1
|
Vaysset H, Meers C, Cury J, Bernheim A, Sternberg SH. Evolutionary origins of archaeal and eukaryotic RNA-guided RNA modification in bacterial IS110 transposons. Nat Microbiol 2025; 10:20-27. [PMID: 39747689 PMCID: PMC11930352 DOI: 10.1038/s41564-024-01889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Transposase genes are ubiquitous in all domains of life and provide a rich reservoir for the evolution of novel protein functions. Here we report deep evolutionary links between bacterial IS110-family transposases, which catalyse RNA-guided DNA recombination using bridge RNAs, and archaeal/eukaryotic Nop5-family proteins, which promote RNA-guided RNA 2'-O-methylation using C/D-box snoRNAs. On the basis of conservation of protein sequence, domain architecture, three-dimensional structure and non-coding RNA features, alongside phylogenetic analyses, we propose that programmable RNA modification emerged through the exaptation of components derived from IS110-like transposons. These findings underscore how recurrent domestication events of transposable elements have driven the evolution of RNA-guided mechanisms.
Collapse
Affiliation(s)
- Hugo Vaysset
- Molecular Diversity of Microbes Lab, CNRS UMR3525, Institut Pasteur, Paris, France
- AgroParisTech, Université Paris-Saclay, Paris, France
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jean Cury
- Molecular Diversity of Microbes Lab, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Aude Bernheim
- Molecular Diversity of Microbes Lab, CNRS UMR3525, Institut Pasteur, Paris, France.
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Ren X, Zhang H, Yan X, Sun Y, Xu T. NOP56 negatively regulates MyD88-mediated NF-κB signaling in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 120:75-81. [PMID: 34774735 DOI: 10.1016/j.fsi.2021.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
MyD88 is a critical adaptor in the TLRs signaling pathway, which can activate NF-κB signaling pathway and promote proinflammatory cytokines production. However, the molecular mechanisms that modulate MyD88 expression, especially in teleost, remain largely unknown. In this study, we showed that NOP56 serve as a negative regulator of the MyD88-mediated NF-κB signaling pathway. NOP56 overexpression inhibited the protein expression of MyD88. Whereas, siRNA knockdown of NOP56 had opposite effect. Furthermore, we found that the NOSIC domain is responsible for the suppressive effect of NOP56 in MyD88 expression at protein level. Therefore, we identified NOP56 as a negative regulator of MyD88-mediated NF-κB signaling by inhibiting MyD88 expression and provided new insight into the regulation mechanism in teleost fish.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Han Zhang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
3
|
Weber G, DeKoster GT, Holton N, Hall KB, Wahl MC. Molecular principles underlying dual RNA specificity in the Drosophila SNF protein. Nat Commun 2018; 9:2220. [PMID: 29880797 PMCID: PMC5992148 DOI: 10.1038/s41467-018-04561-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
The first RNA recognition motif of the Drosophila SNF protein is an example of an RNA binding protein with multi-specificity. It binds different RNA hairpin loops in spliceosomal U1 or U2 small nuclear RNAs, and only in the latter case requires the auxiliary U2A' protein. Here we investigate its functions by crystal structures of SNF alone and bound to U1 stem-loop II, U2A' or U2 stem-loop IV and U2A', SNF dynamics from NMR spectroscopy, and structure-guided mutagenesis in binding studies. We find that different loop-closing base pairs and a nucleotide exchange at the tips of the loops contribute to differential SNF affinity for the RNAs. U2A' immobilizes SNF and RNA residues to restore U2 stem-loop IV binding affinity, while U1 stem-loop II binding does not require such adjustments. Our findings show how U2A' can modulate RNA specificity of SNF without changing SNF conformation or relying on direct RNA contacts.
Collapse
Affiliation(s)
- Gert Weber
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195, Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489, Berlin, Germany.
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri, 63110, USA
| | - Nicole Holton
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195, Berlin, Germany
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri, 63110, USA.
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195, Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, D-12489, Berlin, Germany.
