPF8 and PRPF31, cause measurable deficiencies in pre-mRNA splicing. METHODS cDNA was prepared from lymphoblastoid cell lines derived from RP patients bearing mutations in the splicing factor genes and controls, grown under a variety of conditions. Introns representing the U2 and U12 intron classes, with both canonical and noncanonical donor and acceptor sequences, were analyzed by real-time PCR to measure the ratio of spliced versus unspliced transcripts for these introns. In addition, plasmids encoding the retinal outer segment membrane protein-1 (ROM-1; exon 1 to exon 2) gene, both in the wild-type form and with mutations introduced into the splice donor sites, were transfected into cell lines. The spliced versus unspliced cDNA ratios were measured by real-time RT-PCR. RESULTS Splicing of four canonical U2 introns in the actin beta (ACTB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), PRPF8, and retinitis pigmentosa GTPase regulator (RPGR) genes was unaffected in PRPF8 mutant cells. However, the splicing efficiency of RPGR intron 9 was significantly decreased in PRPF31 mutant cell lines. In contrast, a consistent decrease in the splicing efficiency of all U12 and noncanonical U2 introns was seen in PRPF8, but not in PRPF31, mutant cells, with statistical significance for STK11 intron 3. CONCLUSIONS In spite of the ubiquitous expression patterns of the genes implicated in splicing factor RP, no pathology has yet been documented outside the retina. The observed differences in splicing efficiency described herein favor the hypothesis that these mutations may have a subpathological effect outside the retina. These observations argue against a defect in some yet to be discovered additional function of these proteins and support the alternative hypothesis that this form of RP does indeed result from aberrant splicing of retinal transcripts.
Collapse
Affiliation(s)
- Lenka Ivings
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
| | - Katherine V. Towns
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
| | - M.A. Matin
- Department of Statistics, University of Leeds, Leeds, United Kingdom
| | - Charles Taylor
- Department of Statistics, University of Leeds, Leeds, United Kingdom
| | - Frederique Ponchel
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
| | - Richard J. Grainger
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Rajkumar S. Ramesar
- Department of Human Genetics, University of Cape Town Medical School, Cape Town, South Africa
| | - David A. Mackey
- CERA, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
| | - Chris F. Inglehearn
- Section of Ophthalmology and Neuroscience, Leeds Institute of Molecular Medicine, University of Leeds, St James’s University Hospital, Leeds, United Kingdom
| |
Collapse
|
41
|
Pena V, Rozov A, Fabrizio P, Lührmann R, Wahl MC. Structure and function of an RNase H domain at the heart of the spliceosome. EMBO J 2008; 27:2929-40. [PMID: 18843295 PMCID: PMC2580788 DOI: 10.1038/emboj.2008.209] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/18/2008] [Indexed: 11/09/2022] Open
Abstract
Precursor-messenger RNA (pre-mRNA) splicing encompasses two sequential transesterification reactions in distinct active sites of the spliceosome that are transiently established by the interplay of small nuclear (sn) RNAs and spliceosomal proteins. Protein Prp8 is an active site component but the molecular mechanisms, by which it might facilitate splicing catalysis, are unknown. We have determined crystal structures of corresponding portions of yeast and human Prp8 that interact with functional regions of the pre-mRNA, revealing a phylogenetically conserved RNase H fold, augmented by Prp8-specific elements. Comparisons to RNase H-substrate complexes suggested how an RNA encompassing a 5'-splice site (SS) could bind relative to Prp8 residues, which on mutation, suppress splice defects in pre-mRNAs and snRNAs. A truncated RNase H-like active centre lies next to a known contact region of the 5'SS and directed mutagenesis confirmed that this centre is a functional hotspot. These data suggest that Prp8 employs an RNase H domain to help assemble and stabilize the spliceosomal catalytic core, coordinate the activities of other splicing factors and possibly participate in chemical catalysis of splicing.
Collapse
Affiliation(s)
- Vladimir Pena
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Abteilung Zelluläre Biochemie, AG Röntgenkristallographie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Alexey Rozov
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Patrizia Fabrizio
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Reinhard Lührmann
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Markus C Wahl
- Abteilung Zelluläre Biochemie, AG Röntgenkristallographie, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Universitätsmedizin, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
42
|
Ritchie DB, Schellenberg MJ, Gesner EM, Raithatha SA, Stuart DT, MacMillan AM. Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Nat Struct Mol Biol 2008; 15:1199-205. [DOI: 10.1038/nsmb.1505] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 09/26/2008] [Indexed: 11/09/2022]
|
43
|
Crystal structure of the beta-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc Natl Acad Sci U S A 2008; 105:13817-22. [PMID: 18779563 DOI: 10.1073/pnas.0805960105] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prp8 stands out among hundreds of splicing factors as a key regulator of spliceosome activation and a potential cofactor of the splicing reaction. We present here the crystal structure of a 274-residue domain (residues 1,822-2,095) near the C terminus of Saccharomyces cerevisiae Prp8. The most striking feature of this domain is a beta-hairpin finger protruding out of the protein (hence, this domain will be referred to as the beta-finger domain), resembling many globular ribosomal proteins with protruding extensions. Mutations throughout the beta-finger change the conformational equilibrium between the first and the second catalytic step. Mutations at the base of the beta-finger affect U4/U6 unwinding-mediated spliceosome activation. Prp8 may insert its beta-finger into the first-step complex (U2/U5/U6/pre-mRNA) or U4/U6.U5 tri-snRNP and stabilize these complexes. Mutations on the beta-finger likely alter these interactions, leading to the observed mutant phenotypes. Our results suggest a possible mechanism of how Prp8 regulates spliceosome activation. These results also demonstrate an analogy between a spliceosomal protein and ribosomal proteins that insert extensions into folded rRNAs and stabilize the ribosome.