| |
Collapse
|
4
|
Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol 2017; 14:680-692. [PMID: 27715451 PMCID: PMC5519232 DOI: 10.1080/15476286.2016.1243646] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Box C/D and box H/ACA snoRNAs are abundant non-coding RNAs that localize in the nucleolus and mostly function as guides for nucleotide modifications. While a large pool of snoRNAs modifies rRNAs, an increasing number of snoRNAs could also potentially target mRNAs. ScaRNAs belong to a family of specific RNAs that localize in Cajal bodies and that are structurally similar to snoRNAs. Most scaRNAs are involved in snRNA modification, while telomerase RNA, which contains H/ACA motifs, functions in telomeric DNA synthesis. In this review, we describe how box C/D and H/ACA snoRNAs are processed and assembled with core proteins to form functional RNP particles. Their biogenesis involve several transport factors that first direct pre-snoRNPs to Cajal bodies, where some processing steps are believed to take place, and then to nucleoli. Assembly of core proteins involves the HSP90/R2TP chaperone-cochaperone system for both box C/D and H/ACA RNAs, but also several factors specific for each family. These assembly factors chaperone unassembled core proteins, regulate the formation and disassembly of pre-snoRNP intermediates, and control the activity of immature particles. The AAA+ ATPase RUVBL1 and RUVBL2 belong to the R2TP co-chaperones and play essential roles in snoRNP biogenesis, as well as in the formation of other macro-molecular complexes. Despite intensive research, their mechanisms of action are still incompletely understood.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS, 9 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France, Université de Lorraine, Campus Biologie –Santé, CS 50184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
5
|
Shubina MY, Musinova YR, Sheval EV. Nucleolar methyltransferase fibrillarin: Evolution of structure and functions. BIOCHEMISTRY (MOSCOW) 2016; 81:941-50. [DOI: 10.1134/s0006297916090030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Yip WSV, Shigematsu H, Taylor DW, Baserga SJ. Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs. Nucleic Acids Res 2016; 44:8976-8989. [PMID: 27342279 PMCID: PMC5062973 DOI: 10.1093/nar/gkw576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Ribosomal RNA (rRNA) modifications are essential for ribosome function in all cellular organisms. Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze 2′-O-methylation, one rRNA modification type in Eukarya and Archaea. Negatively stained electron microscopy (EM) models of archaeal box C/D sRNPs have demonstrated the dimeric sRNP (di-sRNP) architecture, which has been corroborated by nuclear magnetic resonance (NMR) studies. Due to limitations of the structural techniques, the orientation of the box C/D sRNAs has remained unclear. Here, we have used cryo-EM to elucidate the sRNA orientation in a M. jannaschii box C/D di-sRNP. The cryo-EM reconstruction suggests a parallel orientation of the two sRNAs. Biochemical and structural analyses of sRNPs assembled with mutant sRNAs indicate a potential interaction between the sRNA stem ends. Our results suggest that the parallel arrangement of the sRNAs juxtaposes their stem ends into close proximity to allow for a stabilizing interaction that helps maintain the di-sRNP architecture.
Collapse
Affiliation(s)
- W S Vincent Yip
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Hideki Shigematsu
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA RIKEN Center for Life Science Technology, Yokohama, Kanagawa 230-0045, Japan
| | - David W Taylor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA Department of Genetics, Yale University, New Haven, CT 06520, USA Department of Therapeutic Radiology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Ribonucleoproteins in archaeal pre-rRNA processing and modification. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:614735. [PMID: 23554567 PMCID: PMC3608112 DOI: 10.1155/2013/614735] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 12/27/2022]
Abstract
Given that ribosomes are one of the most important cellular macromolecular machines, it is not surprising that there is intensive research in ribosome biogenesis. Ribosome biogenesis is a complex process. The maturation of ribosomal RNAs (rRNAs) requires not only the precise cleaving and folding of the pre-rRNA but also extensive nucleotide modifications. At the heart of the processing and modifications of pre-rRNAs in Archaea and Eukarya are ribonucleoprotein (RNP) machines. They are called small RNPs (sRNPs), in Archaea, and small nucleolar RNPs (snoRNPs), in Eukarya. Studies on ribosome biogenesis originally focused on eukaryotic systems. However, recent studies on archaeal sRNPs have provided important insights into the functions of these RNPs. This paper will introduce archaeal rRNA gene organization and pre-rRNA processing, with a particular focus on the discovery of the archaeal sRNP components, their functions in nucleotide modification, and their structures.
Collapse
|
8
|
Bower-Phipps KR, Taylor DW, Wang HW, Baserga SJ. The box C/D sRNP dimeric architecture is conserved across domain Archaea. RNA (NEW YORK, N.Y.) 2012; 18:1527-1540. [PMID: 22753779 PMCID: PMC3404373 DOI: 10.1261/rna.033134.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.
Collapse
Affiliation(s)
| | | | | | - Susan J. Baserga
- Department of Molecular Biophysics and Biochemistry
- Department of Genetics
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
9
|
Gagnon KT, Biswas S, Zhang X, Brown BA, Wollenzien P, Mattos C, Maxwell ES. Structurally conserved Nop56/58 N-terminal domain facilitates archaeal box C/D ribonucleoprotein-guided methyltransferase activity. J Biol Chem 2012; 287:19418-28. [PMID: 22496443 DOI: 10.1074/jbc.m111.323253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Box C/D RNA-protein complexes (RNPs) guide the 2'-O-methylation of nucleotides in both archaeal and eukaryotic ribosomal RNAs. The archaeal box C/D and C'/D' RNP subcomplexes are each assembled with three sRNP core proteins. The archaeal Nop56/58 core protein mediates crucial protein-protein interactions required for both sRNP assembly and the methyltransferase reaction by bridging the L7Ae and fibrillarin core proteins. The interaction of Methanocaldococcus jannaschii (Mj) Nop56/58 with the methyltransferase fibrillarin has been investigated using site-directed mutagenesis of specific amino acids in the N-terminal domain of Nop56/58 that interacts with fibrillarin. Extensive mutagenesis revealed an unusually strong Nop56/58-fibrillarin interaction. Only deletion of the NTD itself prevented dimerization with fibrillarin. The extreme stability of the Nop56/58-fibrillarin heterodimer was confirmed in both chemical and thermal denaturation analyses. However, mutations that did not affect Nop56/58 binding to fibrillarin or sRNP assembly nevertheless disrupted sRNP-guided nucleotide modification, revealing a role for Nop56/58 in methyltransferase activity. This conclusion was supported with the cross-linking of Nop56/58 to the target RNA substrate. The Mj Nop56/58 NTD was further characterized by solving its three-dimensional crystal structure to a resolution of 1.7 Å. Despite low primary sequence conservation among the archaeal Nop56/58 homologs, the overall structure of the archaeal NTD domain is very well conserved. In conclusion, the archaeal Nop56/58 NTD exhibits a conserved domain structure whose exceptionally stable interaction with fibrillarin plays a role in both RNP assembly and methyltransferase activity.
Collapse
Affiliation(s)
- Keith T Gagnon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Biswas S, Buhrman G, Gagnon K, Mattos C, Brown BA, Maxwell ES. Comparative analysis of the 15.5kD box C/D snoRNP core protein in the primitive eukaryote Giardia lamblia reveals unique structural and functional features. Biochemistry 2011; 50:2907-18. [PMID: 21366326 DOI: 10.1021/bi1020474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Box C/D ribonucleoproteins (RNP) guide the 2'-O-methylation of targeted nucleotides in archaeal and eukaryotic rRNAs. The archaeal L7Ae and eukaryotic 15.5kD box C/D RNP core protein homologues initiate RNP assembly by recognizing kink-turn (K-turn) motifs. The crystal structure of the 15.5kD core protein from the primitive eukaryote Giardia lamblia is described here to a resolution of 1.8 Å. The Giardia 15.5kD protein exhibits the typical α-β-α sandwich fold exhibited by both archaeal L7Ae and eukaryotic 15.5kD proteins. Characteristic of eukaryotic homologues, the Giardia 15.5kD protein binds the K-turn motif but not the variant K-loop motif. The highly conserved residues of loop 9, critical for RNA binding, also exhibit conformations similar to those of the human 15.5kD protein when bound to the K-turn motif. However, comparative sequence analysis indicated a distinct evolutionary position between Archaea and Eukarya. Indeed, assessment of the Giardia 15.5kD protein in denaturing experiments demonstrated an intermediate stability in protein structure when compared with that of the eukaryotic mouse 15.5kD and archaeal Methanocaldococcus jannaschii L7Ae proteins. Most notable was the ability of the Giardia 15.5kD protein to assemble in vitro a catalytically active chimeric box C/D RNP utilizing the archaeal M. jannaschii Nop56/58 and fibrillarin core proteins. In contrast, a catalytically competent chimeric RNP could not be assembled using the mouse 15.5kD protein. Collectively, these analyses suggest that the G. lamblia 15.5kD protein occupies a unique position in the evolution of this box C/D RNP core protein retaining structural and functional features characteristic of both archaeal L7Ae and higher eukaryotic 15.5kD homologues.
Collapse
Affiliation(s)
- Shyamasri Biswas
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | | | | | | | |
Collapse
|
11
|
Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, Ye K. Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature 2011; 469:559-63. [PMID: 21270896 DOI: 10.1038/nature09688] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/19/2010] [Indexed: 11/09/2022]
Abstract
Box C/D RNA protein complexes (RNPs) direct site-specific 2'-O-methylation of RNA and ribosome assembly. The guide RNA in C/D RNP forms base pairs with complementary substrates and selects the modification site using a molecular ruler. Despite many studies of C/D RNP structure, the fundamental questions of how C/D RNAs assemble into RNPs and how they guide modification remain unresolved. Here we report the crystal structure of an entire catalytically active archaeal C/D RNP consisting of a bipartite C/D RNA associated with two substrates and two copies each of Nop5, L7Ae and fibrillarin at 3.15-Å resolution. The substrate pairs with the second through the eleventh nucleotide of the 12-nucleotide guide, and the resultant duplex is bracketed in a channel with flexible ends. The methyltransferase fibrillarin binds to an undistorted A-form structure of the guide-substrate duplex and specifically loads the target ribose into the active site. Because interaction with the RNA duplex alone does not determine the site specificity, fibrillarin is further positioned by non-specific and specific protein interactions. Compared with the structure of the inactive C/D RNP, extensive domain movements are induced by substrate loading. Our results reveal the organization of a monomeric C/D RNP and the mechanism underlying its site-specific methylation activity.