Collapse
|
44
|
Abstract
A pseudouridine-modified region of the U2 small nuclear (sn)RNA anneals with the intronic branchpoint sequence and positions a bulged adenosine to serve as the nucleophile in the first chemical step of pre-mRNA splicing. We have determined three X-ray structures of RNA oligonucleotides containing the pseudouridylated U2 snRNA and the branchpoint consensus sequences. The expected adenosine branchpoint is extrahelical in a 1.65 A resolution structure containing the mammalian consensus sequence variant and in a 2.10 A resolution structure containing a shortened Saccharomyces cerevisiae consensus sequence. The adenosine adjacent to the expected branchpoint is extrahelical in a third structure, which contains the intact yeast consensus sequence at 1.57 A resolution. The hydration and base stacking interactions mediated by the U2 snRNA pseudouridines correlate with the identity of the unpaired adenosine. The expected adenosine bulge is associated with a well-stacked pseudouridine, which is linked via an ordered water molecule to a neighboring nucleotide. In contrast, the bulge of the adjacent adenosine shifts the base stacking and disrupts the water-mediated interactions of the pseudouridine. These structural differences may contribute to the ability of the pseudouridine modification to promote the bulged conformation of the branch site adenosine and to enhance catalysis by snRNAs. Furthermore, iodide binding sites are identified adjacent to the unconventional bulged adenosine, and the structure of the mammalian consensus sequence variant provides a high-resolution view of a hydrated magnesium ion bound in a similar manner to a divalent cation binding site of the group II intron.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
45
|
Turner IA, Norman CM, Churcher MJ, Newman AJ. RNA-protein crosslink mapping using TEV protease. Methods Mol Biol 2008; 488:201-12. [PMID: 18982293 DOI: 10.1007/978-1-60327-475-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Characterization of novel RNA-protein interactions often demands physical mapping of the RNA binding sites in the protein. This can sometimes be accomplished using radioactively labeled RNA in covalent RNA-protein crosslinking experiments. The position of the radioactive label crosslinked to the protein can then be determined by fragmentation of the protein using a battery of sequence-specific proteolytic enzymes or chemical reagents. However, there are typically many cleavage sites in the natural protein sequence, and for large proteins, particularly when there are multiple sites of RNA-protein interaction, it may be difficult or impossible to determine the sites of crosslink formation unambiguously using this traditional physical mapping approach. We have developed an alternative method for physical mapping of RNA-protein crosslinks based on random insertion into the protein of a short peptide tag that includes the target sequence ENLYFQG (Glu-Asn-Leu-Tyr-Phe-Gln-Gly) for the highly specific TEV protease from tobacco etch virus. Covalent RNA-protein crosslinks can then be physically mapped by TEV protease digestion, fractionation of the proteolytic digestion products by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and visualization of the labeled protein fragments by phosphorimaging.
Collapse
Affiliation(s)
- Ian A Turner
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
46
|
Aronova A, Bacíková D, Crotti LB, Horowitz DS, Schwer B. Functional interactions between Prp8, Prp18, Slu7, and U5 snRNA during the second step of pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2007; 13:1437-44. [PMID: 17626844 PMCID: PMC1950762 DOI: 10.1261/rna.572807] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
After the second transesterification step of pre-mRNA splicing, the Prp22 helicase catalyzes release of spliced mRNA by disrupting contacts in the spliceosome that likely involve Prp8. Mutations at Arg1753 in Prp8, which suppress helicase-defective prp22 mutants, elicit temperature-sensitive growth phenotypes, indicating that interactions in the spliceosome involving Prp8-R1753 might be broken prematurely at 37 degrees C. Here we report that mutations in loop I of the U5 snRNA or in Prp18 can suppress the temperature-sensitive prp8-R1753 mutants. The same gain-of-function PRP18 alleles can also alleviate the growth phenotypes of multiple slu7-ts mutants, indicating a functional link between Prp8 and the second step splicing factors Prp18 and Slu7. These findings, together with the demonstration that changes at Arg1753 in Prp8 impair step 2 of pre-mRNA splicing in vitro, are consistent with a model in which (1) Arg1753 plays a role in stabilizing U5/exon interactions prior to exon joining and (2) these contacts persist until they are broken by the helicase Prp22.