Collapse
Affiliation(s)
- Jinzhong Lin
- National Institute of Biological Sciences, Beijing 102206, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Ribonucleoproteins (RNPs) play key roles in many cellular processes and often function as RNP enzymes. Similar to proteins, some of these RNPs exist and function as multimers, either homomeric or heteromeric. While in some cases the mechanistic function of multimerization is well understood, the functional consequences of multimerization of other RNPs remain enigmatic. In this review we will discuss the function and organization of small RNPs that exist as stable multimers, including RNPs catalyzing RNA chemical modifications, telomerase RNP, and RNPs involved in pre-mRNA splicing.
Collapse
|
13
|
Abstract
Electrophoretic mobility shift assay, or EMSA, is a well-established technique for separating macromolecules under native conditions based on a combination of shape, size, and charge. The use of EMSA can provide both general and specific information concerning the interaction between two macromolecules such as RNA and protein. Here we present a protocol for the practical use of EMSA to assess protein-RNA interactions and ribonucleoprotein (RNP) assembly. The conceptual framework of the assay is discussed along with a step-by-step procedure for the binding of archaeal ribosomal protein L7Ae to a box C/D sRNA. Potential pitfalls and common mistakes to avoid are emphasized with technical tips and a notes section. This protocol provides a starting point for the design and implementation of EMSA in studying a wide variety of RNP complexes.
Collapse
|
14
|
Qu G, van Nues RW, Watkins NJ, Maxwell ES. The spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of the eukaryotic box C/D snoRNP nucleotide modification complex. Mol Cell Biol 2011; 31:365-74. [PMID: 21041475 PMCID: PMC3019978 DOI: 10.1128/mcb.00918-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/10/2010] [Accepted: 10/26/2010] [Indexed: 11/20/2022] Open
Abstract
Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes.
Collapse
Affiliation(s)
- Guosheng Qu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | | | | | | |
Collapse
|
15
|
Ghalei H, Hsiao HH, Urlaub H, Wahl MC, Watkins NJ. A novel Nop5-sRNA interaction that is required for efficient archaeal box C/D sRNP formation. RNA (NEW YORK, N.Y.) 2010; 16:2341-8. [PMID: 20962039 PMCID: PMC2995396 DOI: 10.1261/rna.2380410] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/16/2010] [Indexed: 05/30/2023]
Abstract
Archaeal and eukaryotic box C/D RNPs catalyze the 2'-O-methylation of ribosomal RNA, a modification that is essential for the correct folding and function of the ribosome. Each archaeal RNP contains three core proteins--L7Ae, Nop5, and fibrillarin (methyltransferase)--and a box C/D sRNA. Base-pairing between the sRNA guide region and the rRNA directs target site selection with the C/D and related C'/D' motifs functioning as protein binding sites. Recent structural analysis of in vitro assembled archaeal complexes has produced two divergent models of box C/D sRNP structure. In one model, the complex is proposed to be monomeric, while the other suggests a dimeric sRNP. The position of the RNA in the RNP is significantly different in each model. We have used UV-cross-linking to characterize protein-RNA contacts in the in vitro assembled Pyrococcus furiosus box C/D sRNP. The P. furiosus sRNP components assemble into complexes that are the expected size of di-sRNPs. Analysis of UV-induced protein-RNA cross-links revealed a novel interaction between the ALFR motif, in the Nop domain of Nop5, and the guide/spacer regions of the sRNA. We show that the ALFR motif and the spacer sequence adjacent to box C or C' are important for box C/D sRNP assembly in vitro. These data therefore reveal new RNA-protein contacts in the box C/D sRNP and suggest a role for Nop5 in substrate binding and/or release.
Collapse
Affiliation(s)
- Homa Ghalei
- Abteilung Zelluläre Biochemie, Max-Planck-Institute for Biophysical Chemistry, D-37077 Goettingen, Germany
| | | | | | | | | |
Collapse
|
16
|
Xue S, Wang R, Yang F, Terns RM, Terns MP, Zhang X, Maxwell ES, Li H. Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Mol Cell 2010; 39:939-49. [PMID: 20864039 PMCID: PMC3572848 DOI: 10.1016/j.molcel.2010.08.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/20/2010] [Accepted: 07/16/2010] [Indexed: 01/07/2023]
Abstract
Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs.
Collapse
Affiliation(s)
- Song Xue
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Ruiying Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Fangping Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Rebecca M. Terns
- Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Michael P. Terns
- Departments of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Xinxin Zhang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - E. Stuart Maxwell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
17
|
Gagnon KT, Zhang X, Qu G, Biswas S, Suryadi J, Brown BA, Maxwell ES. Signature amino acids enable the archaeal L7Ae box C/D RNP core protein to recognize and bind the K-loop RNA motif. RNA (NEW YORK, N.Y.) 2010; 16:79-90. [PMID: 19926724 PMCID: PMC2802039 DOI: 10.1261/rna.1692310] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/29/2009] [Indexed: 05/28/2023]
Abstract
The archaeal L7Ae and eukaryotic 15.5kD protein homologs are members of the L7Ae/15.5kD protein family that characteristically recognize K-turn motifs found in both archaeal and eukaryotic RNAs. In Archaea, the L7Ae protein uniquely binds the K-loop motif found in box C/D and H/ACA sRNAs, whereas the eukaryotic 15.5kD homolog is unable to recognize this variant K-turn RNA. Comparative sequence and structural analyses, coupled with amino acid replacement experiments, have demonstrated that five amino acids enable the archaeal L7Ae core protein to recognize and bind the K-loop motif. These signature residues are highly conserved in the archaeal L7Ae and eukaryotic 15.5kD homologs, but differ between the two domains of life. Interestingly, loss of K-loop binding by archaeal L7Ae does not disrupt C'/D' RNP formation or RNA-guided nucleotide modification. L7Ae is still incorporated into the C'/D' RNP despite its inability to bind the K-loop, thus indicating the importance of protein-protein interactions for RNP assembly and function. Finally, these five signature amino acids are distinct for each of the L7Ae/L30 family members, suggesting an evolutionary continuum of these RNA-binding proteins for recognition of the various K-turn motifs contained in their cognate RNAs.
Collapse
Affiliation(s)
- Keith T Gagnon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Bleichert F, Gagnon KT, Brown BA, Maxwell ES, Leschziner AE, Unger VM, Baserga SJ. A dimeric structure for archaeal box C/D small ribonucleoproteins. Science 2009; 325:1384-7. [PMID: 19745151 DOI: 10.1126/science.1176099] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Methylation of ribosomal RNA (rRNA) is required for optimal protein synthesis. Multiple 2'-O-ribose methylations are carried out by box C/D guide ribonucleoproteins [small ribonucleoproteins (sRNPs) and small nucleolar ribonucleoproteins (snoRNPs)], which are conserved from archaea to eukaryotes. Methylation is dictated by base pairing between the specific guide RNA component of the sRNP or snoRNP and the target rRNA. We determined the structure of a reconstituted and catalytically active box C/D sRNP from the archaeon Methanocaldococcus jannaschii by single-particle electron microscopy. We found that archaeal box C/D sRNPs unexpectedly formed a dimeric structure with an alternative organization of their RNA and protein components that challenges the conventional view of their architecture. Mutational analysis demonstrated that this di-sRNP structure was relevant for the enzymatic function of archaeal box C/D sRNPs.
Collapse
Affiliation(s)
- Franziska Bleichert
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Structural organization of box C/D RNA-guided RNA methyltransferase. Proc Natl Acad Sci U S A 2009; 106:13808-13. [PMID: 19666563 DOI: 10.1073/pnas.0905128106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Box C/D guide RNAs are abundant noncoding RNAs that primarily function to direct the 2'-O-methylation of specific nucleotides by base-pairing with substrate RNAs. In archaea, a bipartite C/D RNA assembles with L7Ae, Nop5, and the methyltransferase fibrillarin into a modification enzyme with unique substrate specificity. Here, we determined the crystal structure of an archaeal C/D RNA-protein complex (RNP) composed of all 3 core proteins and an engineered half-guide RNA at 4 A resolution, as well as 2 protein substructures at higher resolution. The RNP structure reveals that the C-terminal domains of Nop5 in the dimeric complex provide symmetric anchoring sites for 2 L7Ae-associated kink-turn motifs of the C/D RNA. A prominent protrusion in Nop5 seems to be important for guide RNA organization and function and for discriminating the structurally related U4 snRNA. Multiple conformations of the N-terminal domain of Nop5 and its associated fibrillarin in different structures indicate the inherent flexibility of the catalytic module, suggesting that a swinging motion of the catalytic module is part of the enzyme mechanism. We also built a model of a native C/D RNP with substrate and fibrillarin in an active conformation. Our results provide insight into the overall organization and mechanism of action of C/D RNA-guided RNA methyltransferases.