Collapse
Affiliation(s)
- Anna Aronova
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
47
|
Tapia-Vieyra JV, Ostrosky-Wegman P, Mas-Oliva J. Proapoptotic role of novel gene-expression factors. Clin Transl Oncol 2007; 9:355-63. [PMID: 17594949 DOI: 10.1007/s12094-007-0067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The mechanisms that control cellular proliferation, as well as those related with programmed cell death or apoptosis, require precise regulation systems to prevent diseases such as cancer. Events related to cellular proliferation as well as those associated with apoptosis involve the regulation of gene expression carried out by three basic genetic expression regulation mechanisms: transcription, splicing of the primary transcript for mature mRNA formation, and RNA translation, a ribosomal machinery-dependent process for protein synthesis. While development of each one of these processes requires energy for recognition and assembly of a number of molecular complexes, it has been reported that an increased expression of several members of these protein complexes promotes apoptosis in distinct cell types. The question of how these factors interact with other proteins in order to incorporate themselves into the different transduction cascades and stimulate the development of programmed cell death, although nowadays actively studied, is still waiting for a clear-cut answer. This review focuses on the interactions established between different families of transcription, elongation, translation and splicing factors associated to the progression of apoptosis.
Collapse
Affiliation(s)
- J V Tapia-Vieyra
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | | | | |
Collapse
|
48
|
Valadkhan S. The spliceosome: caught in a web of shifting interactions. Curr Opin Struct Biol 2007; 17:310-5. [PMID: 17574835 DOI: 10.1016/j.sbi.2007.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/27/2007] [Accepted: 05/25/2007] [Indexed: 11/23/2022]
Abstract
Splicing is a crucial, ubiquitous and highly complex step in eukaryotic gene expression. The daunting complexity of the splicing reaction, although fascinating, has severely limited our understanding of its mechanistic details. Recent advances have begun to provide exciting new insights into the dynamic interactions that govern the function of the spliceosome, the multi-megadalton complex that performs splicing. An emerging paradigm is the presence of a succession of distinct conformational states, which are stabilized by an intricate network of interactions. Recent data suggest that even subtle changes in the composition of the interaction network can result in interconversion of the different conformational states, providing opportunities for regulation and proofreading of spliceosome function. Significant progress in proteomics has elucidated the protein composition of the spliceosome at different stages of assembly. Also, the increased sophistication and resolution of cryo-electron microscopy techniques, combined with high-resolution structural studies on a smaller scale, promise to create detailed images of the global structure of the spliceosome and its main components, which in turn will provide a plethora of mechanistic insights. Overall, the past two years have seen a convergence of data from different lines of research into what promises to become a holistic picture of spliceosome function.
Collapse
Affiliation(s)
- Saba Valadkhan
- Center for RNA Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue, Wood RT 100-8, Cleveland, OH 44106, USA.
| |
Collapse
|
49
|
Zhang L, Shen J, Guarnieri MT, Heroux A, Yang K, Zhao R. Crystal structure of the C-terminal domain of splicing factor Prp8 carrying retinitis pigmentosa mutants. Protein Sci 2007; 16:1024-31. [PMID: 17473007 PMCID: PMC2206663 DOI: 10.1110/ps.072872007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain is an alpha/beta structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn(2+) coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn(2+)-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | | | | | |
Collapse
|
50
|
Crotti LB, Bačíková D, Horowitz DS. The Prp18 protein stabilizes the interaction of both exons with the U5 snRNA during the second step of pre-mRNA splicing. Genes Dev 2007; 21:1204-16. [PMID: 17504938 PMCID: PMC1865492 DOI: 10.1101/gad.1538207] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/19/2007] [Indexed: 11/25/2022]
Abstract
Interaction of the ends of the exons with loop 1 of the U5 snRNA aligns the exons for ligation in the second step of pre-mRNA splicing. To study the effect of Prp18 on the exons' interactions, we analyzed the splicing of pre-mRNAs with random sequences in the exon bases at the splice junctions. The exon mutations had large effects on splicing in yeast with a Prp18 protein lacking its most conserved region, but not in wild-type yeast. Analysis of splicing kinetics demonstrated that only the second step was affected in vivo and in vitro, showing that Prp18 - and specifically its conserved region - plays a key role in stabilizing the interaction of the exons with the spliceosome at the time of exon joining. Superior exon sequences defined by the prp18 results accelerated the second step of splicing by wild-type spliceosomes with inefficient AT-AC pre-mRNAs, implying that normal exon interactions follow the rules we discerned for prp18 splicing. Our results show that As are preferred at the ends of both exons and support a revised model of the interactions of the exons with U5 in which the exons are arranged in a continuous double helix that facilitates the second reaction.
Collapse
Affiliation(s)
- Luciana B. Crotti
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Dagmar Bačíková
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - David S. Horowitz
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|