Collapse
|
20
|
Hardin JW, Reyes FE, Batey RT. Analysis of a critical interaction within the archaeal box C/D small ribonucleoprotein complex. J Biol Chem 2009; 284:15317-24. [PMID: 19336398 PMCID: PMC2685712 DOI: 10.1074/jbc.m901368200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Indexed: 11/06/2022] Open
Abstract
In archaea and eukarya, box C/D ribonucleoprotein (RNP) complexes are responsible for 2'-O-methylation of tRNAs and rRNAs. The archaeal box C/D small RNP complex requires a small RNA component (sRNA) possessing Watson-Crick complementarity to the target RNA along with three proteins: L7Ae, Nop5p, and fibrillarin. Transfer of a methyl group from S-adenosylmethionine to the target RNA is performed by fibrillarin, which by itself has no affinity for the sRNA-target duplex. Instead, it is targeted to the site of methylation through association with Nop5p, which in turn binds to the L7Ae-sRNA complex. To understand how Nop5p serves as a bridge between the targeting and catalytic functions of the box C/D small RNP complex, we have employed alanine scanning to evaluate the interaction between the Pyrococcus horikoshii Nop5p domain and an L7Ae box C/D RNA complex. From these data, we were able to construct an isolated RNA-binding domain (Nop-RBD) that folds correctly as demonstrated by x-ray crystallography and binds to the L7Ae box C/D RNA complex with near wild type affinity. These data demonstrate that the Nop-RBD is an autonomously folding and functional module important for protein assembly in a number of complexes centered on the L7Ae-kinkturn RNP.
Collapse
Affiliation(s)
- John W Hardin
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
21
|
RNA-binding protein hoip accelerates polyQ-induced neurodegeneration in Drosophila. Biosci Biotechnol Biochem 2008; 72:2255-61. [PMID: 18776683 DOI: 10.1271/bbb.70829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abnormal polyglutamine (polyQ) expansion in the N-terminal domain of the human androgen receptor (hAR) is known to cause spinobulbar muscular atrophy (SBMA), a hereditary human neurodegenerative disorder. To explore the molecular mechanisms of neurodegeneration in SBMA, we genetically screened modulators of neurodegeneration in a Drosophila SBMA experimental model system. We identified hoip as an accelerator of polyQ-induced neurodegeneration. We found that hoip forms a complex with 18s rRNA together nop56 and nop5 proteins, whose human homologs are known to form a snoRNP complex involved in ribosomal RNA processing. Significantly, the levels of mutant polyQ-hAR were up-regulated in a mutant line overexpressing hoip. Consistently, severe neurodegeneration phenotype (rough eye) was also observed in both nop56 and nop5 overexpression mutant lines. These findings suggest that the process of neurodegeneration induced by abnormal polyQ expansion in the hAR may be regulated by the activity of snoRNP complex.
Collapse
|
22
|
Zhao H, Beckett D. Kinetic partitioning between alternative protein-protein interactions controls a transcriptional switch. J Mol Biol 2008; 380:223-36. [PMID: 18508076 DOI: 10.1016/j.jmb.2008.04.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 04/24/2008] [Accepted: 04/29/2008] [Indexed: 01/14/2023]
Abstract
Proteins can perform completely distinct functions in response to the particular partners that they bind to. Consequently, determination of the mechanism of functional regulation in such systems requires elucidation of the mechanism switching between binding partners. The central protein of the Escherichia coli biotin regulatory system, BirA, switches between its function as a metabolic enzyme or a transcriptional repressor in response to binding either the biotin carboxyl carrier protein subunit of acetyl-CoA carboxylase or a second BirA monomer. These two protein-protein interactions are structurally mutually exclusive. The results of earlier studies suggest that the system is regulated by kinetic partitioning between the two protein-protein interactions. In this work, sedimentation velocity was employed to monitor the partitioning directly. The results indicate similar equilibrium parameters governing formation of the two protein-protein interactions. Kinetic analysis of the sedimentation velocity data indicated that holoBirA dimerization is governed by very slow forward and reverse rate constants. The slow kinetics of holoBirA dimerization combined with fluctuations in the intracellular apoBCCP pool are critical determinants in partitioning BirA between its distinct biological functions.
Collapse
Affiliation(s)
- Huaying Zhao
- Department of Chemistry and Biochemistry, Center for Biological Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
23
|
Gagnon K, Zhang X, Maxwell ES. In vitro reconstitution and affinity purification of catalytically active archaeal box C/D sRNP complexes. Methods Enzymol 2007; 425:263-82. [PMID: 17673088 DOI: 10.1016/s0076-6879(07)25012-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Archaeal box C/D RNAs guide the site-specific 2'-O-methylation of target nucleotides in ribosomal RNAs and tRNAs. In vitro reconstitution of catalytically active box C/D RNPs by use of in vitro transcribed box C/D RNAs and recombinant core proteins provides model complexes for the study of box C/D RNP assembly, structure, and function. Described here are protocols for assembly of the archaeal box C/D RNP and assessment of its nucleotide modification activity. Also presented is a novel affinity purification scheme that uses differentially tagged core proteins and a sequential three-step affinity selection protocol that yields fully assembled and catalytically active box C/D RNPs. This affinity selection protocol can provide highly purified complex in sufficient quantities not only for biochemical analyses but also for biophysical approaches such as cryoelectron microscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Keith Gagnon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
24
|
Oruganti S, Zhang Y, Li H, Robinson H, Terns MP, Terns RM, Yang W, Li H. Alternative Conformations of the Archaeal Nop56/58-Fibrillarin Complex Imply Flexibility in Box C/D RNPs. J Mol Biol 2007; 371:1141-50. [PMID: 17617422 DOI: 10.1016/j.jmb.2007.06.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/05/2007] [Accepted: 06/12/2007] [Indexed: 12/31/2022]
Abstract
The Nop56/58-fibrillarin heterocomplex is a core protein complex of the box C/D ribonucleoprotein particles that modify and process ribosomal RNAs. The previous crystal structure of the Archaeoglobus fulgidus complex revealed a symmetric dimer of two Nop56/58-fibrillarin complexes linked by the coiled-coil domains of the Nop56/68 proteins. However, because the A. fulgidus Nop56/58 protein lacks some domains found in most other species, it was thought that the bipartite architecture of the heterocomplex was not likely a general phenomenon. Here we report the crystal structure of the Nop56/58-fibrillarin complex bound with methylation cofactor, S-adenosyl-L-methionine from Pyrococcus furiosus, at 2.7 A. The new complex confirms the generality of the previously observed bipartite arrangement. In addition however, the conformation of Nop56/58 in the new structure differs substantially from that in the earlier structure. The distinct conformations of Nop56/58 suggest potential flexibility in Nop56/58. Computational normal mode analysis supports this view. Importantly, fibrillarin is repositioned within the two complexes. We propose that hinge motion within Nop56/58 has important implications for the possibility of simultaneously positioning two catalytic sites at the two target sites of a bipartite box C/D guide RNA.
Collapse
Affiliation(s)
- Sri Oruganti
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Arraiano CM, Bamford J, Brüssow H, Carpousis AJ, Pelicic V, Pflüger K, Polard P, Vogel J. Recent advances in the expression, evolution, and dynamics of prokaryotic genomes. J Bacteriol 2007; 189:6093-100. [PMID: 17601780 PMCID: PMC1951890 DOI: 10.1128/jb.00612-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Cecilia M Arraiano
- ITQB-Instituto de Tecnologia Química e Biológical/Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Appel CD, Maxwell ES. Structural features of the guide:target RNA duplex required for archaeal box C/D sRNA-guided nucleotide 2'-O-methylation. RNA (NEW YORK, N.Y.) 2007; 13:899-911. [PMID: 17438123 PMCID: PMC1869030 DOI: 10.1261/rna.517307] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/12/2007] [Indexed: 05/14/2023]
Abstract
Archaeal box C/D sRNAs guide the 2'-O-methylation of target nucleotides using both terminal box C/D and internal C'/D' RNP complexes. In vitro assembly of a catalytically active Methanocaldococcus jannaschii sR8 box C/D RNP provides a model complex to determine those structural features of the guide:target RNA duplex important for sRNA-guided nucleotide methylation. Watson-Crick pairing of guide and target nucleotides was found to be essential for methylation, and mismatched bases within the guide:target RNA duplex also disrupted nucleotide modification. However, dependence upon Watson-Crick base-paired guide:target nucleotides for methylation was compromised in elevated Mg(2+) concentrations where mismatched target nucleotides were modified. Nucleotide methylation required that the guide:target duplex consist of an RNA:RNA duplex as a target ribonucleotide within a guide RNA:target DNA duplex that was not methylated. Interestingly, D and D' target RNAs exhibited different levels of methylation when deoxynucleotides were inserted into the target RNA or when target methylation was carried out in elevated Mg(2+) concentrations. These observations suggested that unique structural features of the box C/D and C'/D' RNPs differentially affect their respective methylation capabilities. The ability of the sR8 box C/D sRNP to methylate target nucleotides positioned within highly structured RNA hairpins suggested that the sRNP can facilitate unwinding of double-stranded target RNAs. Finally, increasing target RNA length to extend beyond those nucleotides that base pair with the sRNA guide sequence significantly increased sRNP turnover and thus nucleotide methylation. This suggests that target RNA interaction with the sRNP core proteins is also important for box C/D sRNP-guided nucleotide methylation.
Collapse
Affiliation(s)
- C Denise Appel
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
27
|
Reichow SL, Hamma T, Ferré-D'Amaré AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 2007; 35:1452-64. [PMID: 17284456 PMCID: PMC1865073 DOI: 10.1093/nar/gkl1172] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Eukaryotes and archaea use two sets of specialized ribonucleoproteins (RNPs) to carry out sequence-specific methylation and pseudouridylation of RNA, the two most abundant types of modifications of cellular RNAs. In eukaryotes, these protein–RNA complexes localize to the nucleolus and are called small nucleolar RNPs (snoRNPs), while in archaea they are known as small RNPs (sRNP). The C/D class of sno(s)RNPs carries out ribose-2′-O-methylation, while the H/ACA class is responsible for pseudouridylation of their RNA targets. Here, we review the recent advances in the structure, assembly and function of the conserved C/D and H/ACA sno(s)RNPs. Structures of each of the core archaeal sRNP proteins have been determined and their assembly pathways delineated. Furthermore, the recent structure of an H/ACA complex has revealed the organization of a complete sRNP. Combined with current biochemical data, these structures offer insight into the highly homologous eukaryotic snoRNPs.
Collapse
Affiliation(s)
- Steve L. Reichow
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Tomoko Hamma
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Adrian R. Ferré-D'Amaré
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
- *To whom correspondence should be addressed. +(206) 543 1610+(206) 685 8665
| |
Collapse
|
28
|
Gagnon KT, Zhang X, Agris PF, Maxwell ES. Assembly of the archaeal box C/D sRNP can occur via alternative pathways and requires temperature-facilitated sRNA remodeling. J Mol Biol 2006; 362:1025-42. [PMID: 16949610 DOI: 10.1016/j.jmb.2006.07.091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/21/2006] [Accepted: 07/29/2006] [Indexed: 10/24/2022]
Abstract
Archaeal dual-guide box C/D small nucleolar RNA-like RNAs (sRNAs) bind three core proteins in sequential order at both terminal box C/D and internal C'/D' motifs to assemble two ribonuclear protein (RNP) complexes active in guiding nucleotide methylation. Experiments have investigated the process of box C/D sRNP assembly and the resultant changes in sRNA structure or "remodeling" as a consequence of sRNP core protein binding. Hierarchical assembly of the Methanocaldococcus jannaschii sR8 box C/D sRNP is a temperature-dependent process with binding of L7 and Nop56/58 core proteins to the sRNA requiring elevated temperature to facilitate necessary RNA structural dynamics. Circular dichroism (CD) spectroscopy and RNA thermal denaturation revealed an increased order and stability of sRNA folded structure as a result of L7 binding. Subsequent binding of the Nop56/58 and fibrillarin core proteins to the L7-sRNA complex further remodeled sRNA structure. Assessment of sR8 guide region accessibility using complementary RNA oligonucleotide probes revealed significant changes in guide region structure during sRNP assembly. A second dual-guide box C/D sRNA from M. jannaschii, sR6, also exhibited RNA remodeling during temperature-dependent sRNP assembly, although core protein binding was affected by sR6's distinct folded structure. Interestingly, the sR6 sRNP followed an alternative assembly pathway, with both guide regions being continuously exposed during sRNP assembly. Further experiments using sR8 mutants possessing alternative guide regions demonstrated that sRNA folded structure induced by specific guide sequences impacted the sRNP assembly pathway. Nevertheless, assembled sRNPs were active for sRNA-guided methylation independent of the pathway followed. Thus, RNA remodeling appears to be a common and requisite feature of archaeal dual-guide box C/D sRNP assembly and formation of the mature sRNP can follow different assembly pathways in generating catalytically active complexes.
Collapse
MESH Headings
- Amino Acid Sequence
- Archaea/chemistry
- Archaea/genetics
- Archaea/metabolism
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Archaeal Proteins/isolation & purification
- Archaeal Proteins/metabolism
- Base Sequence
- Chromatography, Affinity
- Circular Dichroism
- Methylation
- Models, Biological
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Temperature
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Keith T Gagnon
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
29
|
Hardin JW, Batey RT. The bipartite architecture of the sRNA in an archaeal box C/D complex is a primary determinant of specificity. Nucleic Acids Res 2006; 34:5039-51. [PMID: 16984968 PMCID: PMC1635284 DOI: 10.1093/nar/gkl644] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The archaeal box C/D sRNP, the enzyme responsible for 2'-O-methylation of rRNA and tRNA, possesses a nearly perfect axis of symmetry and bipartite structure. This RNP contains two platforms for the assembly of protein factors, the C/D and C'/D' motifs, acting in conjunction with two guide sequences to direct methylation of a specific 2'-hydroxyl group in a target RNA. While this suggests that a functional asymmetric single-site complex complete with guide sequence and a single box C/D motif should be possible, previous work has demonstrated such constructs are not viable. To understand the basis for a bipartite RNP, we have designed and assayed the activity and specificity of a series of synthetic RNPs that represent a systematic reduction of the wild-type RNP to a fully single-site enzyme. This reduced RNP is active and exhibits all of the characteristics of wild-type box C/D RNPs except it is nonspecific with respect to the site of 2'-O-methylation. Our results demonstrate that protein-protein crosstalk through Nop5p dimerization is not required, but that architecture plays a crucial role in directing methylation activity with both C/D and C'/D' motifs being required for specificity.
Collapse
Affiliation(s)
| | - Robert T. Batey
- To whom correspondence should be addressed. Tel: +1 303 735 2159; Fax: +1 303 735 1347;
| |
Collapse
|